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Abstract: Long-term, automated fish detection provides invaluable data for deep-sea aquaculture,
which is crucial for safe and efficient seawater aquafarming. In this paper, we used an infrared camera
installed on a deep-sea truss-structure net cage to collect fish images, which were subsequently labeled
to establish a fish dataset. Comparison experiments with our dataset based on Faster R-CNN as the
basic objection detection framework were conducted to explore how different backbone networks
and network improvement modules influenced fish detection performances. Furthermore, we
also experimented with the effects of different learning rates, feature extraction layers, and data
augmentation strategies. Our results showed that Faster R-CNN with the EfficientNetB0 backbone
and FPN module was the most competitive fish detection network for our dataset, since it took a
significantly shorter detection time while maintaining a high AP50 value of 0.85, compared to the
best AP50 value of 0.86 being achieved by the combination of VGG16 with all improvement modules
plus data augmentation. Overall, this work has verified the effectiveness of deep learning-based
object detection methods and provided insights into subsequent network improvements.

Keywords: fish detection; fish dataset; Faster R-CNN; above-water infrared camera; deep-sea aquaculture

1. Introduction

Seawater aquafarming, characterized by its high quality and large yield, has gradually
increased its share in global fishery production in recent years [1,2]. Deep-sea aquaculture,
which is a concept originating from the Ministry of Agriculture and Rural Affairs of the
People’s Republic of China, refers to seawater aquafarming in marine zones located more
than 10 km from the coast and at depths greater than 20 m. To improve efficiency as well
as reduce the costs and risks associated with deep-sea aquaculture, automated and online
fish detection is one of the key issues that need to be addressed. It not only aids in creating
rational feeding schedules and harvesting cycles but also allows for timely recognition of
abnormal behaviors of fish schools, which helps to identify changes in water quality and
damage in net cage structures [3–5].

Sensors commonly used for fish detection typically include acoustic sensors and visual
sensors. Acoustic sensors offer a wide detection range but are significantly influenced by
environmental noise, and their relatively low resolution makes it difficult to acquire fine-
grained fish features [6]. In comparison, visual sensors can capture high-resolution images,
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which are useful in inferring valuable information, such as size, semantic landmarks, and
behaviors of fish.

Visual sensors can be deployed above water or underwater. In practice, underwater
sensors struggle to capture clear images with a large field of view (Figure 1a) because of
rapid light attenuation underwater and accumulated biofouling in sensors [7,8] (Figure 1b).
On the contrary, cameras deployed above water do not encounter the aforementioned
challenges and thus can offer a broad field of view for long-term, maintenance-free fish
monitoring, which is considerably more suitable for monitoring fish species that prefer
to swim at the water surface. Additionally, the total equipment and maintenance cost,
which is within USD 2000 per year, is small compared to the annual profits of several
hundred thousand dollars generated by a typical deep-sea net cage. Therefore, we adopt
an above-water monitoring strategy using an above-water infrared camera to capture fish
activity information for deep-sea aquaculture.
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After obtaining images through visual sensors, the use of object detection algorithms
enables the automatic detection of individual fish. Object detection is one of the fun-
damental tasks in computer vision. Due to the variations in target appearances, light
conditions, and camera perspectives, robust and accurate object detection remains a chal-
lenging problem. Early object detection algorithms based on handcrafted features (such as
the Viola–Jones detector [9], Histogram of Oriented Gradient (HOG) [10], and Deformable
Part Model (DPM) [11]) have achieved good results on specific datasets but have struggled
to handle more complex scenarios.

