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Abstract: Owing to the variable shapes, large size difference, uneven grayscale, and dense distri-
bution among biological cells in an image, it is very difficult to accurately detect and segment cells.
Especially, it is a serious challenge for some microscope imaging devices with limited resources
owing to a large number of learning parameters and computational burden when using the standard
Mask R-CNN. In this work, we propose a mask R-DHCNN for cell detection and segmentation.
More specifically, Dilation Heterogeneous Convolution (DHConv) is proposed by designing a novel
convolutional kernel structure (i.e., DHConv), which integrates the strengths of the heterogeneous
kernel structure and dilated convolution. Then, the traditional homogeneous convolution structure
of the standard Mask R-CNN is replaced with the proposed DHConv module to it adapt to shape and
size differences encountered in cell detection and segmentation tasks. Finally, a series of comparison
and ablation experiments are conducted on various biological cell datasets (such as U373, GoTW1,
SIM+, and T24) to verify the effectiveness of the proposed method. The results show that the pro-
posed method can obtain better performance than some state-of-the-art methods in multiple metrics
(including AP, Precision, Recall, Dice, and PQ) while maintaining competitive FLOPs and FPS.

Keywords: cell detection and segmentation; dilation convolution; heterogeneous convolution;
mask R-CNN

1. Introduction

Detection and segmentation of cells are two main tasks of automated analysis in
the area of biomedical engineering, and they can be of great help to further quantitative
analysis of biological cells. For example, quick detection of leucocytes is crucial for early
diagnosis of infections. However, owing to the variable shapes and sizes, uneven grayscale,
and dense distribution among biological cells in a microscopy image, it is still a challenging
task to accurately detect and segment cells. Traditional methods such as thresholding [1,2],
edge detection [3], and watershed transform [4–6] have been extensively used in automatic
cell detection and segmentation tasks. These methods rely on handcrafted features and
often require manual tuning of parameters, making them less robust and scalable.

Having witnessed the breakthroughs that deep learning contributed to in various
areas, deep learning-based frameworks for detection and segmentation have been con-
tinuously proposed and modified for various application scenarios in the biomedical
community [7–11]. In fact, worldwide competitions have been established and datasets
of cell images under different microscopy conditions have been released to promote deep
learning-based technical innovations that enable fast and accurate cell detection and track-
ing [12]. Among the existing solutions, one-stage object detection algorithms, characterized
by the skip of the region proposal module, have high inference speeds with poor per-
formance in accuracy and precision [13–16]. Two-stage detectors with a region proposal
module, for example, Faster R-CNN [17], are very popular owing to their high localiza-
tion and recognition capabilities [18–22]. By introducing a segmentation branch to Faster
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R-CNN, the network (called Mask R-CNN) achieved state-of-the-art performance in the
task of object recognition [20]. However, good performance in detection and segmentation
tasks of Mask R-CNN is achieved at the cost of massive computation, measured as the
total amount of Floating Point Operations, FLOPs. The high computational complexity
and memory requirement limit its adaptation in remote devices, such as some microscope
imaging systems. Consequently, reducing the model complexity while maintaining its high
performance is always plausible.

In recent years, research efforts have been devoted to designing more efficient convo-
lution structures that require fewer FLOPs. Heterogeneous convolution (HetConv) was
one of the attempts that aimed at reducing computations and model parameters while
achieving faster processing capability (measured in terms of Frames Per Second, FPS) and
maintaining the same representational efficiency as the standard convolution operations.
However, the HetConv structure contains convolution kernels of a size of 1× 1, which could
easily lead to a lack of local information capture capability and result in poor detection and
segmentation performance. Consequently, compensating for the loss of local information
caused by HetConv with more spatial information is demanding for cell detection and
segmentation tasks.

Regarding the importance of a large perceptive field in object detection tasks and the
requirement of a light network model, the dilated convolution operation was invented to
enlarge the receptive field by regularly inserting zeros between the kernel elements [23].
This dilated kernel enables convolution operations over values spanning larger distances
without introducing extra parameters. Apparently, the combination of the advantages of the
above network structures would be an ideal solution for detection and segmentation tasks.

To this end, we propose a novel convolutional kernel structure called Dilation Hetero-
geneous Convolution (DHConv), which integrates the advantages of the heterogeneous
kernel structure and dilated convolution. By replacing the traditional convolutional kernel
of the standard Mask R-CNN with the proposed DHConv module, we then propose a novel
deep neural network called Mask R-DHCNN for detection and segmentation of objects of
variable shapes and sizes, such as cells in different microscopy images. We demonstrate
the effectiveness of the proposed solution by carrying out tests on the publicly available
and most frequently used microscopy cell image datasets. Our main contributions are
as follows:

• We propose a novel convolutional kernel structure called DHConv that combines the
advantages of dilated convolution and HetConv.

• An improved Mask R-CNN, called Mask R-DHCNN, is proposed by replacing the
standard convolution of the original Mask R-CNN with the proposed DHConv mod-
ule, which leads to easy adaptation of variable shapes and sizes in the task of cell
detection and segmentation.

• A series of experiments are conducted to verify the effectiveness of the proposed
methods on various datasets, and the results show that the proposed method can
obtain better performance than some state-of-the-art methods in multiple metrics
while maintaining competitive FLOPs and FPS.

