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Abstract: In recent decades, technological advancements have transformed the industry, highlighting
the efficiency of automation and safety. The integration of augmented reality (AR) and gesture
recognition has emerged as an innovative approach to create interactive environments for industrial
equipment. Gesture recognition enhances AR applications by allowing intuitive interactions. This
study presents a web-based architecture for the integration of AR and gesture recognition, designed
to interact with industrial equipment. Emphasizing hardware-agnostic compatibility, the proposed
structure offers an intuitive interaction with equipment control systems through natural gestures.
Experimental validation, conducted using Google Glass, demonstrated the practical viability and
potential of this approach in industrial operations. The development focused on optimizing the
system’s software and implementing techniques such as normalization, clamping, conversion, and
filtering to achieve accurate and reliable gesture recognition under different usage conditions. The
proposed approach promotes safer and more efficient industrial operations, contributing to research
in AR and gesture recognition. Future work will include improving the gesture recognition accuracy,
exploring alternative gestures, and expanding the platform integration to improve the user experience.

Keywords: augmented reality; gesture recognition; web application; A-Frame

1. Introduction

Technological evolution in recent decades has drastically transformed the industrial
landscape, promoting automation, efficiency, and safety. Within this context, the conver-
gence of emerging technologies, such as augmented reality (AR) and gesture recognition,
has emerged as an innovative and highly promising approach. This fusion enables the
creation of interactive and immersive environments that provide practical solutions for
displaying and controlling industrial equipment parameters, revolutionizing modern in-
dustry operations.

Gesture recognition plays an important role in AR applications. It enables users to in-
teract with virtual objects and enhances the overall user experience. Several papers discuss
the use of hand gesture recognition in AR. Ref. [1] develops a software-based framework
for hand gesture recognition on smartphones, enabling AR experiences comparable to
head-mounted displays. Ref. [2] provides a comprehensive overview of augmented reality
applications in smart facility management, offering valuable information and analysis for
this evolving field.

Ref. [3] presents an algorithm for dynamic gesture recognition and prediction in
AR-assisted assembly training, which evaluates hand operations in real time. Ref. [4]
introduces a dataset and a recalibration technique for electromyography-based gesture
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recognition in AR, bridging the gap between offline and online datasets. Ref. [5] proposes
a framework for hand gesture recognition on smartphones to improve the overall user
experience in smartphone-based AR applications. Ref. [6] explores how a hand gesture
recognition interface based on MediaPipe enhances interaction in virtual and augmented
reality (VR/AR), contributing to a more immersive and intuitive experience in VR/AR
environments, providing advantages in interacting with virtual objects.

According to [7], augmented reality, by superimposing virtual information onto the
real world, provides an intuitive and contextualized interface for industrial operators,
significantly improving operational efficiency and precision. Furthermore, recent research,
such as the study [8], demonstrates that gesture recognition offers a natural and practical
approach to interacting with control systems, allowing for the manipulation of equipment
parameters with simple and intuitive gestures.

In this article, we present a web architecture and a practical application of augmented
reality with gesture recognition that focuses on controlling the parameters of industrial
equipment. The significance of this research lies in its direct applicability to industrial
operations, which increasingly demand efficiency, safety, and precision. It is important to
note that the proposed system can utilize a wide range of industrial controllers, provided
that they possess appropriate communication protocols.

Furthermore, the proposed architecture is hardware-agnostic regarding augmented
reality, enabling its implementation on various devices, from smartphones and tablets
to equipment specifically designed for augmented reality. The architecture proposed in
this article enables the use of augmented reality on lower-cost equipment, making the
use of these tools more accessible. In this context, augmented reality delivers contextual
information and visual assistance directly into the operators’ field of view. At the same
time, gesture recognition empowers a more natural and intuitive interaction with equip-
ment control systems. The architecture proposed in this article is demonstrated on an
experimental bench.

