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Abstract: Exoskeletons designed to assist patients with activities of daily living are becoming in-
creasingly popular, but still are subject to research. In order to gather requirements for the design
of such systems, long-term gait observation of the patients over the course of multiple days in an
environment of daily living are required. In this paper a wearable all-in-one data acquisition system
for collecting and storing biomechanical data in everyday life is proposed. The system is designed
to be cost efficient and easy to use, using off-the-shelf components and a cloud server system for
centralized data storage. The measurement accuracy of the system was verified, by measuring the
angle of the human knee joint at walking speeds between 3 and 12 km/h in reference to an optical
motion analysis system. The acquired data were uploaded to a cloud database via a smartphone
application. Verification results showed that the proposed toolchain works as desired. The system
reached an RMSE from 2.9◦ to 8◦, which is below that of most comparable systems. The system
provides a powerful, scalable platform for collecting and processing biomechanical data, which can
help to automize the generation of an extensive database for human kinematics.

Keywords: medical engineering; biomechanics; exoskeleton; active knee orthosis; motion analysis;
sensor technologies; human activity recognition; wearable sensors

1. Introduction

The most common activities of daily living (ADL) are walking and climbing stairs [1].
The ability to perform ADLs with ease is essential for the quality of life of patients or elderly
persons. This is especially important, as disorders of the human gait pattern increase
significantly with age. A study by Mahlknecht et al. [2] revealed that the prevalence
of gait and balance disorders ranges around 10% for individuals aged between 60 and
69 years and exceeds 60% for those aged over 80 years. In the context of an ageing society,
interest in effective and affordable treatment methods for gait disorders is increasing. There
are multiple approaches to reduce the impairment of gait disorders. Among them are
orthoses and exoskeletons, which can be used to support or even regain lower extremity
functions [3–11]. To develop and validate such devices and to adapt them to the user,
long-term gait observation is necessary. Parameters such as knee joint torque and angle,
hip joint angular velocity, and the speed of the subject’s movement can be derived based on
biomechanical measurements [5]. By evaluation of these parameters over the course of a day
while performing ADL, load collectives can be generated for the lower limb. The collected
data are instrumental in refining the design, verification, and control of exoskeletons.

Biomechanical data can be captured with motion analysis systems (MASs). There are
several methods for this purpose, which differ primarily in the choice of sensors.

A frequently selected method of recording motion kinetics is the use of optical sys-
tems [12]. An example of such a system has been described by Riener et al. [13].

This methodology with motion-detecting cameras has been proven for decades in
biokinematics but is inappropriate for a wearable biomechanical analysis system. Optical
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systems can record human motion very accurately but are cost-intensive and restrict the
recording spatially into a stationary environment equipped with an array of cameras [12,14].
However, the precise data and the large amount of test results in the literature can be used
for the verification of a new measurement system [13,15].

Wearable systems based on inertial measurement units (IMUs) have been recently
a subject of extensive research [12,14,16–43]. These systems, while not yet delivering the
same accuracy as optical systems, can be operated everywhere and not only in a stationary
environment equipped with cameras. Commercial solutions for inertial motion capturing
have existed since the early 2000s. In 2008, Cloete et al. [42] benchmarked the commercially
available MOVEN motion capture system by XSENS, comparing it to a clinically used
optical system. They concluded that the system can measure the inclinations of body parts
and joint angles with reasonable accuracy, while being exceptionally fast to set up and
flexible in its use [42]. However, the tested commercial solutions are still expensive, with
the latest version of the XSENS motion capture suit costing more than USD 4000.

Due to their advantages, IMU sensors are the most commonly used wearable tech-
nology for gait analysis [39]. But this technology is still not used to its full potential.
Benson et al. reviewed over 230 MASs for running gait analysis based on IMU sensors.
Twenty-eight percent of the studies were conducted outdoors, and in 33% of all studies,
the analyzed distance was greater than one step or stride or 200 m [44], which means
most of the systems are not designed to run long-term measurements out of the laboratory.
Furthermore only 10% of the reviewed devices are used for measuring joint angles or range
of motion. Benson et al. suggest shifting gait analysis research from controlled laboratory
settings to more real-world environments [44].

