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Abstract: The accurate segmentation and quantification of retinal fluid in Optical Coherence To-
mography (OCT) images are crucial for the diagnosis and treatment of ophthalmic diseases such as
age-related macular degeneration. However, the accurate segmentation of retinal fluid is challenging
due to significant variations in the size, position, and shape of fluid, as well as their complex, curved
boundaries. To address these challenges, we propose a novel multi-scale feature fusion attention
network (FNeXter), based on ConvNeXt and Transformer, for OCT fluid segmentation. In FNeXter,
we introduce a novel global multi-scale hybrid encoder module that integrates ConvNeXt, Trans-
former, and region-aware spatial attention. This module can capture long-range dependencies and
non-local similarities while also focusing on local features. Moreover, this module possesses the
spatial region-aware capabilities, enabling it to adaptively focus on the lesions regions. Additionally,
we propose a novel self-adaptive multi-scale feature fusion attention module to enhance the skip
connections between the encoder and the decoder. The inclusion of this module elevates the model’s
capacity to learn global features and multi-scale contextual information effectively. Finally, we con-
duct comprehensive experiments to evaluate the performance of the proposed FNeXter. Experimental
results demonstrate that our proposed approach outperforms other state-of-the-art methods in the
task of fluid segmentation.

Keywords: retinal fluid segmentation; Transformer; optical coherence tomography; attention

1. Introduction

The macula is located at the center of the retina, responsible for human vision and
color perception. Macular edema is a swelling in a portion of the retina, caused by the
accumulation of fluid that has leaked from damaged retinal vessels. This condition is
usually a result of retinal diseases such as age-related macular degeneration (AMD), retinal
vein occlusion (RVO), or diabetic macular edema (DME). The primary types of retinal fluid
causing macular edema include intraretinal fluid (IRF), subretinal fluid (SRF), and pigment
epithelial detachment (PED). Macular edema can disrupt the normal structure of the retina,
leading to vision impairment or even blindness, making it one of the most common causes
of vision loss worldwide [1].

Optical coherence tomography (OCT) is a non-contact, high-resolution imaging tech-
nique with micron-level accuracy [2]. OCT has been widely used in the diagnosis of retinal
diseases and is the standard clinical method for observing and evaluating retinal fluid in
the macular region. For the precise diagnosis of retinal diseases, the development of per-
sonalized treatment strategies, and the evaluation of therapeutic effectiveness, it is essential
to conduct an accurate segmentation and quantitative analysis of the retinal fluid in the
macular region. The process of manual segmentation of retinal fluid is labor-intensive,
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time-consuming, and prone to individual biases and potential errors. Given these chal-
lenges, there is a compelling necessity for the exploration of computer-aided automatic
segmentation methodologies.

There has been extensive research on the computer-aided automatic segmentation
of OCT fluid. Traditional automated segmentation methods have predominantly relied
on image processing algorithms, such as directional graph search [3] and level set [4]
methods, or machine learning methods using manually extracted features [5]. However,
these techniques often exhibit limited performance and poor generalization, failing to meet
clinical requirements. With the advancement of machine learning, deep-learning-based
approaches have been increasingly applied to the task of fluid segmentation and have
achieved promising results. However, several challenges remain unresolved.

Medical image segmentation tasks are often designed for certain types of images,
and leveraging the inherent prior knowledge can be significantly advantageous for devel-
oping high-performance segmentation models. Retinal fluid lesions predominantly occur
in the central region of OCT images. However, most existing research does not capitalize
on this prior knowledge, leading to insufficient focus on the lesion areas. There is a lack of
cost-effective, end-to-end automated methods to guide the model’s attention towards the
location of the lesions. Therefore, we propose the region-aware spatial attention (RASA)
module, introducing prior knowledge of lesion locations, thereby enhancing the model’s
capability to extract lesion features. Furthermore, due to the uncertainty of fluid leakage
and accumulation, there is significant variability in the shape, location, and size of fluid
regions, often with complex and curved boundaries. Additionally, the low contrast and
presence of noise in OCT images may result in blurred or ambiguous boundaries. Hence,
the model requires robust multi-scale feature extraction capabilities to identify complex
lesions. Confronted with the task of segmenting lesions with various scales, existing models
exhibit limited capability in aggregating multi-scale features. Consequently, we propose the
self-adaptive multi-scale feature fusion attention module, which fuses and extracts multi-
scale features from adjacent encoder stages, enhancing the model’s ability to acquire global
multi-scale contextual information. Furthermore, current methods for fluid segmentation
predominantly rely on CNN-based U-shaped architectures. However, CNN-based ap-
proaches are limited in their capacity to capture long-range dependencies. On the contrary,
the Multi-Head Self-Attention (MSA) in Transformer has shown excellent performance in
modeling non-local similarities and long-range dependencies. As a result, we propose a
multi-scale hybrid encoder module that integrates both the Convolutional Neural Network
ConvNeXt and Transformer, leveraging the strengths of both to comprehensively extract
local detail information and global features.

Our main contributions can be summarized as follows:

• We design a novel global multi-scale hybrid encoder module, integrating ConvNeXt,
Transformer, and region-aware spatial attention(RASA). This module can simultane-
ously capture long-range and short-range dependencies while possessing adaptive
spatial region-aware capabilities.

• We introduce a new self-adaptive multi-scale feature fusion attention (SMFFA) module
to extract fusion features adaptively at the skip connections.

• We conduct extensive experiments on public datasets to validate the performance
of our model. The results demonstrate that our model outperforms other methods,
achieving state-of-the-art performance.

2. Related Work
2.1. Fluid Segmentation

In recent years, researchers have developed a series of image segmentation models based
on deep learning technology, such as U-Net [6], FCN [7], Seg-Net [8], and Deeplabv3+ [9].
Adapting to the unique requirements of medical imaging, various adaptations and enhance-
ments of these models have been proposed, with a focus on segmenting specific organs,
structures, and lesions. Given that U-Net has demonstrated exceptional performance
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in medical image segmentation tasks, most contemporary medical image segmentation
models are refined versions based on U-Net, such as U-Net++ [10], Attention U-Net [11],
ResUnet [12], and nnU-Net [13]. Alongside these developments, there have been diverse
methods proposed specifically for the segmentation of fluid in OCT images.