Since 2012, thanks to the development of deep convolutional neural networks
(CNNs) [12–14] and the establishment of large image datasets [15–17], deep learning-based
object detection algorithms have begun to dominate this field. These detection algorithms can be
categorized into one-stage detectors (including Yolo [18], SSD [19], RetinaFace [20]) and two-stage
detectors (including Fast R-CNN [21], Faster R-CNN [22], Cascade R-CNN [23]). They both utilize
a CNN for robust and high-level image feature learning and extraction. The difference is that
one-stage detectors directly use the feature vectors obtained by the feature extraction network for
classification and regression, and two-stage detectors first generate a series of region proposals and
then extract features from the proposed regions before performing classification and bounding box
regression. Broadly speaking, one-stage models have better real-time performance and are easier
to deploy on consumer electronics, while two-stage detectors achieve higher accuracy, especially
for dense and small objects.
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To improve the performance of object detection networks, researchers have proposed
a variety of strategies. The Feature Pyramid Network (FPN) [24] is designed to improve
the accuracy of detecting objects of varying sizes by effectively merging features from
different scales, utilizing a top-down framework with lateral connections. By strategically
combining 3 × 3 convolution kernels to simulate a larger kernel, a context module (CM) [25]
has been devised, which achieves a large receptive field while maintaining a relatively small
parameter size. Wang et al. [26] adopt 1D convolution to design a lightweight channel
attention mechanism known as ECA-Net, which improves accuracy with only a slight
increase in model complexity. Focal Loss [27] is introduced to address the negative impact
of foreground–background class imbalance on the one-stage detector, which allows the
accuracy of the one-stage detector to surpass that of the two-stage detector.

At the same time, numerous efforts have been made for the scenario of fish detection.
Rosales et al. [28] and Muksit et al. [29] have respectively verified the effectiveness of Faster
R-CNN and YOLO for fish detection. A two-stream Faster R-CNN architecture [30] by
incorporating RGB and optical flow images as inputs is designed to detect fish, which uses
both appearance and motion information to improve accuracy. Zeng et al. [31] propose
an improved Faster R-CNN by adding an adversarial occlusion network that generates
partially occluded feature maps as adversarial examples after the ROI pooling step, which
helps improve the robustness of underwater fish detection. A novel two-stage method [32]
for fish detection and classification is introduced. In this method, the object detection
task is handled by a YOLO model, while the classification of fish is carried out by a CNN
with squeeze-and-excitation (SE) architecture. Li et al. [33] refine the YOLOv5 model by
integrating a Coordinate Attention (CA) mechanism alongside cross-stage partial networks,
thereby improving the accuracy of fish object detection. Salman et al. [34] adopt background
subtraction and optical flow methods to obtain fish regions as region proposals for R-CNN
to address the issue of fish object detection. The comparison of our work with other fish
detection research is illustrated in Table 1, where ‘AP50′ means the average precision at an
intersection of union (IoU) threshold of 0.5.

Table 1. Comparison with other fish detection research.

Name Method Dataset AP50

Faster R-CNN [28] Faster R-CNN-based underwater, fishpond 0.78
YOLO-Fish [29] YOLO-based underwater, wild environment 0.77

Multi-stream Faster
R-CNN [30] Faster R-CNN-based underwater, wild environment 0.74

CME-YOLOv5 [33] YOLO-based underwater, hydropower
stations, and fish breeding station 0.949

deep
neural network-based

hybrid motion learning [34]
R-CNN-based underwater, wild

environment lack of data

Our work Faster R-CNN-based above-water, deep sea
truss-structure net cage 0.85

In summary, researchers have proposed a large number of methods to solve the
problem of general object detection and fish target detection, and have made great progress.
However, how to select a suitable deep learning model for a new dataset is still unknown
and difficult. The primary challenges lie in the fact that deep learning models operate as
opaque “black boxes” with an extensive array of parameters, making it arduous to ascertain
their performance through theoretical means alone. Furthermore, the model performance
can be significantly influenced by variations in the training protocols, data augmentation
strategies, and parameter initialization methods. Therefore, based on our fish dataset, this
paper selects various deep learning models for comparative experiments.