This leads to the conclusion that there is a research gap in developing a low-cost
solution for measurements of biomechanical data over the course of multiple days in an
environment of daily living.

Long-term measurements are required to obtain a complete set of biomechanical data
in real-life conditions. Field measurements offer a significantly larger and more realistic
variety of load scenarios compared to simulating selected walking activities in a laboratory.
Additionally, simulating tasks can lead to systematic errors. These errors can be avoided by
measuring under real conditions.

Load collectives of the human leg will be calculated from the data of long-term
measurements obtained by the proposed system. The data sets will also help to identify
different walking activities (e.g., level walking, stair ascending and descending) performed
by the user. This information will be used in future work for the control of an active
exoskeleton for the human knee.

For this purpose, SensAA is focused on measuring the kinematics of the lower human
limbs. SensAA will be used by elderly people; therefore, the use of the measurement
system shall be as intuitive as possible. The wearer does not need technical knowledge to
operate the system and can don and doff it on their own. No maintenance like recharging,
sensor adjustment and calibration are required during runtime. The system is implemented
using off-the-shelf hardware and open-source software. This reduces cost and improves
accessibility of the system.

SensAA is used in activities of daily living both indoors and outdoors. It is also used
all day without taking it off. Therefore, a small, compact, and wireless design is suggested,
which is non-obstructive to its wearer and does not cause discomfort.

To take full advantage of this wearable design, cloud-based software for data ac-
quisition and analysis is proposed. While the measurements are running, the data are
automatically uploaded to a database on a cloud server. The server allows for central data
storage and online data collection for multiple users simultaneously.

In the literature, there already are reports of approaches that use IMU sensors to
measure lower limb kinematics [41,45]. However, to our knowledge, no device has yet
been described that combines all desired goals. These approaches lack at least one of the
following aspects:
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• Low-cost solution [28,36,37,40]
• Easy setup and low calibration effort [25,27,28]
• Compact and wireless design [14,34,46]
• Continuous and secure data upload to cloud server [26,28,34,36,37,40,46–48]
• Data upload outdoors without WIFI connection [28,36]
• Energy optimization for long-term measurements [28,36,37,40]
• Secure data transfer for multiple users [26,34,37,40,46–48]

This paper presents a novel all-in-one solution that combines solutions for accuracy,
usability, and security to close the shown research gap.

2. Materials and Methods
2.1. System Architecture

The system SensAA consists of the following three main components:

• Wearable Sensor Boxes
• Android Smartphone Application
• Cloud Server System

The components and their interfaces are illustrated in Figure 1.
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SensAA uses IMU sensors to measure joint angles. This sensor principle enables the
measuring system to be used independently in every environment of daily living.
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The IMU sensors measure acceleration and angular velocity to observe their inclination
relative to the gravity vector on Earth. At least two sensors are required to measure the
angle at one joint axis. Each sensor is integrated in a housing, a wearable Sensor Box, which
also contains a battery and a Bluetooth® Low Energy (BLE) module (see Section 2.2).

In order to measure the angle of the human knee joint, one Sensor Box is attached
to the thigh and another one to the shank of a leg. The sensors are placed parallel to the
sagittal plane of the user’s body.

The data collected are transmitted wirelessly via BLE from the sensors to a smartphone
(see Section 2.3). The smartphone runs an Android application, which receives the data via
BLE notifications and forwards them to a Cloud Server System over the cellular network.
The Cloud Server provides a read and write interface to a central database for up- and
downloading datapoints (see Section 2.4). The link to this database gives the possibility
to create data backups regularly. Since the server is accessible from a public address,
appropriate measures must be taken to ensure the authenticity and authority of the users.