The rest of this paper is organized as follows: Section 2 introduces the work related to
the current study. Section 3 details the proposed methods, including DHConv and Mask
R-DHCNN. Section 4 presents the experimental settings and the obtained results, and
Section 5 concludes this work.

2. Related Work
2.1. Dilated Convolution

Dilated convolution, also called Atrous Convolution or convolution with holes, was
initially introduced for semantic segmentation [24,25]. This convolution operation has
been widely used in object detection and semantic segmentation [26]. The most significant
advantage of dilated convolution is the enlarged receptive field brought by expansion
of the receptive size without any increase in Float Point Operations or additional loss of
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resolution. Compared to pooling operations with similar receptive field expansion, dilated
convolution can significantly improve performance for the detection and segmentation of
multi-scale objects [27].

To quantitate the enlargement of the receptive field brought by dilated convolution,
the dilation rate r is typically introduced to adjust the expansion range of the receptive
field. This dilation rate r defines the spacing between the values in a kernel. Standard
convolution (with no additional space between kernel values) is a special case of dilated
convolution with dilation rate r = 1, and dilating the normal convolution kernel of size KN
with rate r could result in a dilated convolution kernel of size KD as

KD = (KN − 1) · r + 1 (1)

That is to say, easy regulation of the sampling range of the convolution kernel can be
achieved through the dilation ratio r.

2.2. HetConv

HetConv (Heterogeneous Kernel-Based Convolution) [28] was proposed to reduce
the required computations (FLOPs) and the number of model parameters. This structure
obtained competitive performance while maintaining the same representational efficiency
compared with the standard convolution operation. Traditional convolutions (including
standard convolution, group convolution, and depth-wise convolution) usually use a
homogeneous filter where each kernel is of the same size throughout the whole filter.
HetConv adopts a Heterogeneous Convolution structure where the composed kernels are
of different sizes. More precisely, the first kernel keeps the size of K × K and the remaining
kernels are replaced by small kernels of size 1 × 1. We introduce the parameter P to
describe the ratio between the number of kernels of size K × K and total number of kernels
in a filter. Recall that the original kernels are all of size K × K; HetConv replaces a fraction
of 1 − P of the original K × K kernels with 1 × 1 kernels, leading to an efficient reduction in
the amount of calculations.

Suppose that the input feature map of Dw × Dh × N dimensions is convolved with N
standard K × K × C filters; the computational cost on the layer L is provided as

FLc = Dw × Dh × N × K × K × C (2)

When some (1 − P) of the original K × K convolution kernels are replaced by the 1 × 1
kernels, the cost of K × K convolution kernels is provided as

FLk = (Dw × Dh × N × K × K × C) · P (3)

and the cost of 1 × 1 convolution kernels is provided as

FL1 = (Dw × Dh × C)(N − NP) (4)

Then, the total cost of the HetConv is calculated as

FLhc = FLk + FL1 (5)

Comparing Equations (2) and (5), we can obtain the ratio Rhc of the computational cost
between HetConv and standard convolution as follows:

Rhc =
FLhc
FLc

= P +
(1 − P)

K2 (6)

When P = 1, the HetConv is equivalent to the standard convolution. When P < 1, the
computational cost of the HetConv is determined by combined effect of parameter P and
kernel size K.
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The analysis above implies that the Heterogeneous Convolution can reduce the com-
putational cost by introducing convolution kernels of different sizes to the convolution
filters. However, without losing the accuracy of the model, the HetConv actually contains
plenty of 1 × 1 convolution kernels, which impairs its ability in extracting local information.
As a result, the advantages of a heterogeneous structure could not be fully utilized in
HetConv [28].

2.3. Mask R-CNN

As an improved version of the classical Faster R-CNN [17], Mask R-CNN is a more
efficient multi-task model [20]. To enable mutli-scale feature extraction of an object, Mask
R-CNN introduces a feature pyramid network (FPN) [19] on top of the conventional
feature extraction network. This top-down structure and horizontal connection help in
fusing the feature maps in the conventional neural network. In addition, The Region of
Interest (RoI) pooling operation of Faster R-CNN is replaced by RoIAlign [29], which uses
a bilinear interpolation method to align the object in a pixel-by-pixel way [30], leading to
improved segmentation accuracy. Lastly, the proposed regions are sent directly to the full
connection network (FCN) to achieve semantic segmentation by introducing segmentation
branches so that a unique segmentation mask is generated for each object. This combination
of detection and segmentation improves the model performance of both detection and
segmentation tasks. In addition, the integrated loss of different tasks, i.e., classification,
regression, and segmentation, to represent the overall loss of the network model also
improves model performance.

In fact, Mask R-CNN increases performance accuracy at a cost of increased model
complexity brought by a two-stage framework and a multi-task branch structure, resulting
in a tremendous increase in computation (FLOPs). Therefore, how to reduce computational
costs to make the model more efficient is still a challenging task. In this work, we attempt
to overcome the limitation of the existing Mask R-CNN for the task of cells detection and
segmentation by integrating dilated convolution into the heterogeneous structure based on
Mask R-CNN.