2. Augmented Reality

Augmented reality has been a part of the technological landscape since the 1960s when
Ivan Sutherland pioneered the development of the first head-mounted display system [9].
However, it was not until 1992 that Caudell and Mizzel proposed the term “AR” by defining
it as a technology that enhances the visual field of the user with task-relevant information,
distinguishing it from VR [10]. AR, which overlays graphic objects on the user’s real-world
view, has become a popular tool across various industries and a key component of Industry
4.0 [11].

Industry 4.0 integrates cyber–physical systems into manufacturing processes, using
data from sensors and actuators [12]. It aims to promote customized, information-driven,
and digital services, creating new business models while improving productivity, product
quality, and efficiency [13,14].

Augmented reality within Industry 4.0 has seen cross-disciplinary applications, such
as supporting education, industrial maintenance, and controlling industrial robots [15].

In mobile development for AR applications, options such as React Native and Flut-
ter offer the ability to create native apps with AR features. Languages like Kotlin/Java
and Swift/Objective-C remain robust choices for AR development, while cross-platform
frameworks like Xamarin, Ionic, and NativeScript ensure consistent AR experiences across
multiple platforms. In intermediate server and control programming, Node.js, Express.js,
Django, Ruby on Rails, Go, and ASP.NET provide various options for building efficient and
scalable applications, depending on project requirements and developer preferences.

In all of the applications mentioned above, augmented reality is used to show digital
information in real time alongside visual information in the real world. However, user
interaction with the virtual world may also be necessary. An alternative to this interaction
is the use of gesture recognition.
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3. Gesture Recognition

Gesture recognition uses a set of techniques that allow computers to recognize human
gestures [16–18]. It has many potential applications, such as device control [19,20], interac-
tion with virtual environments [21], and the real-time translation of sign language [22–24].

A traditional gesture recognition pipeline can be divided into the following steps:
hand image acquisition, hand segmentation, feature extraction, and gesture recognition.
Many challenges are found in implementing this pipeline, e.g., occlusion of the hands.
However, the great diversity of human gestures, varying from person to person, can be
considered one of the greatest.

Using frameworks for gesture recognition is common and seeks to simplify develop-
ment, improving accuracy and reliability. They usually include the necessary tools to carry
out the pipeline steps presented previously. OpenPose is a framework for estimating poses
in real time [25]. Similarly, the Google-developed MediaPipe [26] is a popular framework
for computer vision and machine learning.

In the augmented reality scenario, gesture recognition can be a key technology, allow-
ing interaction with AR content [27,28]. Gesture recognition is used in AR to control AR
content, such as moving or rotating objects, interacting with AR menus, and navigating AR
environments. There are many different approaches to gesture recognition for AR. Some
of the most common approaches include image-based gesture recognition, depth-based
gesture recognition, which uses depth sensors to track the user’s hand movements and
identify gestures, and IMU-based systems.

A distinction between two essential types of gesture is described in [29]: static and dy-
namic gestures. A gesture detected only by recognizing a specific hand shape is considered
static. It can be invariant to rotation or tied to a particular orientation of the hand. Temporal
and spatial information, such as the path of the hand, is not considered in recognizing
this type of gesture [30]. A dynamic gesture uses spatial information, such as the path of
the hand or individual joints. This type of gesture is recognized by detecting movement
patterns. Thus, the previously defined behavior can be recognized and used [30].

A typical static gesture would be the “index finger raised or open hand”, as shown
in Figure 1, while realizing a tweezers movement created from the thumb and index
finger would be considered a dynamic gesture, as shown in Figure 2. Performing a pistol
gesture by simply moving your thumb down is a dynamic gesture with a single finger
movement [30].

Figure 1. Static gesture.
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Figure 2. Dynamic gesture.

To enhance the understanding of this study, it should be noted that Figures 1 and 2,
illustrating a static gesture and a dynamic gesture, respectively, were meticulously designed
to represent the signals used in our research accurately. These figures go beyond mere
illustration, directly mirroring the types of gestures our system is adept at recognizing and
processing. The precision in these depictions is essential, as they precisely outline how the
algorithm interprets each movement, offering a clear insight into the system’s capability to
distinguish and classify specific gestures. This level of clarity is crucial, not only for the
integrity of experimental tests but also for the practical implementation of the system in
real-world scenarios, where the accuracy in gesture recognition can profoundly influence
the usability and efficiency of user–system interactions.