Lu et al. [14] incorporated fluid spatial information from retinal layer segmenta-
tion and employed random forest classification as a post-processing method to address
false-positive issues, achieving first place in the RETOUCH challenge. This methodology
employed both pre-processing and post-processing techniques, enhancing the accuracy
of lesion segmentation. Beyond this, researchers have proposed a variety of methods
incorporating pre-processing and post-processing techniques to refine the segmentation
process [15–17]. Pre-processing methods [16], such as denoising and layer segmentation,
serve to augment the input data for the segmentation models. Post-processing strategies
using machine learning techniques [15] further reduce the occurrence of false positives.
While these strategies collectively enhance the efficacy of segmentation algorithms, it is
noteworthy that pre-processing and post-processing can introduce potential information
loss, augment computational demands, and add to the overall complexity of the process.
With the advancements in model architectures and attention mechanisms, the capability
of models to extract lesion features has been significantly enhanced. Contemporary re-
search predominantly harnesses attention mechanisms to bolster information extraction,
thereby reducing the need for additional processing steps. Consequently, most current
methodologies employ end-to-end pipelines for retinal fluid segmentation, simplifying
the process.

Hu et al. [18] proposed a segmentation model leveraging stochastic atrous spatial
pyramid pooling (sASPP). This model employed dilated convolutions to efficiently extract
multi-scale pathological features, aiming to enhance segmentation accuracy while reducing
the risk of overfitting. Feng et al. [19] proposed the CPFNet, a model that incorporated
two multi-scale pyramid modules. This design facilitated the fusion of global contextual
information and demonstrated superior performance in specific tasks, such as retinal
macular segmentation. Liu et al. [20] utilized attention gates to process features from dense
skip connections and incorporated regression loss to address the issue of erroneous merging
of retinal fluid regions. Xing et al. [21] proposed a curvature loss function, specifically
designed by incorporating shape prior knowledge of the fluid, which consequently elevated
the precision of shape and boundary delineation.

2.2. Vision Transformer

In recent times, the introduction and adaptation of the Transformer architecture in
computer vision have led to notable breakthroughs. Transformer-based approaches have
achieved state-of-the-art (SOTA) performance across a wide array of visual tasks [22,23],
etc. The Vision Transformer (ViT) [24] represented the pioneering effort of integrating
the Transformer framework into image classification. It converted the input image into a
series of discrete patches, subsequently deploying multi-head self-attention mechanisms
for processing. The Swin Transformer [25] divided the input image into multiple non-
overlapping windows and employed a shifted window-based self-attention mechanism,
reducing computational complexity and achieving superior results.

Given the outstanding performance of Transformer in natural image tasks, numer-
ous studies have explored the use of Transformer in the construction of medical image
segmentation models. In previous studies, Transformers have been employed both as
components [26] within segmentation models and as independent architectures [27] for
segmentation. TransUNet [26] was a hybrid framework that melded Convolutional Neural
Network (CNN) and Transformer, capitalizing on the strengths of both to achieve compre-
hensive feature extraction. SwinUNet [27] represented the first model to construct a U-Net
architecture entirely based on Transformer, offering advantages in capturing long-range
dependency information. Huang et al. [28] proposed the MISSFormer model, which in-
novatively refined the feed-forward network within the Transformer and incorporated a
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remixed Transformer context bridge in the skip connection. This design sought to explore
both global dependencies and local contexts, ensuring a more holistic feature extraction.
Wang et al. [29] introduced UCTransNet, a model that replaced traditional skip connection
with a Transformer-based multi-scale channel-wise cross attention. This design facilitated
the amalgamation of multi-scale channel information, ensuring that the model captured
more sophisticated channel dependencies. However, Transformer architectures encounter
the challenge of requiring vast amounts of annotated data. Moreover, Transformer architec-
tures primarily focus on extracting global features, which is often insufficient for medical
image segmentation tasks. There are many minor lesions in OCT images, necessitating the
extraction of detailed local features. Consequently, the crux of research lies in integrating
both CNN and Transformer models, with explorations into how to effectively fuse the
multi-scale features obtained.

3. Methodology

In this section, we first provide an overview of the proposed method. Subsequently,
we present the hybrid encoder incorporating ConvNeXt Transformer and region-aware
spatial attention module. Further, we introduce the self-adaptive multi-scale feature fusion
attention module. Lastly, we delineate the components of the loss function.

3.1. Overview

The architecture of the model is depicted in Figure 1, consisting of an encoder, a bottle-
neck, and a decoder. Specifically, given an input image I ∈ RH×W×3, where H, W, and 3
denote the height, width, and channel count, respectively, the image is first processed
through a Convolutional Neural Network module termed stem. This includes a 4 × 4
convolutional layer with a stride of 2, serving to extract initial features and implement
downsampling. Consequently, this produces a feature map of a resolution quartered
from the original image, having a channel dimension, C, of 96. It can also be denoted as
I ∈ R H

4 ×W
4 ×C.

Subsequently, the feature map undergoes progressive deep feature extraction via four
encoder stages. Each stage consists of a ConvNeXt module, a Transformer module, and a
region-aware spatial attention module. After each encoder stage, a downsampling layer
composed of LayerNorm and a 2 × 2 convolutional layer with a stride of 2 is utilized.
This serves to halve the spatial dimensions of the feature map and double the channel
count. Consequently, the feature representation from the ith stage in the encoder is given

as Xi ∈ R
H

2i+2 ×
W

2i+2 ×2iC where i ∈ {0, 1, 2, 3} indexes the four stages. Thirdly, the feature
maps pass through a bottleneck layer composed of three ConvNeXt blocks, where further
feature extraction and combination take place. Subsequently, the feature maps from the
bottleneck layer are fed into the decoder section for continued feature extraction and
upsampling operations. Each stage of the decoder is made up of two Transformer blocks.
After each decoder stage, the feature maps are processed through an upsampling layer,
which employs bilinear interpolation followed by a 3× 3 convolutional operation, doubling
the spatial dimensions while halving the channel count. We also employ a self-adaptive
multi-scale feature fusion attention module to enhance the skip connections, allowing for a
better fusion of multi-scale features from adjacent encoder stages while preserving both
global and local information. Finally, a 1 × 1 convolutional layer is used to generate the
segmentation results.
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Figure 1. Overall architecture of our proposed FNeXter for retinal fluid segmentation. (a) FNeXter
adopts a U-shaped structure, composed of an encoder, a bottleneck, and a decoder. Both the encoder
and decoder consist of four stages. In the encoder, each stage contains a CNTRB (ConvNeXt-
Transformer-RASA Block), while in the decoder, each stage is equipped with two Transformer blocks.
The bottleneck layer includes three ConvNeXt blocks. The SMFFA module is utilized to fuse multi-
scale features, thereby enhancing the skip connections between the corresponding stages of the
encoder and decoder. (b) Within the encoder, the structure of CNTRB is formed by ConvNeXt blocks,
Transformer blocks, and region-aware spatial attention (RASA). (c) The feed-forward network of
the Transformer block consists of two 1 × 1 convolutional layers, two GELU activation layers, and a
depth-wise 3 × 3 convolutional layer.