3. Proposed Method

As mentioned above, HetConv provides competitive performance while still maintain-
ing representational efficiency owing to the heterogeneous structure of convolution kernels
in a filter. However, the existence of too many 1 × 1 convolution kernels in each filter also
provides adverse effects, i.e., loss of valuable information when extracting features on the
adjacent regions of an image in the object detection and segmentation tasks. Specifically,
this shortcoming poses constraints to its application in cell detection and segmentation
tasks, where the objects (cells) are of a variety of shapes and large size difference. Normally,
introducing large convolution kernels could resolve the adverse effect brought by small
receptive field of 1 × 1 kernels. However, large convolution kernels would inevitably
provide increased computing burden. Considering the limited computing capability of
some remote devices, it is important to design network solutions that are light and highly
efficient. To this end, we combined the advantages of HetConv and dilated convolution
and implemented them in the Mask R-CNN network.

3.1. Dilation Heterogeneous Convolution (DHConv)

DHConv is proposed by integrating the advantages of the dilated convolution and
HetConv. This new network structure borrows the idea of the efficient heterogeneous
architecture containing different size kernels for the same filter and the dilated convolution
to overcome the limitation of insufficient feature extraction capability caused by 1 × 1
convolution in HetConv. Owing to the larger receptive field brought by the dilated kernel,
reduction in information caused by the heterogeneous convolution could be avoided. In
DHConv, the K × K convolution kernels of the original HetConv are replaced by the dilated
convolution kernels of dilation rate r. This provides expansion to the receptive field to size
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o [(K − 1)× r + 1]× [(K − 1)× r + 1]. Figure 1 illustrates the spatial layout of the dilated
heterogeneous kernels, where the original M convolution kernels are replaced by M · P
dilated convolution kernels of dilation rate r and (1 − P)× M convolution kernels with a
size of 1 × 1.
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Figure 1. Structure of the dilated Heterogeneous Convolutional Kernels (DHConv). The horizontal
axis and vertical axis, respectively, represent N DHConv filters and M channels in a DHConv filter,
in which the number of (1 − P)× M convolution kernels in each filter is replaced with 1 × 1 kernels
and the remaining convolution kernels use M · P dilated convolution with a dilation rate r.

A detailed comparison between HetConv and the proposed DHConv is illustrated
in Figure 2. By introducing r holes to the original convolution kernel, DHConv gains
a significant expansion in its receptive field. Compared with the original HetConv, the
proposed DHConv uses the dilated convolution kernels in a heterogeneous spatial manner.
Apparently, this layout does not add any additional parameters and requires no additional
computational resources, while it can provide larger coverage when extracting features
from images. Generally, the more 1 × 1 convolution kernels in a filter, the lower parameters
and computational burden in the model. DHConv inherits the advantages of 1 × 1 convo-
lution operations by leveraging heterogeneous kernels. Therefore, the proposed method is
computationally efficient. According to the analysis in Section 2.2, the proposed DHConv
could reduce the computational cost by a ratio of R = P + (1 − P)/K2 and enlarge the
size of the receptive field by a factor ∼ r2, with P and r being the ratio of number of large
kernels in the HetConv and dilation rate, respectively. In addition to the benefits from the
structural changes, the proposed DHConv has less memory consumption as it can skip the
pooling step.

· · ·

M M

· · ·

Standard Convolution

1 × 1 Convolution

 ConvolutionDilated 

(a) HetConv (b) DHConv

Figure 2. The spatial layout comparison of the convolutional kernels in a filter between HetConv and
the proposed DHConv.
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3.2. Mask R-DHCNN

Mask R-CNN is currently the most influential instance segmentation framework. As
mentioned above, Mask R-CNN can achieve state-of-the-art detection and segmentation
performance at the cost of a tremendous increase in computation (FLOPs). Applying this
framework directly to devices with limited resources to detect and segment cells might
not provide benefits. To address this issue, it is quite demanding to improve Mask R-CNN
with the purpose to increase its computing efficiency and maintain competitive FLOPs and
FPS. Considering the fact that feature extraction (i.e., ResNet backbone, composed of a set
of convolutional filters) is the aspect with the highest computing resources consumption,
we could reduce the computing burden by replacing the normal homogeneous structure
with the heterogeneous structure in the ResNet backbone. To this end, an improved Mask
R-CNN, called Mask R-DHCNN, is proposed by integrating the proposed DHConv into
the original Mask R-CNN in this work. Specifically, the normal homogeneous convolu-
tions of the ResNet in the original Mask R-CNN are replaced with dilated Heterogeneous
Convolutions (i.e., DHConv). Our analysis presented previously implies that the pro-
posed framework could effectively overcome the limitation of the original architecture that
requires large number of learning parameters and computational burden.

Compared with the original Mask R-CNN, the proposed Mask R-DHCNN can greatly
enlarge the receptive field and can reduce FLOPs regarding the model more efficient
owing to the heterogeneous structure, thereby providing benefits as follows: (i) Mask
R-DHCNN uses larger area of image in extracting features for cell recognition without
a large extraction computation cost owing to the heterogeneous spatial layout. (ii) An
expansion in the receptive field is achieved by introducing dilated convolution, which
effectively compensates for the loss in local information caused by 1 × 1 convolution under
heterogeneous kernel structures.