Figure 2 shows the system architecture of SensAA. The three main components and
their sub-architectures are described in Sections 2.2–2.4.
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2.2. Sensor Box
2.2.1. Electronic Structure

The Sensor Boxes with integrated inertial sensor and microcontroller are designed
to have a small form factor while maintaining a long battery life. Figure 3 shows a block
diagram of the electronic structure and interfaces of SensAA.
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The long duration of recordings requires the use of energy-efficient hardware and an
appropriately dimensioned power source. IMU sensors based on Micro-Electro-Mechanical
Systems (MEMS) technology have negligible power consumption and are well suited for
the proposed application. Processors and wireless transmitters also have to be carefully
selected to keep the power consumption to a minimum. For this reason, Bluetooth® Low
Energy is the preferred protocol for transmitting data wirelessly to a smartphone (see
Section 2.3).

The compact STEVAL-STLCS02V1 (STEVAL-Board) sensor board from STMicrolec-
tronics (STMicroelectronics, Geneva—Plan-Les-Ouates, Switzerland) has been chosen. This
board is inexpensive and offers a suitable interface for programming the integrated STM32-
L476 microcontroller (STMicroelectronics, Geneva—Plan-Les-Ouates, Switzerland) [49].
Furthermore, its small size (13.5 mm × 13.5 mm) makes the board ideal for the in-
tended application. The board has a built-in IMU sensor, LSM6DSM (STMicroelectronics,
Geneva—Plan-Les-Ouates, Switzerland), which incorporates an accelerometer and a gy-
roscope. Linear acceleration can be measured up to ±16 g (gravity of the Earth) and
the angular velocity up to ±2000 degrees per second (dps) [50]. BLE communication is
provided by the modules integrated on the STEVAL-Board.

A 500 mAh lithium polymer (LiPo) battery (Adafruit®, New York, NY, USA) provides
the power supply, which can be switched on and off via a slide switch. The nominal battery
voltage is 4.2 V. To recharge the battery and provide long operating times, a LiPo battery
charger from Adafruit® (New York, NY, USA) is used [51]. This charger can be connected
through a micro-USB (Universal Serial Bus).
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For the connection to the supply voltage and the interface ports of the STEVAL-Board,
a breakout board is required. Therefore, a custom printed circuit board (PCB) has been
designed. The supply voltage of this breakout board PCB is 3.3 V, which is constantly
provided by a low-dropout voltage regulator (LDO).

2.2.2. Mechanical Structure

The electronic components are mounted in a 3D-printed housing, the Sensor Box. The
bottom half of the housing provides cut-outs and guides for components and cables. One
corner of the custom PCB is cut at an angle, which prevents the PCB from being inserted
incorrectly in the housing. The PCB has an overall size of 17.5 mm × 20 mm. The housing
also provides openings for the slide switch and the USB connector of the LiPo charger.

The top half of the housing includes support structures to ensure that the components
do not move during measurements. While the Sensor Box is closed, these support structures
are in contact with the components and hold them down securely.

The Sensor Box has the final dimensions of 53.2 mm in length, 52.5 mm in width, and
11.6 mm in height. Figure 4 shows the 3D-printed housing with the fitted components.

Sensors 2024, 24, 2405 6 of 20 
 

 

For the connection to the supply voltage and the interface ports of the STEVAL-
Board, a breakout board is required. Therefore, a custom printed circuit board (PCB) has 
been designed. The supply voltage of this breakout board PCB is 3.3 V, which is con-
stantly provided by a low-dropout voltage regulator (LDO). 

2.2.2. Mechanical Structure 
The electronic components are mounted in a 3D-printed housing, the Sensor Box. 

The bottom half of the housing provides cut-outs and guides for components and cables. 
One corner of the custom PCB is cut at an angle, which prevents the PCB from being in-
serted incorrectly in the housing. The PCB has an overall size of 17.5 mm × 20 mm. The 
housing also provides openings for the slide switch and the USB connector of the LiPo 
charger. 

The top half of the housing includes support structures to ensure that the compo-
nents do not move during measurements. While the Sensor Box is closed, these support 
structures are in contact with the components and hold them down securely. 

The Sensor Box has the final dimensions of 53.2 mm in length, 52.5 mm in width, 
and 11.6 mm in height. Figure 4 shows the 3D-printed housing with the fitted compo-
nents. 

 
Figure 4. The 3D-printed Sensor Box; left: bottom half, right: top half. 