3.2. ConvNeXt-Transformer-RASA Block

Convolutional Neural Networks (CNNs) possess local perceptual properties, enabling
them to extract features from local regions of input data and thereby capturing an image’s
local structure and information. Moreover, they benefit from an inductive bias inherent in
their architecture. This bias leans the network towards learning specific functions, such as
translational invariance, crucial for image processing tasks. However, CNNs have certain
limitations in modeling long-range dependencies. In contrast, the Transformer addresses
this shortcoming by employing window shift operations and multi-head self-attention
mechanisms, facilitating the capture of interdependent relationships across different regions
of an image. Additionally, we introduce a region-aware spatial attention (RASA) module
that offers an added layer of spatial understanding by focusing on critical areas within the
image. The RASA module provides the model with prior knowledge of lesion locations,
emphasizing regions with lesions and de-emphasizing background areas according to their
contextual significance. By integrating these three distinct yet complementary modules
into a single encoder stage, we achieve a richer and more robust feature representation.
This hybrid architecture capitalizes on the local feature extraction strengths of ConvNeXt,
the long-range dependency handling of the Transformer, and the context-sensitive region-
awareness introduced by the RASA module. Collaboratively, they contribute to a more
comprehensive understanding of both local and global characteristics of the image. The
specific structure of the encoder is illustrated in Figure 1b.
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3.2.1. ConvNeXt

Convolutional Neural Networks (CNNs) have been demonstrated to efficiently encode
local spatial details. They are also more conducive to training. Consequently, CNNs are
employed in our encoder. To further harness the strengths of CNNs and integrate the
benefits of the latest advancements in Transformer architecture, researchers have proposed
the ConvNeXt architecture [30], which includes Inverted Bottleneck and large kernels.
Woo et al. [31] extend the self-supervised pre-training methodology to the ConvNeXt archi-
tecture and introduce a novel global response normalization (GRN) layer, leading to the
development of the ConvNeXt-V2 model. This enhanced model demonstrates superior
performance in both image classification and semantic segmentation tasks. In our encoder,
we employ basic ConvNeXt-V2 blocks for feature extraction. As depicted in Figure 1b,
the ConvNeXt-V2 block consists of a depth-wise convolution with kernel size of 7 × 7,
a layer normalization, a dimension-expansion pointwise convolution (1 × 1 convolution
layer) with a GELU activation, a novel global response normalization and a dimension-
reduction pointwise convolution. For the first pointwise convolution layer, we set the
expansion ratio to 4. Similarly, the dimension reduction ratio of the subsequent point-
wise convolution is set to 4 for feature recovery. The specific implementation formula is
as follows:

F′ = LN(DWConv7×7(Fin)), (1)

Fout = Conv1×1(GRN(GELU(Conv1×1(F′)))) + Fin, (2)

where Fin represents the input feature of ConvNeXt block. F′ denotes the output feature
from depth-wise convolution layer. Fout denotes the final output. LN(·) represents the layer
normalization, while GELU and GRN refer to the non-linear activation function and global
response normalization, respectively. In our ConvNeXt block, the inductive bias inherent in
the convolutional operations complements the subsequent Transformer block, facilitating
easier training. By employing large-kernel convolutional layers, the model significantly
expands its receptive field, which is crucial for capturing more extensive contextual in-
formation. This expansion plays a pivotal role in augmenting the model’s capabilities for
learning global long-range representations, enabling it to better understand and process
data in tasks that require a broader view of context. Furthermore, these convolutional
operations are adept at capturing local fine-grained details, enabling our ConvNeXt to
achieve a comprehensive understanding of both global and local feature representations.

3.2.2. Transformer Block

As illustrated in Figure 1b,c, the architecture of the Transformer block consists of
a window-based multi-head self-attention(WMSA), two layer normalization operations,
and a feed-forward neural network (FFN). Emulating the approach of the Swin Trans-
former [25], we incorporate Window Shift Operations (WSO) into the Window-based Multi-
head Self-Attention Block (WMSA) to introduce cross-window connections. The Trans-
former block is capable of further modeling global long-range dependencies and non-
local similarities on top of the ConvNeXt foundation. The Transformer block can be
expressed as follows:

F′ = WMSA((LN(Fin))) + Fin, (3)

Fout = FFN(LN(F′)) + F′, (4)

where Fin and Fout represent the input and output feature maps of the Transformer block,
respectively. LN(·) represents the layer normalization. WMSA refers to the Window-based
Multi-head Self-Attention, which computes the interactions among tokens within each
window. The input feature map is first partitioned into non-overlapping windows, each
of size L × L. Subsequently, the features X ∈ RL×L×C of each window are flattened and
transposed, and then linearly projected into query Q, key K, and value V ∈ RL2×C.

Q = XinWQ, K = XinWK, V = XinWV , (5)
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where WQ, WK, WV ∈ RC×C are learnable parameters, representing the projection matrices
for query, key, and value, respectively. We then split Q, K, and V into k heads along
the channel dimension as Q = [Q1, . . . , Qk], K = [K1, . . . , Kk], and V = [V1, . . . , Vk].
The dimension for each head is dk =

C
k . The Self-Attention (SA) mechanism for the j head

is formulated as follows:

SA(Qj, Kj, Vj) = softmax

(
QjKT

j√
dk

)
Vj (6)

where Qj, Kj, and Vj denote the query, key, and value for the j head, respectively. The out-

put tokens Xo ∈ RL2×C for each window can be obtained by the equation

Xo =
k

Concat
j=1

(SA(Qj, Kj, Vj))WO + B (7)

where Concat(·) indicates the concatenation operation, B ∈ RL2×C represents the positional
embedding, and WO ∈ RC×C are learnable parameters. The output tokens Xo are then
reshaped to produce the output feature map Xout ∈ RL×L×C. Finally, the output features
from all the windows are aggregated to form the final output feature map.

3.2.3. Region-Aware Spatial Attention

To selectively emphasize the lesion area based on its contextual importance, we
introduce the region-aware spatial attention (RASA) module for the incorporation of lesion
location prior knowledge. The steps of our spatial attention are delineated as follows:
As illustrated in Figure 2a, for the input feature map Fin ∈ RH×W×C , we divide it into
four equal parts Hi ∈ R H

4 ×W×C in a top-down sequence, where i ∈ {1, 2, 3, 4} represents
four segments.