4. Experiments and Results
4.1. Experimental Settings

The proposed Mask R-DHCNN uses ResNet-50-FPN [31] as its backbone and the
the corresponding Mask R-CNN as the baseline. We first implemented Heterogeneous
Convolution by replacing the last three of the four 3× 3 kernels in the filters of the backbone
structure by 1 × 1 kernels; i.e., P = 1/4 and 3/4 of conventional kernels of size K = 3 were
replaced by the small kernels of size 1 × 1 . Recall the theoretical estimation provided in
Equation (6): the computational cost for implementing the DHCovn module is only 1/3 of
the original convolution operations. So, a reduction in computational costs as large as 2/3
could be expected. In addition, to compensate for the adverse effect from small kernels as
well as too-large kernels, dilation with rate r = 2 was applied to the 3 × 3 kernels.

We implemented the proposed Mask R-DHCNN under the Pytorch framework and
tested its performance in cell detection and segmentation tasks on a Windows 10 OS-based
laptop equipped with an Inter(R) Core(TM) i7-9750H CPU (2.6 GHz) 6-core 12-thread
processor and a GeForce GTX 2060 6G graphics card. GPU implementation of the SGD
(Stochastic Gradient Descent) optimizer was used to accelerate the forward propagation and
back propagation routines. The same parameters were used throughout all the experiments
shown below. Meanwhile, a variable learning rate was adopted, with an initial value of
0.001 and the rate of change 0.1 every 10 epochs. The weight decay rate and maximum
number of iterations were set to 0.0005 and 50 epochs, respectively. The average over three
executions was used to evaluate the model performance.

4.2. Datasets

Cell tracking, a time-consuming and tedious task, has always been of great interest to
biologists. Developing computer programs that could perform automatic cell tracking is
quite demanding. To promote such a technical breakthrough, international challenges on
Cell Tracking has been established since 2014, alongside the release of datasets of cell images
under different microscopy environments [12]. Among them, PhC-C2DH-U373 (short for
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U373), Fluo-N2DH-GOWT1 (short for GOWT1), and Fluo-N2DH-SIM+ are frequently
used in cell detection and segmentation tasks [11,14,22,32,33] as they are the pre-steps for
performance tracking tasks. To set a baseline for comparison, we adopted these datasets
to demonstrate the effectiveness of the proposed Mask R-DHCNN framework. These
three datasets provide cell images obtained from a set of typical microscopy conditions.
For example, the cells in U373 are deformed, some of which do not even have round
shapes. Images in GOWT1 typically contain more cells. Particularly, the Fluo-N2DH-SIM+
dataset contains simulated cells with (Fluo-N2DH-SIM+-01, short for SIM+-01) and without
fluorescent chromosomes (Fluo-N2DH-SIM+-02, short for SIM+-287 02). Moreover, we also
include human bladder cancer cells T24 images from a series of phase contrast microscopy
videos from the Cancer Cell Institute, University of Cambridge. Figure 3 shows a set
of representative microscopy cell images in these datasets. Detailed descriptions of the
datasets are provided below.

U373 GOWT1 SIM+-01 SIM+-02 T24

Figure 3. Illustrations of different cell datasets.

• PhC-C2DH-U373 (U373) comprises images of glioblastoma–astrocytoma cells obtained
through phase contrast microscopy. These cells are cultured adherently and video
recorded under controlled conditions to provide data for cell tracking and analysis
tasks. Due to only subtle differences between two consecutive frames, not all the
frames can be considered as training samples for the proposed network. To address
this issue, we select one frame from two adjacent images (video frames) as a sample.
This operation provided us 230 sample images, among which 184 and 46 images are,
respectively, used for training and testing.

• Fluo-N2DH-GOWT1 (GOWT1) was obtained from GFP transfected GOWT1 mouse
embryonic stem cells on a flat substrate using a Leica TCS SP5 laser scanning confocal
microscope (courtesy of Dr. E. Bártová, Academy of Sciences of the Czech Republic,
Brno, Czech Republic). This dataset exhibits characteristics of low contrast and high
density under microscope due to factors such as heterogeneous staining, prominent
nucleoli, mitoses, cells entering and leaving the field of view, and frequent cell colli-
sions. The dataset also has two image sequences with a total of 368 frames. Similarly,
we extract one frame from every two frames and can obtain 184 frames, 147 images
for training and 37 images for testing.

• Fluo-N2DH-SIM+ contains simulated cells stained with and without fluorescent chro-
mosomes. The morphology of the cells between the two conditions is quite different.
Therefore, both the stained and non-stained images are taken as two separate datasets,
Fluo-N2DH-SIM+-01 (short for SIM+-01) and Fluo-N2DH-SIM+-02 (short for SIM+-
02). In Fluo-N2DH-SIM+-01, cells are of more complex morphology and low fore-back
ground contrast exists. In Fluo-N2DH-SIM+-02, the scale of cells varies greatly, and
there are partial occlusions between the cells, which greatly increases the difficulty of
segmentation. Moreover, 52 frames and 13 frames from Fluo-N2DH-SIM+-01 (SIM+-
01) were selected as training set and testing set, respectively. In Fluo-N2DH-SIM+-02,
120 frames and 13 frames were used for training and testing, respectively.