2.3. Sensor Firmware and Smartphone Application 
The firmware of the sensors is implemented in the C language with the following 

main functions: 
• Reading values from the built-in accelerometer and gyroscope 
• Observing the inclination of the sensors by fusing the accelerometer and gyroscope 

data 
• Transmission of measurement data to the Android application 

The Android application provides a user interface to interact with the sensors. The 
application allows users to connect, disconnect, and calibrate the sensors. Communica-
tion between the application and the sensors is implemented using the BLE Generic At-
tribute Profile (GATT) protocol. All interactions are mapped to GATT services and char-
acteristics. A service is a background process that may be executed even when the de-
vice display is off. The service is used to silently collect sensor data via BLE without 
needing any interaction with the user. 

Figure 4. The 3D-printed Sensor Box; left: bottom half, right: top half.

2.3. Sensor Firmware and Smartphone Application

The firmware of the sensors is implemented in the C language with the following
main functions:

• Reading values from the built-in accelerometer and gyroscope
• Observing the inclination of the sensors by fusing the accelerometer and gyroscope data
• Transmission of measurement data to the Android application

The Android application provides a user interface to interact with the sensors. The
application allows users to connect, disconnect, and calibrate the sensors. Communication
between the application and the sensors is implemented using the BLE Generic Attribute
Profile (GATT) protocol. All interactions are mapped to GATT services and characteristics.
A service is a background process that may be executed even when the device display is off.
The service is used to silently collect sensor data via BLE without needing any interaction
with the user.

The following GATT services are provided:

• The “Metric” service provides the sensor data. For each sensor data type (acceleration,
angular velocity, inclination), a GATT characteristic is defined and can be subscribed by
the smartphone app. Furthermore, a GATT descriptor is added to each characteristic,
describing the scale and unit of the provided metrics. Using the descriptor, the full
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scale of the device can be reconfigured, without reprogramming the scaling in the
smartphone application.

• The “Version” service provides the firmware version running on the sensor. It features
two characteristics, one for reading the major and minor version numbers and one for
the exact build revision.

• The “Control” service is used to imperatively trigger different processes in the sensor
firmware. Each characteristic of the service is assigned to an action in the sensor
firmware. For now, it is only used to initiate the self-calibration function.

Figure 5 illustrates the main state machine of the sensor firmware. On reset, the
system goes into the Init state. In the Init state, the microcontroller and its peripherals are
configured. After initialization, the system goes into the Operating state. In the Operating
state, the sensors are read, and the notifications are updated. The user can trigger self-
calibration of the sensors via the “Control” GATT service. During self-calibration, the offset
in the gyroscope values is calculated while the sensor is in a stationary state. This offset
is then stored in flash and applied to all subsequent sensor readings. When calibration is
finished, the system goes back into the Operating state, resuming characteristic updates.
During operation, the sensors calculate their orientation using an extended Kalman filter
(EKF)-based observer algorithm. The observer estimates the direction of the gravity vector,
from which the inclination of the sensor is derived. The inclination is published via the
‘Inclination’ GATT characteristic in radians as a 32-bit floating point number.
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Depending on the number of sensors connected, the sensors reach a sampling rate
from at least 20 Hz (with four sensors) up to 50 Hz (with two sensors). The average
frequency of walking is between 1.5 Hz and 2.5 Hz [52] and can go up to 4.5 Hz while
climbing stairs [53]. According to the Nyquist–Shannon Sampling Theorem, a sampling
rate of at least 9 Hz is needed to record the gait pattern of a subject correctly. Therefore, the
sampling rate of SensAA is sufficient for human motion analysis.
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2.4. Cloud Server System

The Cloud Server System has the responsibility of persistent data storage, while
keeping the data accessible, integrous, and consistent. The consistency and integrity
requirement can be met by using a database management system and a well-defined data
model. For this purpose, a MySQL (v8.3.0) database management system is used. To
enable cross-platform access to a database system, an interface application based on web
technologies has been chosen. Therefore, the system communicates using the Hypertext
Transfer Protocol (HTTP), which is the standard protocol for web applications. To achieve
high accessibility, an architecture was developed that allows for fast deployment and
updatability. The clients interacting with the Cloud Server System are connected via public,
mobile networks. The Cloud Server System listens on a public IP address. When exposing
the application to the internet, data security becomes an immediate concern. To prevent
unauthorized access to the system all, communications are encrypted, and an authentication
and authorization system is used.