Hi = Split[Fin], i ∈ {1, 2, 3, 4}, (8)

where Split denotes the division of the feature map into four equal parts along the height
dimension, in a top-down sequence. Subsequently, as illustrated in Figure 2b, we apply
spatial attention to each of the four segments individually. For each feature map of segment
Hi, we compute both the average and maximum values in the channel dimension, resulting
in two tensors. These two tensors are then concatenated along the channel dimension to
obtain S′

i ∈ R H
4 ×W×2.

S′
i = Concat[GAPc(Hi), GMPc(Hi))], i ∈ {1, 2, 3, 4}, (9)

where Global Average Pooling (GAPc) and Global Maximum Pooling (GMPc) represent
the computed average and maximum values along the channel dimension, respectively.
Following this, we apply four convolutional layers with kernel sizes of 1 × 1, 3 × 3, 5 × 5,
and 7 × 7, respectively, to the concatenated tensor S

′
i, aiming to capture multi-scale infor-

mation. As a result, we obtain four tensors containing information at different scales. To
further facilitate fusion and attention computation, we concatenate these tensors along the
channel dimension. Following the concatenation, a 7× 7 convolutional layer is employed to
reduce the channel dimension of the concatenated output from 4 to 1. Finally, the attention
weights for each segment are generated using a sigmoid function.

S′′
i = σ

(
Conv7×7

(
1,3,5,7

Concat
j

[
Convj×jS′

i
]))

, i ∈ {1, 2, 3, 4}, (10)

where Concat denotes the concatenation of tensors processed by the four convolutional
layers along the channel dimension. σ represents sigmoid activation function. Lastly,
the attention weights obtained for the four segments are concatenated along the height
dimension and normalized using a softmax function, yielding a final 2D spatial attention
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map Ss. This map is then element-wise multiplied with the given input feature map Fin to
produce the weighted features Fout.

Ss = softmax(Concat[S′′
1 , S′′

2 , S′′
3 , S′′

4 ]), (11)

Fout = Ss ⊗ Fin, (12)

×

c
w

h Spatial +

Channel Max

Channel Average

C

conv3×3

conv5×5

conv1×1

conv7×7

conv7×7 Sigmoid

Split C Softmax

C

(a)

(b)

F��
H1

H2

H3

H4

��
F����1′′

�2′′

�3′′

�4′′

H� ��′′

Spatial

RASA

Figure 2. (a) Overall architecture of the region-aware spatial attention (RASA) module. (b) The
detailed structure of the spatial attention in the region-aware spatial attention (RASA) module.

The softmax normalization ensures that the model gives weight to each area based
on its relative importance when fusing information from the four distinct regions. This
adaptive weighting allows the model to recognize the significance of different spatial
positions. Fluid lesions typically appear in the central region of OCT images, which
constitutes our prior knowledge of lesion locations. Through our proposed region-aware
spatial attention, we can incorporate this lesion location prior into the model, adaptively
guiding the model to focus on the central region where the lesions are located. This
approach effectively captures lesion-related information, thereby enhancing the model’s
awareness of region and lesion. Moreover, during the spatial attention computation process,
we employ convolutional layers with four distinct kernel sizes. This strategy effectively
expands the receptive field, enabling the model to extract multi-scale spatial information
more efficiently.

3.3. Self-Adaptive Multi-Scale Feature Fusion Attention

In the U-Net architecture, the output from each stage of the encoder is concatenated
with the output from the corresponding stage of the decoder, an operation commonly
referred to as skip connection. The skip connections allow for the integration of low-level
and high-level features, mitigating information loss and enhancing the model’s perfor-
mance. To further integrate multi-scale features and enhance the model’s ability to learn
global contextual information, we introduce the self-adaptive multi-scale feature fusion
attention (SMFFA). Many researchers have proposed methods for feature fusion, such as the
hierarchical attention module (HAM) introduced by Tao et al. [32], which employs different
fusion methods to integrate feature maps of varying channel-spatial ratios to learn discrim-
inative features. Differently from the SAM , our SMFFA approach fuses a broader range of
multi-scale features, enhancing multi-scale information and diverse features. Additionally,
we enhance spatial features in the feature extraction encoder stages, and in SMFFA, further
augment important multi-scale features through attention mechanisms. Building upon
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the foundation of skip connections, SMFFA is capable of adaptively fusing and extracting
multi-scale features from adjacent stages. The detailed definition is as follows: For the
output feature map of each encoder stage Fi where i ∈ {1, 2, 3, 4} indexes the four stages.
As illustrated in Figure 3, for feature Fi, we merge it with the feature of its neighboring
stage. For the SMFFA of the second stage and third stage, the feature is fused with the
features from both the preceding and the succeeding stages. However, for the SMFFA of
the first stage and fourth stage, the feature is only fused with the feature from its immediate
neighboring stage.

conv2×2

Up

conv3×3

conv5×5

conv3×3

conv5×5

conv3×3

conv5×5

C

C

C

GAP

GMP

GAP
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C conv3×3
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Fi+1

Fi−next
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Fi+1′′′

CGAP GMPGlobal Average Pooling Global Max Pooling Channel Concatenation Element-wise Addition  Element-wise MultiplicationSMFFA

Figure 3. The detailed structure of the self-adaptive multi-scale feature fusion attention (SMFFA) module.

For the SMFFA at encoder stage i where i ∈ {1, 2, 3, 4}, we fuse the current stage feature
Fi and additional feature Fi−next , the preceding stage feature Fi−1, and the succeeding stage
feature Fi+1. To better leverage the advantages of the encoder architecture and fuse features
across multiple scales and layers, we introduce an additional feature Fi−next extracted right
after the ConvNeXt module of the current encoder stage, in addition to the output feature
Fi at each stage. This strategy aims to harness the strengths of both the ConvNext and
Transformer modules in feature processing. For the preceding stage feature Fi−1, we apply
a convolutional layer with a kernel size of 2 × 2 and a stride of 2 to perform downsampling,
halving the spatial resolution of the feature map. For the succeeding stage feature Fi+1,
we employ bilinear interpolation to perform upsampling, doubling the spatial size of the
feature map.