• T24 is a real bladder cancer cell dataset released by the Cancer Cell Institute, University
of Cambridge. The cells were cultured in RPMI-1640 medium (HyClone, Logan, UT,
USA) supplemented with 10% heat-inactivated FBS (JRH Biosciences, Lenexa, KS,
USA), 100 U/mL penicillin, and 100 mg/L streptomycin. Cultures were maintained
in a humidified atmosphere of 5% CO2 at 37 ◦C. Adhesion and overlap between cells
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were common in these images. In addition, the size of cells varies greatly, making
detection and segmentation challenging.

4.3. Data Annotation

Recalling that the microscopy images in these publicly available datasets released from
the ISBI competition have not been labeled, we adopted MS COCO2014, released by the
Microsoft team [34], for sample labels. It provided us with a dataset format that is suitable
for detection and segmentation tasks. The label consists mainly of five parts: (1) the info
field is mainly used to store the descriptions on the dataset, including data provider, and
the year when the data were marked; (2) the licenses field stores the license information of
the dataset; (3) the image field contains information such as ID, name, size, and generation
time of the image; (4) the annotations field stores a list of multiple annotation instances,
which can, respectively, show the category ID and segmentation mask of each object, so the
ground truth required for the experiment can easily be extracted; (5) the categories field
provides conclusion information on each category in the image. We took Labelme [35] as
the data annotation tool, which enables us to mark out the specific contour position of the
object in the original image and generate the corresponding JSON file with object location
information. Figure 4 illustrates the effect of annotation for T24 dataset.

Figure 4. An example illustration of T24 dataset by using Labelme for sample annotation.

4.4. Evaluation Metrics

Recalling the purpose of developing automatic cell detection and segmentation so-
lutions suitable for remote device implementation, we chose Average Precision (AP),
Precision, Recall, Dice, Panoptic Quality (PQ), FLOPs, and FPS as the evaluation metrics
to quantitatively demonstrate the effectiveness of the proposed Mask R-DHCNN. Among
them, AP, Precision, and Recall are frequently used evaluation metrics in image classifi-
cation and object detection tasks, while Dice is specific for segmentation tasks. PQ was
adopted in this work to demonstrate the model’s comprehensive performance on both de-
tection and segmentation tasks. Apparently, the first four metrics quantify the performance
of Mask R-DHCNN in cell detection and segmentation tasks, while FLOPs and FPS were
used to demonstrate execution efficiency. Typically, the more Floating Point Operations
required (high FLOPs values), the fewer frames the Mask R-DHCNN can process within a
second (low FPS). For illustrative purposes, we provide the definitions of the metrics in the
following. By introducing the IoU (Intersection over Union), defined as the ratio between
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the overlapped area between model prediction and ground truth and the union of the two,
we can determine the basic metrics with the threshold IoU as follows

• TP: real cells that are correctly identified as real cell objects;
• TN: non-cell objects that are correctly identified as non-cell objects;
• FP: non-cell objects that are mistakenly identified as cell objects;
• FN: real cells that are mistakenly identified as non-cell objects.

With the basic quantities defined, the evaluation metrics are calculated as

• Precision: a measure of the percentage of the correctly classified cell objects in all clas-
sifications of cell objects, which is the probability of not misclassifying cell object, i.e.,

Precision =
TP

TP + FP
(7)

• Recall: a measure of the percentage of the correctly classified cell objects in the total
real cells, which is the probability of non-missed diagnosis, i.e.,

Recall =
TP

TP + FN
(8)

• Dice: a measure of the proportion of intersection between the model output and the
ground truth, i.e.,

Dice =
2 × TP

2 × TP + FN + FP
(9)

• AP: Recall and Precision are contradictory in evaluating object detection performance
as both of them depend on the threshold value of IoU we take to set the TP, FN, TN,
and FP. To this end, we calculate the area under the Precision–Recall curve constructed
by applying different threshold values to IoU as the average precision of the model, i.e.,

AP =
∫ 1

0
P(γ)dγ (10)

where γ and P(γ) are the Recall and the dependent Precision, respectively.
• PQ: is commonly used in medical image segmentation tasks. Although Dice is a good

index of the model’s segmentation ability, it cannot reflect model performance in both
detection and segmentation tasks. Simon et al. [36] proposed PQ that is capable of
illustrating the pros and cons of the model in performing detection and segmentation
tasks. The definition of PQ is as follows:

PQ =


TP

TP + 1
2 FN + 1

2 FP︸ ︷︷ ︸
Detection Quality(DQ)

×


∑(x,y)∈TP IoU(x, y)

TP︸ ︷︷ ︸
Segmentation Quality(SQ)

 (11)

where x and y are the model prediction and the ground truth, respectively.

Different from the Average Precision (AP), Precision, Recall, Dice, and PQ, which have
to be calculated by comparing to the ground truth, the FPS and FLOPs are provided by
Pytorch directly.

4.5. Experiments and Results

The potential advantages obtained from the theoretical analysis of the proposed
model motivated a set of experiments that serve as solid evidence of the superiority of
the proposed Mask R-DHCNN structure. In Figure 5, we presented typical detection
and segmentation results when applying the proposed method to images in datasets
T24,U373, GoTW1, SIM+01, and SIM+02. Alongside the results, the ground truth images
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are displayed on the left for direct visual comparison. One can see from this figure that
the proposed model could label the existence of cells in microscopy images taken from
different environmental sets.