The contributions of this paper are outlined as follows:

1. Based on the above-water infrared camera, a dataset for deep-sea aquaculture fish
detection was constructed, comprising 400 images and 2830 individual fish.
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2. Using our fish dataset, we compared the performances of Faster R-CNN and YOLOv5 and
explored the influence of five different backbone networks (including VGG16, ResNet34,
ResNet50, MobileNetV2, and EfficientNetB0), as well as different learning rates, feature
extraction layers, and data augmentation strategies, on fish detection precision.

3. Furthermore, we investigated the impact on fish detection performance by integrating
individual modules into Faster R-CNN, including the FPN, CM, ECA-Net, and the
effect of the combined networks.

2. Materials and Methods
2.1. Data Gathering

Above-water infrared cameras have a wide field of view and are robust to changes in
lighting and color, enabling effective fish monitoring even during nighttime or in low-light
conditions. Therefore, our dataset was acquired from an infrared camera mounted on a
truss-structure net cage, as shown in Figure 2. The camera used for data gathering was a
Hikvision DS-2CD6626B-IZHRS produced by Hangzhou Hikvision Digital Technology Co.,
Ltd. in Hangzhou, China, and the captured images had a resolution of 1920 × 1080. In
addition, images were gathered in July 2022 via continuous, around-the-clock recording in
the maritime zone of Kuishan Island, Zhuhai, China. We then sampled nighttime images to
build this dataset.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 14 
 

 

However, how to select a suitable deep learning model for a new dataset is still unknown 
and difficult. The primary challenges lie in the fact that deep learning models operate as 
opaque “black boxes” with an extensive array of parameters, making it arduous to ascer-
tain their performance through theoretical means alone. Furthermore, the model perfor-
mance can be significantly influenced by variations in the training protocols, data aug-
mentation strategies, and parameter initialization methods. Therefore, based on our fish 
dataset, this paper selects various deep learning models for comparative experiments. 

The contributions of this paper are outlined as follows: 
1. Based on the above-water infrared camera, a dataset for deep-sea aquaculture fish 

detection was constructed, comprising 400 images and 2830 individual fish. 
2. Using our fish dataset, we compared the performances of Faster R-CNN and 

YOLOv5 and explored the influence of five different backbone networks (including 
VGG16, ResNet34, ResNet50, MobileNetV2, and EfficientNetB0), as well as different 
learning rates, feature extraction layers, and data augmentation strategies, on fish 
detection precision. 

3. Furthermore, we investigated the impact on fish detection performance by integrat-
ing individual modules into Faster R-CNN, including the FPN, CM, ECA-Net, and 
the effect of the combined networks. 

2. Materials and Methods 
2.1. Data Gathering 

Above-water infrared cameras have a wide field of view and are robust to changes in 
lighting and color, enabling effective fish monitoring even during nighttime or in low-
light conditions. Therefore, our dataset was acquired from an infrared camera mounted 
on a truss-structure net cage, as shown in Figure 2. The camera used for data gathering 
was a Hikvision DS-2CD6626B-IZHRS produced by Hangzhou Hikvision Digital Tech-
nology Co., Ltd. in Hangzhou, China, and the captured images had a resolution of 1920 × 
1080. In addition, images were gathered in July 2022 via continuous, around-the-clock re-
cording in the maritime zone of Kuishan Island, Zhuhai, China. We then sampled 
nighttime images to build this dataset. 

 
Figure 2. Camera mounted on a deep-sea truss-structure net cage. 

A total of 400 images were sampled, and the fish targets within these images were 
annotated using Labelme v5.3.1, resulting in a total of 2830 fish being labeled. Some la-
beled images are displayed in Figure 3. It is important to note that, to detect clear and 
complete fish for subsequent length measurement and trajectory tracking, only fish that 
were visible and close to the water surface were labeled. Individuals with smaller exposed 
parts on the water surface were not annotated. 

Figure 2. Camera mounted on a deep-sea truss-structure net cage.