F′
i−1 = Conv2×2(Fi−1), (13)

F′
i+1 = UP(Fi+1), (14)

To effectively integrate multi-scale features, we employ convolutional layers with
kernel sizes of 3 × 3 and 5 × 5 to process the aforementioned four features. For feature
Fi ∈ RH×W×C, we apply both layers to Fi yielding two features each with channel dimen-
sion reduced to C

2 . These are then concatenated along the channel dimension to produce
F′

i. Similar operations are applied to Fi−next to obtain F′
i−next. Likewise, F′

i−1 and F′
i+1 are

processed to obtain F′′
i−1 and F′′

i+1, respectively.

F′
m = Concat(Conv3×3(Fm), Conv5×5(Fm)), (15)

where Fm represents one of the several features described previously, specifically belong-
ing to the set {Fi, Fi−next, F′

i−1, F′
i+1}. Meanwhile, F′

m denotes the output feature map after
processing, and belongs to the set {F′

i, F′
i−next, F′′

i−1, F′′
i+1}. By employing these two convolu-

tional layers with kernel sizes of 3 × 3 and 5 × 5, the model is further enabled to capture
features across multiple scales, allowing the network to recognize both fine-grained and
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coarser patterns within OCT images. Additionally, this operation enhances the model’s
ability to capture more contextual information, providing a more comprehensive represen-
tation of the data and enriching the feature space. Subsequently, for the current encoder
stage, the concatenated features F′

i and F′
i−next undergo element-wise addition to yield the

final feature F′′
i for the current stage.

F′′
i = F′

i ⊕ F′
i−next, (16)

where ⊕ denotes element-wise addition. Subsequently, the processed feature of the current
stage, F′′

i , is element-wise added to the features of the adjacent preceding and succeeding
stages, F′′

i−1 and F′′
i+1, respectively. The sum of F′′

i and F′′
i−1 yields a preliminarily fused

multi-scale feature F′′′
i−1. Similarly, the sum of F′′

i and F′′
i+1 results in another preliminarily

fused multi-scale feature F′′′
i+1. By subjecting four features from adjacent stages to con-

volutional and concatenation operations, the model gains enhanced multi-scale feature
representation. This not only allows for the more precise recognition of detailed informa-
tion but also aids in capturing global contextual information, thereby preserving semantic
richness across different scales and rendering a more comprehensive feature representation.

F′′′
i−1 = F′′

i−1 ⊕ F′′
i , (17)

F′′′
i+1 = F′′

i ⊕ F′′
i+1, (18)

To better process the fused features, we utilize channel attention to further enhance
important multi-scale features. For the fused feature F′′′

i−1, we first apply Global Aver-
age Pooling (GAP) and Global Max Pooling (GMP) operations. The outputs from these
operations are then passed to respective fully connected layers. These are subsequently
processed through a ReLU activation function and another fully connected layer, enabling
the model to learn a compact representation. Finally, the processed features from both
paths are summed and passed through a sigmoid activation function to learn attention
weights. The attention weights are element-wise multiplied with the input fused feature
to obtain the attention-modulated feature Fc

i−1. Through this attention module, essential
features within the fused representation are further emphasized. This enables the model
to adaptively learn and selectively extract salient channel features, thereby enhancing the
specificity of feature extraction.

Fcavg
i−1 = W2(ReLU(W1GAP(F′′′

i−1))), (19)

Fcmax
i−1 = W2(ReLU(W1GMP(F′′′

i−1))), (20)

Fc
i−1 = σ((Fcavg

i−1 ⊕ Fcmax
i−1 ))⊗ F′′′

i−1, (21)

where W1 and W2 denotes fully connected layer. σ denotes sigmoid activation function.
⊗ denotes element-wise multiplication. Similarly, the feature F′′′

i+1 undergoes attention
processing as described in the above equations, resulting in an attention-modulated feature
represented by Fc

i+1. Ultimately, we concatenate the two attention-enhanced fused features
and pass them through a 3 × 3 convolutional layer for dimension reduction, yielding the
final fused feature Fout

i , which is then relayed to the corresponding stage of the decoder.

Fout
i = Conv3×3(Concat(Fc

i−1, Fc
i+1)), (22)

As depicted in Figure 3, the aforementioned operations collectively form our self-
adaptive multi-scale feature fusion attention (SMFFA). Through our proposed SMFFA, we
have enhanced the traditional skip connections by merging distinct features from adjacent
encoder stages. Firstly, within the current encoder stage, we fuse the features processed
by ConvNeXt with the final output features of the entire stage. This operation facilitates
multi-level feature extraction, as ConvNeXt primarily focuses on local, detailed features,
while the final stage output captures more global and high-level semantic information.
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This enhances the model’s robustness to various types of data. Secondly, all features from
adjacent stages undergo processing through convolutional layers with different kernel sizes,
preserving semantic richness across multiple scales. Furthermore, our SMFFA effectively
fuses multi-scale and multi-level features across multiple stages, enabling the model to
capture both fine-grained and coarser features. This assists the model in understanding
the global context and capturing local details. Finally, we employ an attention mechanism
to adaptively learn the significant features within the fused representation, allowing the
model to focus on the most relevant features. In summary, this module automatically
fuses multi-scale features from adjacent encoder stages and, via the attention mechanism,
adaptively extracts significant features from the fused representation, thereby amplifying
the model’s capability to learn global and contextual multi-scale representative features.

3.4. Loss Function

In the training process, we employ a weighted sum of two loss functions as the final
loss function. The final loss function is defined as:

L = λ1Lce + λ2Ldice (23)

where λ1, λ2 represent two hyper-parameters that determine the relative importance of two
loss functions. Experimental results indicate that the model achieves its best performance
when the hyper-parameters λ1 and λ2 are both assigned a value of 0.5. Therefore, the val-
ues of λ1 and λ2 are set to 0.5 in this implementation. Lce represents the cross-entropy
loss, which serves to measure the closeness between the model’s predicted probability
distribution and the true distribution. It is defined as:

Lce(y, p) = −∑
i

yi log(pi) (24)

Here, Ldice represents the Dice loss function, which serves to measure the overlap
between the predicted segmentation results and ground truth, and is particularly useful for
handling imbalanced segmentation data. It is espressed as:

Ldice(y, p) = 1 − 2 ∑ yi pi

∑ yi + ∑ pi
(25)

where yi represents the true labels, pi represents the predicted probabilities. The term i
denotes the i-th pixel.

4. Experiments

In this section, we primarily evaluate our method in the OCT fluid segmentation task.
First, we describe the dataset used for model training and evaluation in this study. Then,
we present the Implementation Details and Evaluation Metrics. Finally, we showcase the
results of comparative experiments and ablation studies.