4. System Description

The proposed system architecture is illustrated in Figure 3, with its implementation
consisting of four main components, which will be detailed in the following subsections:
the user device, the web application, the middle server, and the light panel as the chosen
end system.

Figure 3. Proposed system architecture.

The web application is accessible through a browser on a user’s device equipped with
a camera. When the camera is directed toward the light panel, the system identifies the
board using an ArUco tag.

In the context of augmented reality and gesture recognition, ArUco tags are essential
as markers that facilitate accurate and efficient object tracking in real time. These square
markers, identifiable by their unique binary patterns, allow for the seamless overlay of
digital information onto the physical world, enhancing interaction within AR applications.
The use of ArUco tags, as developed by [31], provides a robust method to recognize and
position AR content, which is crucial to merging virtual and real environments, offering a
tangible interface for users to interact with digital elements through natural gestures.

Subsequently, the application activates its AR elements and initiates hand recognition,
allowing user interaction. Users can pre-configure gestures linked to specific actions to
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select individual lights or collectively control them, adjusting their intensity values; the
middle server orchestrates this entire process.

4.1. User Device

Gesture recognition in augmented reality applications is crucial to enhancing user
interaction with the virtual environment. To this end, a variety of user devices can be
successfully employed. Tablets and smartphones are two prominent examples of user
devices that have excelled in this scenario. Equipped with advanced sensors, such as
accelerometers, gyroscopes, and high-resolution cameras, these devices can effectively
track the movements of the user’s hand and body, enabling a more immersive and intuitive
augmented reality experience.

Furthermore, head-mounted augmented reality devices, such as Google Glass and
Hololens, also significantly implement gesture recognition. Equipped with cameras and
proximity sensors, these glasses can detect subtle gestures made by the user in real time.
This allows for interaction without the need to touch a screen or use external devices,
providing a truly hands-free and integrated AR experience. Therefore, the combination of
these devices, such as tablets, smartphones, and glasses, offers a diverse range of options
for gesture recognition in augmented reality applications, catering to different user needs
and preferences. When conducting the tests for this study, we utilized the Google Glass
Enterprise Edition 2 device, manufactured by Google X Labs, as shown in Figure 4, focusing
on visual representations of the results, along with a tablet and a smartphone. Still, any of
these devices are valid to use the application.

Figure 4. Google Glass Enterprise Edition 2 device.

As illustrated in Figure 4, the Google Glass Enterprise Edition 2 device was used in
the experimental tests. Table 1 provides a detailed view of the technical specifications of
this device, which are fundamental to the performance and precision of gesture recognition,
especially with respect to data processing and the quality and resolution of the camera,
which are important for capturing the clear and precise images necessary for the processing
of gestures.
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Table 1. Technical specifications of the Google Glass Enterprise Edition 2.

Specification Details

Platform Qualcomm Snapdragon XR1

Display 640 × 360 pixels, RGB

Storage 32 GB

Camera 8-megapixel, 83° diagonal FOV, up to 1080p30 video

Battery life Up to 8 h

Durability Lightweight, dust and water-resistant

Device management Android Enterprise Mobile Device Management

Operating System Android

4.2. Web Application

This system component, accessible on any camera-equipped device with a web
browser, consists of a website that hosts the camera feed, overlaid with AR data concerning
the lights’ brightness intensity and the graphical representation of hand-recognition land-
marks. The development of this page involved the use of Hypertext Markup Language
(HTML) and JavaScript (JS). HTML played a crucial role in structuring the overall page
layout and design, while JS took charge of orchestrating the AR content through the A-
Frame framework, the gesture recognition model from the MediaPipe framework, and the
AR.js library.