A total of 400 images were sampled, and the fish targets within these images were
annotated using Labelme v5.3.1, resulting in a total of 2830 fish being labeled. Some labeled
images are displayed in Figure 3. It is important to note that, to detect clear and complete
fish for subsequent length measurement and trajectory tracking, only fish that were visible
and close to the water surface were labeled. Individuals with smaller exposed parts on the
water surface were not annotated.
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2.2. Network Modules for Fish Detection

This article adopted the Faster R-CNN as the base object detection framework and
integrated additional modules such as the FPN, CM, and ECA-Net by leveraging various
backbone networks including VGG16, ResNet34, ResNet50, MobileNetV2, and Efficient-
NetB0 to construct a range of detection networks. The details of each part are introduced
separately below.

Faster R-CNN is a two-stage object detection network that has been applied across
various fields. The processing steps for a given input image are as follows, and the network
architecture is shown in Figure 4. First, the image is passed through a feature extraction
network to obtain feature maps. Afterward, feature maps are processed by the region
proposal network to obtain proposal regions, which include the shape parameters of
candidate bounding boxes and the categories of objects within them. Then, with the region
proposal as input, ROI pooling is applied to the feature maps to extract feature vectors
of a uniform size. Finally, these feature vectors are fed into a fully connected network to
perform classification and bounding box regression.
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Figure 4. Faster R-CNN.

The FPN is used to fuse feature maps of different scales, maintaining both high-level
semantic information and good resolution. The architecture of the FPN is shown in Figure 5.
It is a multi-input, multi-output module. Its inputs come from the outputs of different
layers of the backbone network, and its output consists of feature maps with multi-scale
features aggregated. This module includes a top-down process for feature extraction, which
is generally part of the backbone network, and a bottom-up process for multi-scale feature
aggregation. The aggregation method involves upsampling the low-resolution feature
maps and adding them to the high-resolution feature maps after a convolution operation.
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Figure 5. Feature Pyramid Network (FPN).

The context module is used to aggregate feature maps of different convolution kernel
sizes, thereby increasing the receptive field of individual feature vectors. It is a single-input,
single-output module. It takes feature maps as input and outputs aggregated feature maps,
as shown in Figure 6. The key technique used in this module lies in replacing 5 × 5 or 7 × 7
convolution with a series of 3 × 3 convolution operations to improve the efficiency of
weight usage.
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Figure 6. Context module (CM).

Channel attention is a method that re-weights feature maps with learned weights,
which helps the network focus on more important features. The ECA-Net is a highly
efficient and effective channel attention method that utilizes 1D convolution operations to
compute the weight vector, thereby reducing the number of parameters and lessening the
learning burden. The ECA-Net, displayed in Figure 7, is a single-input and -output module,
which includes three steps. Firstly, global average pooling is applied to each channel of
the input feature maps, transforming the H × W × C feature maps to 1 × 1 × C vectors,
where C represents the number of channels. Subsequently, the adaptive kernel size k of the
one-dimensional convolution is calculated based on the input channel size. Convolution
and activation are then performed using this kernel with a feature vector of 1 × 1 × C,
followed by normalization to obtain the channel weights. The feature maps are re-weighted
using the channel weights and then passed out as the final output.
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Data augmentation is an effective strategy for preventing overfitting in deep learning
models by generating new training samples from existing datasets. We used the Mosaic
technique for data augmentation, which creates new training samples by stitching together
four transformed images. Figure 8 shows the steps of Mosaic. First, a random point is
sampled on a canvas, which divides the canvas into four regions. Next, from the original
dataset, four training images are randomly chosen and subjected to scaling and color space
transformations. Finally, each transformed image is stitched onto a designated quadrant of
the canvas, with any portions of the images that exceed the boundaries of their respective
regions being cropped.