Figure 6 shows the proposed Cloud Server System architecture. For simple interaction,
the system acts as a single HTTP server towards the client. Internally, the system is
implemented as a docker container network. Each container runs specific services, each
responsible for enabling distinct functions of the system. All containers can be maintained
and updated individually. This allows incremental updates, without the need to shut down
the entire system. All services are connected to the clients via HTTP-based application
programming interfaces (APIs). However, from a client’s point of view, it is easier to
communicate with a single server offering all of these services. The API Gateway is a
reverse proxy that addresses this issue. Depending on the path of the request, the request is
relayed to the service handling it. To ensure data security, the API Gateway uses Transport
Layer Security (TLS). The API Gateway decrypts incoming HTTP messages and relays
each unencrypted message to its destination service. In this way, while the services are
not handling security themselves, the API Gateway ensures that no unencrypted data can
leave the system.
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The API Server container hosts the Metrics API, which is responsible for accessing
the database. The Metrics API provides one endpoint for each type of measurement,
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each reachable on a distinct HTTP path. There is a corresponding database table for
each endpoint. The scheme of this table describes the measurement datatype. When
inserting a datapoint, the body of the client’s request contains a Java Script Object Notation
(JSON) document, which contains an array of JSON objects, each representing a single
measurement. When retrieving datapoints, the body of the HTTP response contains the
datapoints in the same format. To support selective retrieval of the datapoints, the endpoints
provide filter options for each column of the datatype in question. The supported filter
operators depend on the column datatype. A text value can only be compared for equality.
For numerical types, the column can be filtered using a comparison value, with either an
equality, greater than, or less than operator applied. To filter a range of values, both a
greater than and a smaller than operator can be applied to the same column. The filters are
passed to the API with the HTTP request query string.

2.5. Verification

To verify the accuracy and the data transmission reliability of the proposed inertial
measurement system, several tests are carried out, which ensure that the set requirements
are met and that correct measurement results are achieved. Verification includes a battery
life test, a pendulum test, and a treadmill Test.

2.5.1. Battery Life Test

The goal of the battery life test is to verify whether the battery-based power supply
of the Sensor Boxes is sufficient for long-term recording. Sensor Boxes need to be able to
record and transmit data over a complete day, at least 16 h (cf. Section 1). For this purpose,
two sensor modules are switched on and connected to a smartphone via the Bluetooth®

Low Energy interface. This starts the data acquisition and the test. The smartphone is
logged into the Cloud Server System and continuously delivers measurement data. Sensors
remained stationary during the test. The sensor board has a supply voltage of 3.3 V. When
the voltage drops below this threshold, the sensor is turned off, and the recording stops.
This timepoint can be determined precisely because the data are recorded with absolute
timestamps. The battery charge of the smartphone (in %) and the sensors (in V) are recorded
regularly in one-hour intervals.

2.5.2. Pendulum Test

The goal of this test is to verify the EKF-based observer algorithm and to determine
the accuracy of SensAA (see Section 2.3). Two wearable Sensor Boxes are attached to the
setup shown in Figure 7. One Sensor Box is fixed along the vertical axis, while the other
is mounted on a free-swinging pendulum. The angle α in the figure denotes the angle
measured by the system. For this experiment, an optical MAS (LaiTronic GmbH, Innsbruck,
Tirol, Austria, former Steinbichler) is used as reference for comparing the measurement
data (cf. Section 1). The infrared markers are attached to the vertical axis and the far end of
the pendulum. Therefore, the MAS measures the same angle as the wearable sensors. The
sampling rate of the MAS must be configured for the test setup. The maximum sampling
rate of the system is limited by the distance to the markers. Here, the MAS is set about 3 m
away from the test setup. In this configuration, a sampling rate of 220 Hz resulted in clean
measurements of α.

2.5.3. Treadmill Test

With measurements on a treadmill, the behavior of the sensor accuracy under real
conditions when walking at different velocities is tested. The goal is to compare the angle
progression measured by SensAA with that of MAS. The setup of the treadmill test is
shown in Figure 8.