The A-Frame is an Entity–Component–System (ECS) framework designed for bring-
ing 3D scenes through the web. The A-Frame source code was developed in JS language,
making it possible to integrate it with other frameworks and libraries, besides having
great compatibility with web browsers since the HTML5 updates. This framework of-
fers several advantages, enabling the web service to maintain a relatively low resource
footprint, thus ensuring accessibility across a broad spectrum of mobile devices. This
is especially noteworthy, considering the intricacies typically associated with computer
graphics technologies.

The MediaPipe framework offers a suite of libraries and tools for applying artificial
intelligence (AI) and machine learning (ML) techniques in various applications. These
solutions can be customized and utilized on multiple development platforms. The Gesture
Recognizer module from MediaPipe was utilized to recognize hand gestures in real-time. It
provides the recognized hand gesture results and the hand landmarks of the detected hands.

Eight gestures were employed to control the system, using the Gesture Recognizer
module, which already identifies one or two fingers raised, open, and closed. In addition,
custom functions were implemented to recognize three or four raised fingers, a pinch
gesture, and a raised little finger.

The AR.js library complements the system’s necessary toolbox, providing the func-
tions responsible for recognizing the ArUco tag in the light panel. The ArUco tag makes
it possible to identify the board and provides a reference point for superimposing the AR
elements on the real-world image captured by the camera.

4.3. Middle Server

The middle server plays a pivotal role by hosting the content of the web page,
JavaScript libraries, and a middleware function responsible for data exchange with the
light panel. To achieve this, the Flask framework was employed. Flask integrates back-end
Python programming with front-end HTML and/or JavaScript development, enabling the
creation of a full-stack application.

Therefore, Flask is used to build a communication bridge, the middle server. It offers
both the front-end application accessible by user devices and the back-end application
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accessible by the panel, facilitating communication. Figure 5 illustrates the communication
between the system components, with the middle server acting as an intermediary.

Figure 5. Application time diagram.

4.4. Light Panel

The light panel (Figure 6) comprises a microcontroller, a power control system, and
four lamps. The microcontroller serves as the central component of the panel and is
responsible for communication with the system, processing incoming data, and generating
signals to control the intensity of the lights. The ESP8266 was used as the microcontroller
due to its Wi-Fi capability, enabling communication with the middle server over the internet
or in a local network.

Figure 6. Light panel and Google Glass EE2.
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The power control system consists of a switched mode power supply that converts
the 220 V AC input to a 12 V DC output. Subsequently, this output is distributed to two H
bridges (L298N). Each H-bridge is equipped with two channels, enabling the powering of
two lamps.

The ESP8266 generates four pulse width modulation (PWM) signals based on the
intensity values transmitted by the middle server, ranging from 0 to 100%. These control
signals are then relayed to each channel of the H-bridges, causing them to replicate the
modulation of the received signal over the 12 V power supply, which subsequently regulates
the intensity of the lights. This approach allows independent control of the lamps and can
be scalable for additional lamps while adhering to the power supply limits.

Finally, the panel has an ArUco tag attached to its front, allowing it to be recognized
by the web application.

5. Experiments and Discussions
5.1. Experimental Tests

Focusing on the aspect of user experience, the exploration into enhancing user in-
teraction with technology led this study to conduct tests using a panel of lamps. The
characteristic of these lamps is their ability to adjust intensity through a single dynamic
hand gesture. The operation of each experiment stage is detailed as follows:

I. Neutral state
The process begins with initiating the lamp intensity adjustment. Users are advised to
start the control process with a closed hand (Figure 7), representing the neutral state
of the system. This initial gesture was chosen for its intuitiveness and ease of use.

Figure 7. Neutral state.

II. Lamp selection
In the initial phase of adjusting lamp intensity, users are presented with options
to select the lamp they wish to modify. This selection can be made in two ways:
individually adjusting each light, where the user raises a corresponding number
of fingers (1, 2, 3, or 4) or by modifying all lights simultaneously through an open
palm gesture (Figure 8). Feedback received from users highlighted the simplicity
and efficiency of this selection process, which was refined through a series of design
improvements based on an iterative process.