Since the input and output of the FPN, CM, ECA-Net, and RPN Net modules are all
multi-channel feature maps, and since the ROI pooling step of Faster R-CNN is consistent
in processing both single and multiple channels, it is straightforward to form a combined
network by connecting the input and output of these modules. We created the combined
network as illustrated in Figure 9. The notation and combination order for the input and
output feature maps of different modules are detailed in Table 2. More specifically, this
integrated detection network processes the input image with the following steps. An
input image first passes through the backbone and FPN for multi-scale feature extraction,
yielding feature maps at different scales. Subsequently, each feature map undergoes
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further refinement and restructuring through a context module and an attention module to
produce the final feature maps. The subsequent processing steps are consistent with those
of Faster R-CNN, including proposal generation, ROI pooling, classification, and bounding
box regression.
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Table 2. Notation and combination order for the input and output feature maps of different modules.

FPN CM ECA-Net

Input Output Input Output Input Output

F_00 F_10 F_10 F_20 F_20 F_30
F_01 F_11 F_11 F_21 F_21 F_31
F_02 F_12 F_12 F_22 F_22 F_32

3. Experimental Setup and Results

In our experimental setup, we divide the dataset mentioned in Section 2.1 that com-
prises 400 images into a training set consisting of 225 images, a validation set of 75 images,
and a testing set of 100 images. We use AP50 (average precision at IoU = 0.5), AP75 (average
precision at IoU = 0.75), and AP (average precision at IoU = 0.50, 0.75, 0.95) to evaluate the
precision of models, DT (detection time per image) to evaluate the efficiency of models,
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and PS (parameter size) to evaluate the size of models. The anchor box sizes of 32, 64, 128,
256, and 512 and aspect ratios of 0.5, 1.0, and 2.0 are selected as the anchor parameters
for all Faster R-CNN-based networks. For YOLOv5, anchor parameters are obtained by
its built-in clustering algorithm. The training and testing of all deep learning models are
conducted on the same computer using the same software libraries.

3.1. Comparison Experiments between Faster RCNN and YOLOv5

This experiment compares the performance of the popular one-stage detection network
YOLOv5 and the two-stage detection network Faster RCNN on our fish dataset. The
backbone networks of YOLOV5 and Faster RCNN are CSPDarknet and VGG16, respectively.
As shown in Table 3, the AP metric of Faster R-CNN is significantly higher than that of
YOLOv5. However, YOLOv5 surpasses Faster R-CNN in terms of AR, and its average
detection time per image (AT/s) is notably faster than Faster R-CNN.

Table 3. Results of comparison experiments between Faster R-CNN and YOLOv5.

Model AP AP50 AT(s)

YOLOv5 0.33 0.68 0.014
Faster RCNN 0.48 0.85 0.069

3.2. Comparison Experiments under Different Learning Rates

In this experiment, we adopt Faster R-CNN with VGG16 as the backbone network for
fish detection. We compare its performance under different learning rates and adaptive
learning rates. Table 4 shows that the three constant learning rates and the adaptive learning
rate have a minor impact on accuracy. Optimal results are achieved with a learning rate of
0.025. Higher learning rates can potentially lead to exploding gradients and NaN errors,
which are not shown in this table.

Table 4. Results of comparison experiments with different learning rates.