Ground truth Detection result Ground truth Detection result
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37

3 
G

oT
W

1 
 

SI
M

+0
1

SI
M

+0
2

Figure 5. Typical detection and segmentation results of the proposed method applied on differ-
ent datasets.

A visual experiment on a microscopy image that contains cells of different shapes and
sizes has verified the effectiveness and robustness of the proposed method in segmentation
tasks. As illustrated in Figure 6, the model’s prediction of the cell body almost lies exactly
on the manually labeled region, where the yellow region marks the overlap between the
model prediction and manual label, the green region marks the labeled cell body that
has not been predicted, and the red region is the predicted cell region that does not have
any cell.

Figure 6. Model’s segmentation performance regarding cells with different morphologies.

4.5.1. Comparison Experiments

To verify the effectiveness of the proposed method, a series of comparison experi-
ments were conducted on various cell datasets by adopting different instance segmentation
methods, such as Mask R-CNN [20] (baseline), MS R-CNN [22], ExtremeNet [32], Tensor-
Mask [14], and the two most recent ones, PolarMask [33] and ResNet-50-FPN-ISO [11].
Among these comparison methods, Mask R-CNN [20] and MS R-CNN [22] are both anchor-
based two-stage instance segmentation algorithms. More specifically, MS R-CNN is an
improved version of Mask R-CNN by adding a single MaskIoU for Mask score, which can
obtain similar performance to the original Mask R-CNN. Meanwhile, ExtremeNet [32] and
TensorMask [14] both belong to anchor-free instance segmentation methods.
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Table 1 presents a detailed comparison regarding the performance of the proposed
method with respect to the representative state-of-the-art solutions. One can see from the ta-
ble that the proposed method provides quite competitive performance in almost all metrics
with respect to the recent state-of-the-art methods. As one of the best instance segmentation
methods, the two-stage structure-based Mask R-CNN (our baseline) is superior to the other
methods in the detection tasks, whose performances are typically measured using metrics
such as AP, Precision, Recall, and Dice. The proposed method outperforms the baseline
(Mask R-CNN) by 0.11–2.07 on various datasets. Compared with other SOTA methods, the
performance of the proposed method is also very competitive. Although the MS R-CNN
achieved the best performance scores in terms of AP, Precision, Recall, and Dice regarding
dataset SIM+02, its application to other datasets was not very appealing. The most possible
reason is that the cells in the SIM+02 dataset are very suitable for the mask scoring strategy
of the MS R-CNN to extract features effectively. As expected, in terms of the integrated use
of the advantages of the heterogeneous kernel structure that reduces the computational
burden, the proposed Mask R-DHCNN showed faster computing speed, indicated by a
higher FPS value. Our results show consistency with previous work (HetConv) [28] that
demonstrated heterogeneous kernel structures can improve the computational efficiency
and number of parameters as compared to standard convolution operations while still
maintaining representational efficiency.

Table 1. Comparisons of cell detection and segmentation on various datasets between different
methods, including baseline (Mask R-CNN [20]), MS R-CNN [22], ExtremeNet [32], TensorMask [14],
PolarMask [33], CenterMask [13], ResNet-50-FPN-ISO [11], and our method. The top results are
highlighted in bold.

Datasets Methods AP (%) Precision (%) Recall (%) Dice (%) FPS

U373

Baseline 91.39 ± 0.33 87.21 ± 0.30 79.31 ± 0.27 82.03 ± 0.47 4.81
MS R-CNN 90.12 ± 0.12 86.35 ± 0.17 78.90 ± 0.25 81.87 ± 0.31 4.81
ExtremeNet 77.75 ± 1.11 71.68 ± 1.27 60.55 ± 0.89 70.11 ± 0.77 4.73
TensorMask 83.37 ± 1.51 79.92 ± 1.93 68.31 ± 2.11 78.41 ± 0.88 2.47
PolarMask 88.77 ± 0.10 83.09 ± 0.07 71.93 ± 0.21 80.85 ± 0.13 11.79
CenterMask 79.33 ± 1.74 72.40 ± 1.82 61.40 ± 1.19 74.90 ± 1.85 7.15
ResNet-50-FPN-ISO 92.74 ± 0.47 88.65 ± 0.19 83.04 ± 0.27 82.81 ± 0.31 -
Mask R-DHCNN (Ours) 92.87 ± 0.53 88.26 ± 0.06 80.52 ± 0.18 84.21 ± 0.80 7.00