The wearable Sensor Boxes are attached to a healthy subject’s thigh and shank of the
right leg with elastic bandages. These are easy to put on and off and are adjustable to the
thickness of the wearer’s leg.
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Figure 8. Treadmill test setup with optical MAS positioned 3 m away from the treadmill.

As shown in Figure 9, the infrared markers of the MAS are mounted centered on the
Sensor Boxes. An additional marker is located at the rotation point of the knee joint to form
a triangle with the markers on the thigh and the shank when the knee is flexed. From this
triangle, the knee angle is calculated.

To perform the test, both SensAA and the MAS are started, and the treadmill is initially
set to 3 km/h walking speed. A dataset over at least 1 min is recorded before the speed
is gradually increased. The experiment was carried out three times at walking speeds of
3 km/h, 6 km/h, 9 km/h and 12 km/h. When the speed is increased to 12 km/h, the
subject must change their gait from walking to jogging. This test serves as a system load
test to evaluate how the quality of the knee angle progression performs at high speed.

The calculated data are transmitted via BLE and stored in the Cloud Server System as
described in Sections 2.1, 2.3 and 2.4.
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Figure 9. Sensor Boxes attached with bandages to the thigh and shank of the right leg. Additionally,
three infrared markers for an optical MAS are attached to the leg. They form a triangle that covers
the angle α of the knee joint.

3. Results
3.1. Battery Life Test

The discharge curves of the Sensor Boxes’ batteries and the capacity estimation of the
smartphone during the battery life test are shown in Figure 10 (see Section 2.5.1). After
approx. 26 h of runtime, the batteries dropped below the 3.3 V threshold, at which the
sensor module can no longer be supplied, and the data recording stops. The discharge
curves of the batteries showed typical Li-Ion behavior. The smartphone’s battery level was
at 7% after 20 h. The battery was then recharged, but the data recording continued.
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3.2. Pendulum Test

The result of the pendulum test (see Section 2.5.2) is shown in Figure 11. The graph
shows the comparison of the measured angle obtained from the MAS and the proposed
measurement system. The main metric used to quantify the comparison was the Euclidean
distance between the two datasets, also referred to as the Root Mean Square Error (RMSE).
To further evaluate the quality of the measurements, the difference of the angle curves and
their mean value were calculated. For this purpose, the mean standard deviation was used,
which reflects the average distance of all measured points from the mean value. Table 1
summarizes the results.
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Figure 11. Results of the pendulum test; knee joint angle of the IMU sensors of SensAA in comparison
to reference MAS.

Table 1. Pendulum test results, angle difference between SensAA and reference MAS.

RMSE Standard Deviation Average Difference

3.5◦ 3.4◦ 2.3◦

3.3. Treadmill Test

To verify the wearable sensor data, the resulting knee angle signal was compared to the
results of the MAS system. First, the offset in the time axis of both signals was determined
and applied to the data. Then, both datasets were interpolated onto the same sampling time
points. Since the MAS system has a significantly higher sampling rate compared to SensAA,
the time points of the wearable sensor data were used for interpolation. Figure 12 shows
both signals compared to each other. To quantify the comparison between the two datasets,
the RMSE of SensAA in reference to the MAS was calculated. Additionally, the average,
minimum, and maximum distance and the standard deviation between both signals were
determined. Table 2 shows the comparison results. The lowest RMSE value was measured
for a speed of 3 km/h at 2.9◦. For speeds of 6 and 9 km/h, the RMSE was at 6.1◦ and 5.2◦.
The highest RMSE of 8.0◦ was reached at 12 km/h. The average deviation was below 5◦ at
all four walking speeds, and the standard deviation was between 1.6◦ and 6.7◦.