Learning Rate AP AP50 AP75

LR-0.005 0.48 0.85 0.48
LR-0.01 0.49 0.85 0.52
LR-0.025 0.50 0.86 0.52

LR-adaptive 0.48 0.85 0.49

3.3. Comparison Experiments under Different Backbone Networks

This study examines the influence of various backbone networks, feature maps derived
from different layers of the same backbone network, and data augmentation techniques
on the performance of Faster R-CNN. The backbone networks evaluated include VGG16,
ResNet34, ResNet50, MobileNetv2, and EfficientNetB0. The results are presented in Table 5
and Figure 10, where “Lx” indicates the use of feature maps from the x-th layer as input
for subsequent steps, “DR” refers to the accumulated downsampling rate, and “DA”
implies the adoption of the Mosaic data augmentation method. Note that a layer with a
downsampling rate of 2 produces output feature maps whose length and width are half
of the input dimensions, and the accumulated downsampling rate of a specific layer is
calculated by multiplying the downsampling rates of all previous layers. As a result, the
output feature maps extracted from layers with the accumulated downsampling rates of 16
and 32 are different for different backbone networks, as shown in Table 5. Instead of “Lx”,
we represent different layers using accumulated downsampling rates in the bar chart for
simplicity, where the shallower layers have an accumulated downsampling rate of 16, and
the deeper layers have an accumulated downsampling rate of 32.
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Table 5. Results of the comparison experiments with varying backbone networks, feature layers, and
data augmentation strategy.

Backbone DR AP AP50 AP75 AT(s) PS(M)

VGG16+L10 16 0.49 0.85 0.50 0.066 36.78
VGG16+L13 32 0.48 0.85 0.48 0.069 43.86

VGG16+L13+DA 32 0.49 0.84 0.54 0.068 43.86
ResNet34+L27 16 0.46 0.83 0.48 0.034 22.68
ResNet34+L33 32 0.36 0.74 0.28 0.043 50.43

ResNet34+L33+DA 32 0.44 0.79 0.42 0.044 50.43
ResNet50+L40 16 0.46 0.83 0.48 0.049 70.49
ResNet50+L49 32 0.37 0.76 0.30 0.065 165.23

ResNet50+L49+DA 32 0.43 0.78 0.42 0.065 165.23
MobileNetv2+L14 16 0.44 0.83 0.39 0.024 6.51
MobileNetv2+L19 32 0.27 0.70 0.14 0.043 82.35

MobileNetv2+L19+DA 32 0.45 0.82 0.41 0.044 82.35
EfficientNetB0+L16 16 0.31 0.73 0.19 0.032 13.91
EfficientNetB0+L18 32 0.19 0.54 0.05 0.043 84.14

EfficientNetB0+L18+DA 32 0.38 0.79 0.29 0.043 84.14
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Figure 10. Bar chart for selected results from Table 3. The horizontal axis represents different network
backbones, while the vertical axis represents the corresponding network’s AP metric or AT metric:
(a) Comparison of AP metric. (b) Comparison of AT metric.

The outcomes reveal that the choice of the backbone network and the layer of feature
maps can impact detection accuracy. Notably, VGG16 with the L10 feature map achieves
the best AP value while also maintaining a relatively small model size. Employing deeper
feature maps fails to enhance detection accuracy with our dataset. Instead, it leads to a
significant decline, particularly in ResNet34, ResNet50, MobileNetv2, and EfficientNetB0.
Additionally, aside from VGG16, deeper feature layers show a substantial improvement in
accuracy when data augmentation is applied. The primary reason for this phenomenon is
that deeper neurons have larger receptive fields. However, given that a fish object has a
smaller size, such large receptive fields may capture multiple fish or more of the varied
background, which can lead to overfitting when the data are limited. The use of data
augmentation helps to reduce this effect.

3.4. Comparison Experiments by Integrating Different Modules

This experiment compares the detection accuracy of the Faster R-CNN network when
integrating different modules. That is, within the Faster R-CNN framework shown in
Figure 5, we integrate the FPN, CM, and ECA-Net. Furthermore, we validate the detection
accuracy of the combined network shown in Figure 9. In this experiment, all FPN modules
adopt a three-layer architecture, which means that the inputs consist of feature maps from
three distinct layers of the backbone network. Specifically, for VGG16, the output of layers
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4, 7, and 10 are selected as F_00, F_01, and F_02; for ResNet34, layers 7, 15, and 27 are
selected; for ResNet50, layers 10, 22, and 40 are selected; for MobileNetV2, layers 4, 7, and
14 are incorporated; and for EfficientNetB0, layers 6, 9, and 16 are selected. The number of
output channels for each scale of the FPN is 256, which means that the channel numbers
for F10, F11, and F12 are 256. Similarly, the channel numbers for inputs and outputs of all
CM and ECA-Net modules are 256, making the channel numbers for F20, F21, F22, F30,
F31, and F32 the same. The final results are presented in Table 6 and Figure 11.