4.1. Datasets

We utilize the publicly available dataset: MICCAI RETOUCH challenge dataset [33].
The RETOUCH dataset is designed for segmenting three pathological areas in OCT images:
intraretinal fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachment (PED).
This dataset comprises OCT images scanned from three devices: Zeiss Cirrus, Heidelberg
Spectralis, and Topcon. The distinct differences in OCT B-scans from various devices
are evident. Therefore, in this study, we conduct experiments on OCT images from each
of the three devices separately. That is to say, the OCT images from the dataset are
partitioned into three subsets based on the distinct acquisition devices, with each subset
undergoing individual experimental analysis. Since the RETOUCH competition does not
provide ground truth for the test set, we do not evaluate our model on the test set. In
the comparative experiments with other methods, we employ an unbiased five-fold cross-
validation method, assessing each training set from the three devices separately. For the
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ablation study of our model, we amalgamate the training sets from all three devices into a
single dataset. On this consolidated dataset, we conducted a five-fold cross-validation to
validate the efficacy of different model components. Detailed information about the dataset
is illustrated in Table 1, encompassing a total of 6936 OCT training images.

Table 1. Overview of Retouch dataset.

Type Cirrus Spectralis Topcon

Volume size 512 × 1024 × 128 512 × 496 × 49 512 × 650/885 × 128/64
Training (V/S) 24/3072 24/1176 22/2688

Test (V/S) * 14/860 14/430 14/1004
V = Volumes, S = Slices, * The ground truth of test set is not available.

4.2. Implementation Details and Evaluation Metrics
4.2.1. Implementation Details

We apply data augmentation techniques like random flipping and random rotation
to the images to enhance their diversity, preventing overfitting and boosting the model’s
generalization ability. We adopt the AdamW optimizer [34] with a weight decay set to 0.01.
The initial learning rate is set to 0.0001, and a “Poly” learning rate decay strategy is used
throughout the training process. Our model is implemented using PyTorch and trained for
150 epochs on an NVIDIA A100 GPU. In our proposed model, the ConvNeXt is initialized
using parameters pre-trained on ImageNet [35] via self-supervised learning, while the
Transformer block is randomly initialized. During the training and validation phases, all
OCT B-scan images from each volume in the dataset are resized to 512 × 512, with a batch
size of 8. The number of the ConvNeXt blocks in CNTRB (ConvNeXt-Transformer-RASA
Block) in each encoder stage is three. The number of Transformer blocks in CNTRB in each
encoder stage is two. In the Transformer blocks, we use an 8 × 8 moving window, with the
number of heads in each encoder stage being 3, 6, 12, and 24, respectively, increasing with
the depth of the layer. As the encoder stages downsample, the number of channels in each
encoder stage also changes, being 96, 192, 384, and 768, respectively.

4.2.2. Evaluation Metrics

We employ the following commonly used evaluation metrics to assess the performance
of our model, including Dice Similarity Coefficient (DSC), Intersection-over-Union (IoU),
Relative Volume Differences (RVD), and Balanced Accuracy (BACC) [36]. Their respective
definitions are as follows:

DSC =
2 × |X ∩ Y|
|X|+ |Y| (26)

IoU =
|X ∩ Y|
|X ∪ Y| (27)

RVD =
abs(|X| − |Y|)

|Y| (28)

BACC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(29)

For these equations, X and Y represent the predicted segmentation result and the
ground truth, respectively. |X| and |Y| represent the pixel counts of region X and Y,
respectively. |X ∩ Y| represents the number of pixels of the intersection between |X| and
|Y|. |X ∪ Y| represents the number of pixels of the union of |X| and |Y|. For the BACC
equation, TP (True Positive) is the number of positive samples correctly classified as positive,
TN (True Negative) is the number of negative samples correctly classified as negative, FP
(False Positive) is the number of negative samples incorrectly classified as positive, and FN
(False Negative) is the number of positive samples incorrectly classified as negative.
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Both DSC and IoU are utilized to measure the degree of overlap between the predicted
segmentation results and the ground truth. Their values range between 0 and 1, with val-
ues closer to 1 indicating a higher degree of overlap, thus signifying better segmentation
performance. RVD represents the relative value of the volume differences between the pre-
dicted results and the ground truth. A lower value of RVD indicates a smaller discrepancy
between the predicted results and the ground truth, signifying enhanced segmentation
performance. BACC takes into account both the positive class and negative class recog-
nition abilities, providing a more balanced measurement of the pixel-level classification
performance of the predicted results. Through these metrics, we can evaluate the similarity
between the predicted segmentation results and the ground truth, thereby assessing the
model’s segmentation performance.

4.3. Comparisons with Other Methods

In our study, we compare the performance of our model in fluid segmentation tasks
with other state-of-the-art methods, including models based on CNN and those based on
Transformer. The CNN-based models include U-Net [6], U-Net++ [10], Deeplabv3+ [9],
ResUnet [12], and Attention U-Net [11]. The Transformer-based models in our compar-
ison include MsTGANet [37] Swin-UNet [27], TransUNet [26], MISSFormer [28], and
H2Former [38]. These methods have been extensively applied to medical image segmen-
tation tasks and have yielded satisfactory results. All models are trained under identical
experimental settings, without any pre-processing or post-processing steps, to ensure a
fair comparison. We adopt the same 5-fold cross-validation method for dataset splitting
to conduct the training and validation processes, further ensuring the fairness of the com-
parison results. Table 2 display the quantitative comparison results of all models on the
cirrus sub-dataset. The results indicate that our proposed model achieves superior perfor-
mance across the majority of evaluation metrics, outperforming other competing methods.
Our model improved the average Dice Similarity Coefficient (DSC) by 0.97% and 1.55%
compared to TransUNet and H2Former, respectively.

Table 2. Quantitative comparisons with state-of-the-art methods on the retouch sub-dataset Cirru s
(5-fold cross-validation).