Figure 8. Lamp selection.
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III. Entering editing mode
In order to prevent unintended changes and guarantee that the user has complete
control over the editing process, the application enters a standby mode. The only way
to initiate action during this period is by raising the little finger, which effectively
serves as a confirmation gesture (Figure 9). Once the little finger is raised, it directs
the user to access the panel’s luminosity intensity parameter editing mode, ensuring
that any changes are intentional and avoiding unintentional modifications to the
lamp settings.

Figure 9. Edition mode.

IV. Editing mode: Adjusting the lamp brightness
Upon entering the editing mode, users will be prompted to select their desired inten-
sity for the lamp. Adjustment is designed to be carried out using a dynamic pinch
gesture, utilizing the proximity of the thumb and index finger to modify the intensity
(Figure 10). The closer the fingers are to each other, the lower the intensity value
becomes; conversely, the farther apart they are, the higher the intensity value. This
change is reflected in real time within the user’s view through a progress bar and an
intensity value ranging from 0% to 100%, with intervals of 20%. This approach sim-
plifies the process and enhances the user experience, providing precise and intuitive
control of the lamp’s intensity.

Figure 10. Adjusting lamp brightness.

V. Editing mode: Confirming the selected lamp intensity
An additional step has been introduced to prevent accidental adjustments. To confirm
the desired intensity level, the user must rotate their hand to create a 90◦ angle with
the x-axis using the thumb and index finger. In order to help the user, a line is inserted
into the hand representation, which turns green when correctly aligned, allowing a 4◦

margin of error in any direction. Furthermore, the user must maintain the same value
while holding the correct angle for 2 s to confirm the selection (Figure 11). If the user
alters the value during this period, the timer resets.
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This extra confirmation step ensures that changes to the lamp intensity are deliberate,
reducing the risk of accidental adjustments. It also provides a visual and temporal
cue to capture user intentions accurately before finalizing the adjustment.

Figure 11. Confirming the selected lamp intensity.

VI. Cancel and return to the previous step
If the user wishes to cancel an adjustment or change the selected lamp while on the
editing screen, they can do so by keeping their hand closed for 2 s (Figure 12).
This simple and intuitive gesture allows users to easily backtrack or cancel their
current action without the need for complex commands. It enhances the system’s
overall usability, allowing users to navigate between different stages of the lamp
intensity adjustment process easily.

Figure 12. Cancel and return to the previous step.

VII. Message transmission
Once the user confirms the desired change in lamp intensity, the web application
generates and sends a message containing the intensity information to the middle
server. The middle server then relays this message to the light panel. Upon receiving
the message, the light panel adjusts the control signal accordingly, applying the
received intensity value to the selected light source.

A video with the complete application usage flow is available on YouTube, through
the following link: https://www.youtube.com/playlist?list=PLj2Vk5Dq4cWKYfSbht4No
I8w10hnotTOj (accessed on 10 March 2024) (Real-time Gestural Recognition Playlist).

5.2. Discussions

The system’s development incorporated specific techniques, such as normalization,
clamping, conversion, and exponential moving average (EMA) filtering, to address tech-
nical challenges in dynamic gesture recognition. These techniques were selected based
on their ability to handle variations in input data and improve the accuracy of gesture
recognition under different usage conditions.

Normalization adjusts the input data to a common scale, facilitating consistent gesture
processing, regardless of variations, such as the user’s distance from the device. This step is

https://www.youtube.com/playlist?list=PLj2Vk5Dq4cWKYfSbht4NoI8w10hnotTOj
https://www.youtube.com/playlist?list=PLj2Vk5Dq4cWKYfSbht4NoI8w10hnotTOj
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important to maintain uniformity in the interpretation of gestures captured by the device,
which may vary according to the user’s positioning.