GoTW1

Baseline 90.64 ± 0.44 91.14 ± 0.48 87.66 ± 0.23 89.65 ± 0.33 4.00
MS R-CNN 88.77 ± 0.64 89.26 ± 0.88 85.38 ± 0.72 86.05 ± 0.59 3.95
ExtremeNet 84.40 ± 1.03 86.75 ± 1.21 80.51 ± 0.89 82.37 ± 1.22 3.90
TensorMask 80.09 ± 0.97 76.27 ± 1.17 70.44 ± 0.82 76.27 ± 1.19 2.00
PolarMask 85.65 ± 0.83 87.00 ± 0.77 83.43 ± 0.50 85.98 ± 0.81 9.50
CenterMask 78.10 ± 1.56 74.51 ± 2.10 67.39 ± 1.68 73.71 ± 1.40 6.13
ResNet-50-FPN-ISO 91.18 ± 1.07 92.26 ± 0.89 90.99 ± 1.14 91.05 ± 0.59 -
Mask R-DHCNN (Ours) 91.26 ± 0.85 91.84 ± 1.23 88.99 ± 0.94 90.61 ± 0.65 6.70

SIM+01

Baseline 93.93 ± 0.69 94.06 ± 0.21 86.18 ± 0.58 87.60 ± 0.40 4.10
MS R-CNN 92.03 ± 0.27 93.10 ± 0.89 85.86 ± 0.33 86.38 ± 0.64 4.00
ExtremeNet 88.64 ± 1.45 90.49 ± 1.29 81.30 ± 1.37 83.24 ± 1.01 3.84
TensorMask 87.24 ± 0.93 89.94 ± 1.39 80.80 ± 1.27 83.05 ± 1.71 2.15
PolarMask 91.19 ± 1.13 92.08 ± 0.97 84.65 ± 0.48 85.74 ± 0.70 10.05
CenterMask 85.31 ± 1.66 88.38 ± 1.02 80.29 ± 1.85 78.77 ± 1.90 6.20
ResNet-50-FPN-ISO 94.87 ± 0.44 94.79 ± 0.39 84.67 ± 0.61 89.66 ± 0.57 -
Mask R-DHCNN (Ours) 94.04 ± 1.23 94.36 ± 0.87 88.03 ± 0.42 90.13 ± 0.54 5.50
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Table 1. Cont.

Datasets Methods AP (%) Precision (%) Recall (%) Dice (%) FPS

SIM+02

Baseline 80.88 ± 1.05 83.95 ± 1.06 80.69 ± 1.88 75.71 ± 1.24 3.81
MS R-CNN 88.43 ± 1.07 87.92 ± 1.21 85.49 ± 1.53 83.10 ± 1.56 3.75
ExtremeNet 73.22 ± 2.71 72.49 ± 1.88 70.20 ± 2.47 70.17 ± 1.06 3.50
TensorMask 75.41 ± 0.91 74.18 ± 0.54 70.77 ± 1.23 71.20 ± 1.51 2.30
PolarMask 78.52 ± 0.99 79.06 ± 1.15 74.36 ± 1.22 74.18 ± 0.85 9.23
CenterMask 70.63 ± 2.92 69.30 ± 3.05 67.27 ± 1.87 66.98 ± 1.28 5.75
ResNet-50-FPN-ISO 84.06 ± 0.76 85.78 ± 1.02 83.37 ± 1.00 75.64 ± 0.77 -
Mask R-DHCNN (Ours) 82.47 ± 1.11 85.71 ± 0.79 80.24 ± 2.13 78.07 ± 0.94 5.61

T24

Baseline 92.25 ± 0.83 88.25 ± 0.76 85.18 ± 0.73 93.81 ± 0.56 4.28
MS R-CNN 91.98 ± 0.07 87.67 ± 0.11 83.41 ± 0.29 93.53 ± 0.31 4.29
ExtremeNet 81.86 ± 0.88 80.88 ± 0.76 71.54 ± 0.34 79.66 ± 0.50 4.12
TensorMask 87.53 ± 1.20 83.24 ± 1.09 76.54 ± 1.52 86.33 ± 0.64 2.19
PolarMask 91.67 ± 0.19 86.08 ± 0.20 83.10 ± 0.44 92.79 ± 0.37 10.32
CenterMask 82.01 ± 1.14 84.80 ± 0.95 73.98 ± 1.08 80.89 ± 0.74 6.42
ResNet-50-FPN-ISO 93.41 ± 0.66 92.14 ± 0.61 83.67 ± 0.71 93.82 ± 0.33 -
Mask R-DHCNN (Ours) 94.32 ± 0.85 91.38 ± 0.56 87.15 ± 0.98 94.31 ± 0.54 6.44

4.5.2. Ablation Experiments

To further verify the effectiveness of the proposed DHConv module, a series of ab-
lation experiments were conducted by taking different modules out and testing on var-
ious datasets. The obtained results are illustrated in Table 2. Compared with Mask R-
CNN+HetConv, the proposed Mask R-DHCNN (i.e., Mask R-CNN+DHConv) provided the
highest PQ value in these test datasets, demonstrating its strong capability in performing
unified detecting and segmenting tasks. Although the introduction of HetConv did not
reduce the computational cost as much as estimated in Equation (6), as the estimation
was provided by taking solely the convolution operations into account, the benefits from
HetConv were confirmed by a much smaller FLOPs value in comparison to that of the
baseline. The small kernel convolutions in HetConv brought negative effects to the ability
of feature extraction due to a limited respective field (see the PQ columns). Thanks to the
dilated convolution we introduced to the original HetConv, extra gains in the abilities of
detection (significant increase in PQ values) and segmentation were witnessed without
extra expenditure in computational costs or slowdown.