Method DSC IoU AVD BACC

U-Net [6] 79.73 ± 0.59 69.40 ± 0.71 19.46 ± 1.75 93.84 ± 0.29
U-Net++ [10] 79.74 ± 0.69 69.45 ± 0.88 18.72 ± 1.40 93.91 ± 0.34
ResUnet [12] 80.62 ± 0.57 70.46 ± 0.71 17.79 ± 1.32 94.17 ± 0.38
Att-UNet [11] 80.05 ± 0.56 69.71 ± 0.74 19.27 ± 1.92 93.91 ± 0.17

DeepLabv3+ [9] 80.93 ± 0.86 70.66 ± 1.05 17.84 ± 0.97 94.33 ± 0.40
MsTGANet [37] 80.79 ± 0.60 70.54 ± 0.69 18.63 ± 1.42 94.36 ± 0.35
Swin-UNet [27] 76.80 ± 0.56 65.85 ± 0.68 20.21 ± 1.14 93.35 ± 0.38
TransUNet [26] 81.54 ± 0.59 71.48 ± 0.69 18.48 ± 1.89 94.52 ± 0.42

MISSFormer [28] 80.99 ± 0.55 70.85 ± 0.71 18.69 ± 1.45 94.28 ± 0.39
H2Former [38] 81.07 ± 0.60 71.00 ± 0.74 18.55 ± 1.71 94.61 ± 0.20
FNeXter (Ours) 82.33 ± 0.46 71.94 ± 0.61 16.32 ± 1.33 94.83 ± 0.25

Bold indicates the best.

As is shown in Table 3, on the Spectralis dataset, our model demonstrates an improvement
of 0.81% and 1.19% in the average DSC compared to TransUNet and H2Former, respectively.

Similarly, on the Topcon dataset, as shown in Table 4, our model exhibits an increase
of 0.7% and 0.85% in the average DSC when compared to TransUNet and H2Former,
respectively. Our model effectively incorporates prior knowledge about the location of
fluid and adaptively fuses multi-scale features from multiple encoder stages, eliminating
the need for additional preprocessing steps or auxiliary information.
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Table 3. Quantitative comparisons with state-of-the-art methods on the retouch sub-dataset Spectrali
s (5-fold cross-validation).

Method DSC IoU AVD BACC

U-Net [6] 81.74 ± 0.67 71.93 ± 0.87 17.52 ± 1.28 94.08 ± 0.28
U-Net++ [10] 81.67 ± 1.29 71.76 ± 1.44 18.52 ± 2.51 94.14 ± 0.39
ResUnet [12] 81.91 ± 0.52 72.03 ± 0.71 17.58 ± 1.76 94.09 ± 0.18
Att-UNet [11] 82.01 ± 0.76 72.22 ± 0.95 16.76 ± 1.14 94.11 ± 0.33

DeepLabv3+ [9] 81.81 ± 1.12 71.79 ± 1.19 17.76 ± 3.38 94.03 ± 0.22
MsTGANet [37] 81.74 ± 0.84 72.04 ± 1.01 16.99 ± 1.89 93.93 ± 0.20
Swin-UNet [27] 78.70 ± 0.93 67.95 ± 1.20 21.62 ± 3.48 93.03 ± 0.56
TransUNet [26] 82.42 ± 0.71 72.87 ± 0.83 17.98 ± 2.72 94.22 ± 0.10

MISSFormer [28] 82.03 ± 0.95 72.34 ± 1.11 19.47 ± 3.66 94.18 ± 0.21
H2Former [38] 82.11 ± 1.00 72.31 ± 1.20 20.40 ± 4.52 94.67 ± 0.22
FNeXter (Ours) 83.09 ± 0.93 73.18 ± 1.21 16.48 ± 1.67 94.69 ± 0.37

Bold indicates the best.

Table 4. Quantitative comparisons with state-of-the-art methods on the retouch sub-dataset Topco n
(5-fold cross-validation).

Method DSC IoU AVD BACC

U-Net [6] 76.20 ± 1.21 65.03 ± 1.21 26.12 ± 3.03 92.64 ± 0.37
U-Net++ [10] 76.37 ± 0.80 65.08 ± 0.84 30.56 ± 6.69 92.80 ± 0.47
ResUnet [12] 76.19 ± 0.65 64.83 ± 0.80 27.38 ± 4.56 92.95 ± 0.72
Att-UNet [11] 76.51 ± 0.98 65.37 ± 1.05 25.17 ± 2.69 92.59 ± 0.33

DeepLabv3+ [9] 75.93 ± 0.96 64.56 ± 0.92 23.75 ± 2.26 92.26 ± 0.28
MsTGANet [37] 76.69 ± 0.71 65.40 ± 0.79 25.49 ± 2.13 92.64 ± 0.25
Swin-UNet [27] 71.58 ± 0.72 59.64 ± 0.67 28.49 ± 2.23 91.28 ± 0.39
TransUNet [26] 76.91 ± 0.64 65.63 ± 0.58 26.03 ± 2.86 93.09 ± 0.36

MISSFormer [28] 76.52 ± 0.73 65.35 ± 0.61 25.87 ± 2.19 92.89 ± 0.32
H2Former [38] 76.80 ± 0.65 65.60 ± 0.69 25.27 ± 1.77 93.00 ± 0.39
FNeXter (Ours) 77.45 ± 0.60 65.80 ± 0.56 23.54 ± 1.70 93.32 ± 0.56

Bold indicates the best.

Many studies utilized graphical methods to display comparative experiments and
results, presenting the outcomes of models more effectively and intuitively [39,40]. Inspired
by these studies, we have employed bar charts to exhibit the comparative results of different
methods. As shown in Figures 4 and 5, the visual bar charts of Dice and IoU can more
clearly and intuitively demonstrate the outstanding performance of our method.

(a) (b) (c) 

Figure 4. Bar chart of DSC scores for different methods on three sub-datasets. (a) Cirrus; (b) Spectralis;
(c) Topcon.

Figure 6 presents the visual segmentation outcomes of several models, offering a qual-
itative assessment of their performances. While some models might produce segmentation
inaccuracies, such as overlooking minor lesions, our model proficiently detects the majority
of these subtle lesions, accurately outlining their contours and fine details.
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As illustrated in Figure 7, we present the confusion matrices of our method on three
sub-datasets, which demonstrate the model’s segmentation performance across three
categories. It proves the model’s effectiveness in segmenting lesions of different categories.

(a) (b) (c) 

Figure 5. Bar chart of IoU scores for different methods on three sub-datasets. (a) Cirrus; (b) Spectralis;
(c) Topcon.

(b)Ground Truth (i)FNeXter(c)U-Net (e)DeepLabv3+ (g)Transunet(f)MsTGANet(d)AttU-Net (h)H2Former(a)Inputs
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Figure 6. Comparison of visual segmentation results on the three Retouch sub-datasets using
different methods. Red, blue, and green colors represent intraretinal fluid (IRF), subretinal fluid
(SRF), and pigment epithelial detachment (PED), respectively. Our model is capable of accurately
segmenting the majority of minute fluid lesions in OCT images.