Figure 13 shows the phases of the gait cycle at a speed of 12 km/h. At such speeds,
there were phases in which both feet no longer touched the ground, and as a result, the
test person bounced off the ground. In the fifth sequence, it can be recognized that the
knee angle experienced a significantly greater maximum in the swing phase compared
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to walking. Here, the maximum knee angle was between 80◦ and 90◦, which can be seen
from the knee angle curve in Figure 12. For comparison, the maximum knee angle ranged
between 60◦ and 70◦ during walking.
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Figure 12. Comparison of the knee angle measured by IMU sensors of SensAA and reference MAS
on treadmill at (a) 3 km/h, (b) 6 km/h, (c) 9 km/h and (d) 12 km/h walking speed.

Table 2. Verification results of the treadmill tests, from 3 km/h up to 12 km/h.

Walking
Speed RMSE Standard

Deviation
Difference

Average Minimum Maximum

3 km/h 2.9◦ 1.6◦ 2.4◦ −3.0◦ 7.0◦

6 km/h 6.1◦ 5.1◦ 3.4◦ −11.1◦ 18.2◦

9 km/h 5.2◦ 5.1◦ 1,0◦ −10.1◦ 16.3◦

12 km/h 8.0◦ 6.7◦ 4.3◦ −11.9◦ 24.2◦
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4. Discussion

In this paper, SensAA is proposed, a low-cost, highly mobile biomechanical measure-
ment system capable of measuring the angle of the knee joint based on inertial measurement
units. The system uses centralized cloud-hosted data storage and an Android smartphone
to design a solution that is both inexpensive (see Section 2.5) and easy to set up. With
BLE as the wireless transmission protocol, a battery life of more than 24 h was achieved.
This result is well suited for long-term recordings. It should be mentioned that no other
activities were performed on the smartphone during the test. No extensive screen time or
other activities should be carried out on the smartphone during long-term recording.

The proposed system was first verified with a pendulum test. For angle measurement
accuracy, an RMSE of 3.5◦ and standard deviation of 3.4◦ were achieved. This proves that
the implemented observer algorithm can calculate the angle between two Sensor Boxes in
the sagittal plane accurately.

The system was further tested with a treadmill test at different walking speeds. This
test had the purpose of a first-time technical verification of the system on a human body.
For this reason, only one participant took part in the measurements. The acquired results
were dependent on the individual subject characteristics (e.g., age, gender, height) and
did not give a reliable answer regarding the overall accuracy of the system. To acquire
this information, a higher number of participants is needed in the future. However, the
presented results show that SensAA works in general and has the potential to reach one of
the highest overall accuracies compared to other systems.

SensAA achieved an RMSE of 2.9◦ to 8◦ for walking speeds between 3 and 12 km/h.
The results of walking at 3 km/h deviated less than those of most previous studies, which
reported RMSE values between 3.2◦ and 5.9◦ [25–28,33,34,37,41]. These studies describe
the walking activity during their measurement routine only as walking and do not give
an exact speed. Therefore, no comparison of the measuring accuracy of the systems at the
exact same speed can be made.

To our knowledge, only Robert-Lachaine et al. analyzed the motion of the human
body at specified speeds [36]. They investigated speeds from 0.6 to 1.2 m/s. At a speed
of 0.8 m/s, which is about 3 km/h, the RMSE was 3.2◦. Compared to this result, SensAA
achieved a smaller RMSE at the same walking speed.

Joukov et al. [32] and Teufl et al. [40] achieved lower errors, with RMSE values of 2.5◦

and 2.38◦ to 2.65◦. Joukov et al. [32] proposed a system based on a rhythmic extended
Kalman filter, which considers the periodicity of movements when walking. This signifi-
cantly improves the state estimation of a regular EKF algorithm. Teufl et al. [40] achieved
high accuracy by following an iterated extended Kalman filter approach. The inertial data
were processed twice, first to obtain a converged estimate of the acceleration bias that was
then used as an initial guess for the second calculation [40]. Compared to SensAA, the
downside of these two algorithms is the increased computing effort and runtime.

The RMSE values of SensAA increased with a higher walking speed. Other studies
have experienced the same problem with increasing complexity of speed and increasing
gait movement [27,33]. It should be noted that the error for the speed of 6 km/h (RMSE
6.1◦) was greater than for 9 km/h (RMSE 5.2◦), which was contrary to the expected trend.
One explanation could be a slightly loose attachment of one Sensor Box during the 6 km/h
run, which caused false sensor inclination calculations.