As mentioned above, HetConv contains a large number of 1 × 1 convolutions and
only a small number of 3 × 3 convolutions, leading to insufficient capabilities in local
relationship modeling. The dilation convolution (DConv) simply expands its kernel size
by introducing holes to the kernel, resulting in so-called “gridding artifacts” [37]. Such
operation significantly reduces its ability to distinguish cells from their environment. As no
additional module was introduced, the Baseline+ DConv did not require additional FLOPs.
However, as the dilated kernels have to search for pixels located in larger areas, a small
reduction in FPS was observed. In the proposed DHConv, although there were as many
1 × 1 convolutions as in HetConv, the original receptive field of 3 × 3 kernel convolutions
was expanded by the dilated convolution. This replacement compensated effectively for
the loss in local information caused by 1 × 1 convolution in the heterogeneous kernel
structures. Therefore, our method only expanded the receptive field size without any
increase in computational cost or accruing loss in terms of capability in detection and
segmentation tasks. Notably, the reduction in computational costs (FLOPs) obtained from
the introduction of the HDConv module was less than the theoretical expectation. This
inconsistency resulted from the ignorance of other components in the backbone Mask
R-CNN structure when performing the analysis of Equation (6). Consequently, when the
backbone becomes larger, the benefits of HDConv could be less obvious.
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Table 2. The influence of DHConv on detection and segmentation results. Bold fonts mark the highest
performance.

Datasets Baseline HetConv DConv DHConv PQ FLOPs (G) FPS(Mask R-CNN)

U373

! 57.53 55.37 4.81
! ! 57.02 46.74 7.05
! ! 48.56 55.14 4.34
! ! 61.24 46.75 7.00

GoTW1

! 72.91 73.89 4.00
! ! 72.20 59.46 6.71
! ! 61.68 74.06 3.78
! ! 75.05 59.45 6.70

SIM+-01

! 68.26 60.23 4.10
! ! 69.11 50.08 5.50
! ! 53.54 60.38 3.63
! ! 73.96 50.13 5.50

SIM+-02

! 46.12 70.01 3.81
! ! 45.10 58.19 5.60
! ! 35.68 69.25 3.52
! ! 49.81 57.34 4.86

T24

! 82.87 90.74 4.28
! ! 80.75 70.85 6.45
! ! 71.58 90.52 3.89
! ! 84.15 70.88 6.44

5. Conclusions and Discussion

Detection and segmentation of cells can be of great help regarding further quantitative
analysis of biological cells. However, it is still a challenging task to accurately detect
and segment cells owing to the variable shapes and sizes, uneven grayscale, and dense
distribution among biological cells in an image. Although deep learning-based techniques
have achieved great breakthroughs in the area of computer vision, developing solutions
suitable for performing automatic cell detection and segmentation tasks is still challenging
due to the large number of learning parameters and computational burden. To address
these issues, a novel convolutional kernel structure (i.e., DHConv) was first proposed by
integrating the advantages of the heterogeneous kernel structure and dilated convolution in
this paper. Then, Mask R-DHCNN was proposed by replacing the traditional convolutional
kernel in the standard Mask R-CNN with the proposed DHConv module to make it adapt
to variable shapes and large size differences in cell detection and segmentation tasks. A
series of experimental results were conducted to verify the effectiveness of the proposed
method. The obtained results verified that the proposed Mask R-DHCNN can obtain
better performance than some state-of-the-art methods in AP, Precision, Recall, Dice, and
PQ while maintaining competitive FLOPs and FPS. It is promising and encouraging for
real-world applications of biomedical engineering in the future.

Notably, the images we used to validate the effectiveness of the proposed method were
extracted from standard databases; the excellent performance demonstrated in the paper might
not guarantee the same performance in all real-world applications. Since the images in the
database were typically collected under some specific conditions, the network trained with these
images might need finetuning to adapt to real-world scenarios. A common case is the difference
caused by different scales as some detailed morphological structures are not visible under small
scales. Unfortunately, there is no scale information of the images provided in the database. As a
result, no suggestions can be provided to biologists on how to collect microscopy images. Another
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case that biologists would encounter is dust contamination. In the current study, although we
have not explicitly discussed how the proposed method differentiates dust from cells as the
performance metrics were provided by direct comparison to the ground truth, the results herein
might imply that acceptable performance would be available in real applications.

Mask R-CNN may struggle to capture fine-grained local information. In the application of
object detection tasks, anchor boxes that capture the scale and aspect ratio of specific objects are
typically used to reduce the cost of the sliding window approach. The proposed method might
be less effective in detecting and segmenting cells of irregular morphological structure compared
to those of common regular shapes. Using the predefining anchor boxes to catch up all the
irregularity of the cell morphology is challenging. Clustering methods that generate anchor boxes
with different aspect ratios through adaptive learning would be incorporated in the network to
handle those cells of irregular shapes [11]. Our work can serve as a new tool for biologists in
their studies on biological or clinical purposes, and inspire novel technical innovations that are
capable of other tasks, such as distinguishing different cell types. To this end, we made our codes
available on Github:https://github.com/HuHaigen/Mask-R-DHCNN. We hope that a more
efficient model can be built based on our work as we are sure that there are many difficulties to
integrate the model in real microscopy settings directly.
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