Clamping limits the input values within a predetermined range, reducing the impact
of extreme values that can lead to inaccurate interpretations. This method is utilized to
filter out data that fall outside the expected gesture boundaries, thereby ensuring that the
values remain within acceptable bounds.

In addition to the mentioned techniques, converting the Euclidean distance between
the thumb and index finger into a percentage value (0% to 100%) is achieved through a
flexible method that allows adjustment of minimum and maximum values, representing
the physical limits of the pinch gesture. This process is adaptable to work with different
ranges of values and measurement units by determining the minimum and maximum
clamping values.

Finally, the application of an exponential moving average filter smoothes the data,
dampening fluctuations that could be misinterpreted as gestures. This filter is important to
filter the noise in the input data, allowing a clearer interpretation of intentional gestures.

The selection of these techniques was motivated by the need to efficiently process
captured gesture data in real time, considering the specificities of the hardware used
and variable operating conditions. Implementing these approaches contributes to a more
reliable system capable of recognizing gestures under different conditions.

I. Normalization
The normalization phase of the input data is critical to enhance the accuracy of the
gesture recognition system. During the lamp intensity adjustment tests, we noted the
need to adjust the data in response to the variations in distance between the hand
and the camera. To address these variations, we adopted a normalization process that
dynamically modifies the input data to reflect these spatial changes.
We employed the following formulas, as shown in Equations (1)–(3), to normalize the
coordinates of the reference points (landmarks) detected on the hand:

distance1 =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (1)

distance2 =
√
(x4 − x3)2 + (y4 − y3)2 + (z4 − z3)2 (2)

d =
distance2

distance1
(3)

In this context, the landmarks are specific points on the hand, represented by red
circles in Figures 1 and 2, which were identified through computational vision and
play a significant role in determining the position and movement of the hands. The
variable d, resulting from the distance relationship, serves to adjust the proximity
measurement between the thumb and the index finger, facilitating the recognition of
the pinch gesture.
This approach to normalizing the data ensures that the input is consistently adjusted,
regardless of the variation in the distance of the hand from the camera or other
mutable conditions. This method improves the system’s interpretation of gestures
and expands its ability to operate efficiently under a diversity of usage conditions,
respecting the specificities of the employed hardware.

II. Clamping
Another crucial calculation involved applying a “clamp”, a technique used to limit
values within a specified range. As people have variations in the size of their hands
and other factors that can influence the results, a clamp becomes important to maintain
control. To implement the clamp, we initially defined a range of values. Any value
above this defined upper limit was adjusted to 100%, while any value below the
specified lower threshold was adjusted to 0%. This clamp operation played a pivotal
role in managing individual differences and guaranteeing consistent and meaningful
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results. It acted as a safeguard, ensuring that values remained within a predetermined
and useful range, contributing to the system’s reliability and accuracy.

III. Conversion
In the conversion process, we implemented a method to map the Euclidean distance
between the thumb and index finger into a percentage scale of 0% to 100%. This
mapping is accomplished by defining minimum and maximum values, which rep-
resent the physical limits of the pinch gesture, thus allowing considerable flexibility
in adjusting these limits for other value ranges and different units of measurement.
Determining the minimum and maximum clamping value is important to ensure
proper conversion. The following Equations (4)–(7) illustrate the calculation pro-
cess employed.

n_intervals =
(max_value − min_value)

step
(4)

range =
(max_clamp − min_clamp)

n_intervals
(5)

index =
(val − min_clamp)

range
(6)

res = min_value + (step · index) (7)

These equations facilitate the dynamic mapping of the gesture into a percentage
value, considering individual variations in the execution of the gesture. Using this
method, the system not only gains in flexibility but also ensures that the conversion
of the Euclidean distance into percentage information is performed accurately and
consistently, regardless of variations in initial values or the defined step size.