To verify the generalization performance of our model, we conduct validation on
the publicly available SD-OCT dataset of patients with diabetic macular edema (DME)
from Duke University [41]. We apply our trained model, FNeXter, to the Duke dataset
for inference, with the visualized segmentation results presented in Figure 8. Our model
demonstrates effective segmentation of retinal fluid lesions on this dataset, achieving
commendable generalization performance.
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Figure 7. Confusion matrices of our method on different sub-datasets. (a) Cirrus; (b) Spectralis;
(c) Topcon.

(a) Inputs (b) Ground Truth (c) FNeXter

Figure 8. The visualized segmentation results of FNeXter on the Duke dataset.

4.4. Ablation Studies

We amalgamate the training sets from all three devices into a single dataset. We
conduct a series of ablation experiments on this consolidated dataset to validate the efficacy
of our proposed model and to investigate the contribution of each component and design.

4.4.1. Encoder

We conduct ablation studies to analyze the composition of the encoder, with the
average segmentation results for different encoder designs reported in Table 5. Comparing
various design alternatives, we observe that the model performs optimally when the
encoder stage is collectively constituted by ConvNeXt, Transformer, and region-aware
spatial attention (RASA), in accordance with our design. This configuration achieves the
best results across all metrics, with a peak improvement of 1.2% in the average DSC. This
demonstrates that the combination of ConvNeXt and Transformer blocks captures long-
range dependencies and retains CNN’s inherent biases. With large convolutional kernels,
our encoder efficiently encodes both local and broad contextual features across various
levels and scales.

The results in Table 5 validate the role of RASA in enhancing lesion feature extrac-
tion. Furthermore, we conduct comparative experiments with other attention methods to
evaluate the efficacy of the proposed RASA. Keeping other configurations constant, we
compare four types of attention designs, including our proposed RASA module. The other
three attention mechanisms are the Spatial Attention Module (SAM) from CBAM [42],
Channel Attention (SENet) [43] and the complete CBAM (Convolutional Block Attention
Module) [42]. The Table 6 reports the segmentation results when employing each of these
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four attention modules. Among them, the model incorporating our RASA design yields
the best performance across all metrics. These findings indicate that standard attention
mechanisms fail to introduce lesion location prior knowledge into the model, leading to
insufficient focus on spatial features. In contrast, RASA effectively integrates prior knowl-
edge about lesion locations into the model, enhancing the model’s sensitivity to lesions.
This integration also bolsters the extraction of multi-scale spatial features, subsequently
improving segmentation results.

Table 5. Ablation studies of encoder stage components.

ConvNeXt Transformer RASA DSC IoU AVD BACC

✓ 79.57 69.20 19.97 93.98
✓ 79.25 68.77 20.39 94.13

✓ ✓ 79.80 69.44 19.52 93.98
✓ ✓ ✓ 80.20 69.85 18.66 94.20

Bold indicates the best.

Table 6. Performance comparisons of different attention methods.

Method DSC IoU AVD BACC

SAM [42] 79.85 69.53 19.60 94.12
SENet [43] 79.86 69.55 19.34 93.99
CBAM [42] 79.98 69.65 18.82 94.13

RASA 80.20 69.85 18.66 94.20
Bold indicates the best.

4.4.2. Decoder

We conduct ablation studies to assess the implications of the decoder’s design. Keeping
other configurations constant, we alter only the design of the decoder for comparison. We
use the decoder from U-Net [6] as the baseline and compare scenarios where ConvNeXt
and Transformer are used individually as well as in combination for constructing the
decoder. The results, as indicated in Table 7, show that the model performs optimally
when the decoder is solely composed of Transformer blocks. This can be attributed to
the Transformer’s inherent ability to capture long-range dependencies and non-local self-
similarity. The window-based multi-head self-attention mechanism of the Transformer
allows it to relate and weigh features across different positions, which is crucial during
the decoding process to understand and reconstruct complex structures and patterns in
the images.

Table 7. Ablation studies of decoder components.

Decoder DSC IoU AVD BACC

U-Net Decoder [6] 79.74 69.35 19.21 93.85
Transformer 80.20 69.85 18.66 94.20
ConvNeXt 79.78 69.39 19.23 93.91

ConvNeXt + Transformer 79.86 69.46 18.73 93.86
Bold indicates the best.

4.4.3. Self-Adaptive Multi-Scale Feature Fusion Attention (SMFFA)

We conducted an ablation study to compare our proposed SMFFA module with the
conventional skip connections, the results of which are presented in Table 8. Traditional skip
connections, as employed in methods like U-Net, concatenate the features from the encoder
stage directly with the corresponding features from the decoder stage. The findings indicate
that using SMFFA yields better performance than using conventional skip connections,
thereby validating the effectiveness of the SMFFA module. This is attributed to the effective
fusion of multi-scale, multi-stage, and multi-level features by concatenating the multi-scale
features from the current encoder stage with those from adjacent encoder stages. This
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concatenated representation feature then undergoes an attention module to further self-
adaptively augment the fused features. As a result, the enhanced skip connections provide
the model with more effective global features and multi-scale contextual information.

Table 8. Ablation studies of SMFFA module.

Method DSC IoU AVD BACC

w/o SMFFA 79.53 69.25 19.32 93.99
w/ SMFFA 80.20 69.85 18.66 94.20

Bold indicates the best.

5. Conclusions

In this paper, we propose a novel FNeXter network aimed at enhancing the accuracy
of fluid segmentation. Within the FNeXter architecture, we incorporate a feature extraction
module based on a hybrid of ConvNeXt and Transformer, complemented by the RASA
and SMFFA modules. The Transformer is adept at modeling long-range dependencies
and non-local similarities. In contrast, ConvNeXt retains the inductive bias intrinsic to
CNNs and excels in extracting detailed information from localized regions; its large convo-
lutional kernels further aid in capturing broader contextual insights. The RASA module
incorporates prior knowledge about fluid locations, steering the model’s focus towards the
central areas where lesions predominantly occur, thereby enhancing the model’s sensitivity
to lesion-specific spatial features. The SMFFA module improves the model’s ability to
learn global features and multi-scale contextual information by fusing and extracting multi-
level, multi-scale features from adjacent encoder stages. With these integrative designs,
we significantly bolster the accuracy and robustness of fluid segmentation in retinal OCT
images. Our model achieves state-of-the-art segmentation results across three RETOUCH
sub-datasets originating from distinct devices.

Moving forward, we intend to employ self-supervised techniques for pre-training on
OCT images, aiming to bridge the domain gap between the pre-trained model and the
target segmentation task.
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