The higher increase in error compared to other studies might be caused by the way
the Sensor Boxes are mounted. Sensors were not attached directly to the skin but to the
participant’s pants. Fast walking leads to movement of the fabric, which could again result
in inclination of the sensor and false calculations.

In order to achieve high accuracy for the measurement of joint angles using IMU sen-
sors, Niswander et al. [54] point out that the positioning of the sensors must be optimized.
They compared different sensor positions and reached the lowest RMSE for knee angle
with sensors positioned at the middle lateral shank and the lower anterior thigh [54]. In



Sensors 2024, 24, 2405 15 of 19

addition to these sensor positions, they also recommended the positioning that has been
chosen for SensAA.

Another crucial aspect of MAS is the sensor calibration procedure [27,29,55]. Di
Raimondo et al. [27] describe three possible types of IMU calibration: manual, static, and
functional calibration. They propose a functional calibration method that integrates hip
abduction-adduction motion, sit-to-stand, and walking movements. With this method, the
RMSE could be reduced from 7.8◦, with manual calibration, to 3.9◦. SensAA is calibrated
with a static method.

It must be considered that SensAA cannot be compared to a reliable ground truth. The
optical reference system is also subject to errors. Teufl et al. [40] showed that MAS based on
optical markers can suffer from soft tissue artefacts (STA) when the markers are placed on
anatomical landmarks (cp. [30,33,37]). Teufl et al. [40] achieved higher accuracy by using
rigid marker clusters fixed on the thigh and shank with straps (RMSE reduction of up to
1.3◦). For the treadmill test, we attached two markers to the rigid Sensor Boxes, but one
marker on the rotation axis of the knee. This marker might be affected by STA in addition
to the fabric movement.

The measuring accuracy of SensAA could possibly be improved by optimizing the
sensor attachment, sensor positions, and the calibration method. However, SensAA shows
viable performance for gait analysis purposes. Errors between 2◦ and 5◦ are considered
clinically acceptable [27]. This threshold was achieved by walking at 3 km/h. Speeds from
6 km/h to 12 km/h are rarely measured in everyday life situations, especially for elderly
people [56,57].

At this point, SensAA has been tested in a laboratory. However, the tests conducted
showed that the proposed toolchain of joint angle measuring and cloud-based data storage
works as desired. The system produces clinically acceptable results for knee joint angle
measurements and is applicable for long-term observation in everyday life.

5. Conclusions and Outlook

In this paper, we introduced SensAA, a wearable cloud-based biomechanical data
acquisition system. The system is verified for long-term measurements of the human
knee joint angle. It uses low-cost commercially available components and open-source
software. SensAA is an all-in-one solution that provides high accuracy, high usability, and
high security.

While SensAA demonstrates promising performance, further optimizations are nec-
essary to ensure consistent accuracy for walking speeds exceeding 3 km/h. Future plans
include conducting a long-term study with human test subjects to validate the system’s
performance in real-world environments.

For future work, SensAA can be used to calculate realistic load collectives of the
human leg and identify different walking activities. These measurements could be used
for designing and controlling an active exoskeleton, which assists the user with ADLs like
walking, climbing stairs, sitting down, and standing up.

The system is not limited to the knee joint and the lower limbs but can be used on
the whole body. Additional Sensor Boxes could be used to examine other human joints
simultaneously. SensAA can also be used not only for measuring joint angles, but also for
measuring the acceleration and angular velocity of body parts.

SensAA provides a powerful, scalable platform for collecting and processing biome-
chanical data. Thanks to the cloud-based data storage solution, examinations of a large
group of participants can be highly automated. This could help create an extensive database
for human kinematics.
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The following abbreviations are used in this manuscript:

ADL Activities of Daily Living
API Application Programming Interface
BLE Bluetooth® Low Energy
ECG Electrocardiography
EIT Electrical Impedance Tomography
EKF Extended Kalman Filter
EMG Electromyography
GATT Generic Attribute Profile
GRF Ground Reaction Force
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IMU Inertial Measurement Unit
IP Internet Protocol
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