IV. Exponential moving average filter
It was also observed that as it is a dynamic gesture, having a smaller step (meaning
smaller intervals between possible values) and a wider range of possible values made
it more challenging to perform the adjustment. This is primarily because the finer
granularity of data, resulting from a smaller step, introduces a higher sensitivity to
even minor variations in the user’s hand movement. As a user attempts to make pre-
cise adjustments, the system encounters more data points and potentially experiences
fluctuations in the data due to factors like hand tremors or slight positional shifts.
Consequently, these significant data variations can make it more difficult to achieve
accurate and stable adjustments in such scenarios.
To mitigate these challenges, a filtering mechanism was introduced to ensure smoother
and more manageable input data, enhancing the overall usability of the system. This
filtering mechanism employed an exponential moving average (EMA) approach with
a smoothing factor ( f ) set to 0.5.
For each data point, the formula is as follows.

v(t + 1) = f · v(t) + (1.0 − f ) · v(t − 1) (8)

This formula calculates the new filtered value (v(t + 1)) based on the current data
point (v(t)) and the previously filtered value (v(t − 1)). The value of the smoothing
factor ( f ) was set to 0.5, which means that the new value is a weighted average of
50% of the current data point and 50% of the previous filtered value. This balanced
approach helps smooth the data while still responding to changes.

V. Lamp intensity value
The intensity of the lamps is recorded as an integer value ranging from 0 to 255,
allowing precise control of the PWM signal. This value is converted into a percent-
age format (0–100%) for user convenience. Information about intensity changes is
transmitted between the web application and the middle server and relayed to the
light panel as a tuple message ([0, 255]). In this tuple, the first number denotes the
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lamp index, while the second represents the intensity level. An index with a value of
5 signifies a simultaneous change in intensity for all lamps.

6. Conclusions

The framework described in this paper represents progress in the fields of augmented
reality and gesture recognition. This project describes the integration and testing of the
system with Google Glass. This work encompassed the entire workflow, from selecting the
lamps to adjusting their intensity. The results validate the versatility and compatibility of
our system and underscore the potential for widespread applications.

In summary, this work represents an advancement in the field of augmented reality
and gesture recognition for industrial applications, introducing a web-based architecture
that is independent of hardware variations. These distinctive features facilitate a more
natural and intuitive interaction with industrial equipment. Implementing this solution
proves its technical viability and highlights the potential for improvements in operational
efficiency and user experience.

The testing and optimization of our system’s software, including the implementation of
techniques such as normalization, clamping, conversion, and filtering, have played a pivotal
role in ensuring reliability and accuracy. These technical innovations have standardized
hand positions, accommodated individual variations in hand sizes, and allowed precise
adjustments. Incorporation of advanced filtering mechanisms has further smoothed user
interactions, which is particularly beneficial when handling smaller step sizes and broader
value ranges.

This framework has consistently prioritized safety, reliability, and precision, recog-
nizing their paramount importance, particularly in critical real-world contexts such as
industrial environments. The design of our system ensures that unintended adjustments
or alterations in the physical environment do not occur accidentally, as any unintentional
alteration can have significant consequences in critical environments.

This study showed the applicability of a gesture recognition and augmented reality
system for industrial applications, offering a perspective on human–machine interaction.
The current work has limitations that warrant acknowledgment, including a constrained
user interface and the implementation of tests solely within the laboratory setting.

In addition to these efforts, one challenge we aim to address in the future is the issue
of the camera recognizing distant hands instead of the intended ones. This can occasionally
lead to unintended interactions and should be minimized for an optimal user experience.
As part of our ongoing research and development, we will actively work on implementing
methods to enhance the system’s hand recognition accuracy, ensuring that it accurately
identifies and responds to the user’s gestures, even in scenarios with multiple potential
hand sources.

In future works, other algorithms and techniques for gesture recognition and classifi-
cation can be explored, in addition to investigating performance characteristics based on
metrics used in AR systems. Another point of improvement is the possibility of increasing
the system’s compatibility with a greater variety of augmented reality devices, in addition
to carrying out additional case studies in real industrial environments. Other possibilities
are to investigate potential applications beyond the industrial sector, refine the user inter-
face and overall experience, and address specific technical challenges, such as improving
remote gesture detection.
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