Table 6. Results of the comparative experiment by integrating different modules.

Feature Extraction Nodules AP AP50 AP75 AT(s) PS(M)

VGG16 0.49 0.85 0.50 0.066 36.78
VGG16+FPN 0.51 0.85 0.57 0.082 24.13
VGG16+CM 0.50 0.85 0.54 0.066 38.99
VGG16+ECA 0.49 0.86 0.51 0.066 36.78

VGG16+All Module 0.49 0.85 0.52 0.096 25.79
VGG16+All Module+DA 0.52 0.86 0.60 0.63 0.093

ResNet34 0.46 0.83 0.48 0.034 22.68
ResNet34+FPN 0.48 0.85 0.53 0.064 24.55
ResNet34+CM 0.47 0.84 0.48 0.037 23.23
ResNet34+ECA 0.45 0.83 0.44 0.035 22.68

ResNet34+All Module 0.48 0.84 0.55 0.071 26.21
ResNet34+All Module+DA 0.50 0.82 0.57 0.61 0.071

ResNet50 0.46 0.83 0.48 0.049 538
ResNet50+FPN 0.47 0.83 0.48 0.064 193
ResNet50+CM 0.48 0.84 0.49 0.051 605
ResNet50+ECA 0.47 0.84 0.47 0.049 538

ResNet50+All Module 0.50 0.84 0.51 0.071 205
ResNet50+All Module+DA 0.48 0.82 0.55 0.59 0.072

MobileNetv2 0.44 0.83 0.39 0.024 6.51
MobileNetv2+FPN 0.48 0.84 0.50 0.046 16.85
MobileNetv2+CM 0.44 0.83 0.40 0.026 6.58
MobileNetv2+ECA 0.36 0.79 0.27 0.030 6.51

MobileNetv2+All Module 0.46 0.83 0.47 0.051 18.51
MobileNetv2+All Module+DA 0.45 0.85 0.54 0.63 0.051

EfficientNetB0 0.31 0.73 0.19 0.032 13.91
EfficientNetB0+FPN 0.51 0.85 0.57 0.039 19.22
EfficientNetB0+CM 0.48 0.85 0.51 0.035 14.23
EfficientNetB0+ECA 0.33 0.74 0.22 0.033 13.91

EfficientNetB0+All Module 0.37 0.79 0.25 0.046 20.88
EfficientNetB0+All Module+DA 0.49 0.84 0.53 0.63 0.046

As can be seen from Table 4, after integrating the FPN module into different detection
networks, all metrics improve, with a particularly significant increase in AP75. Among
them, EfficientNetB0 achieves comprehensive improvements, with AP increasing from
0.31 to 0.51 and AP75 from 0.19 to 0.57. However, due to the integration of the FPN,
which introduces a substantial number of parameters, there is a noticeable decrease in
detection speed. The parameter size of Faster R-CNN with VGG16 and ResNet50 decreases
after integrating the FPN module. This is because the FPN has 256 output channels. In
contrast, before integrating the FPN, VGG16’s layer 10 and ResNet50’s layer 40 have 512
and 1024 output channels, respectively. Although the integration of the FPN module
inherently increases the number of parameters, the significant reduction in channel count
leads to a substantial decrease in the parameters for subsequent steps in Faster R-CNN,
resulting in an overall reduction in the total parameter size.

After integrating CM, most accuracy metrics experience a slight improvement, with
the accuracy of EfficientNetB0 showing a more noticeable improvement. At the same time,
the weight of each detection network grows, which results in a decrease in the average
detection speed.
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Figure 11. Bar chart for selected results from Table 4. The horizontal axis represents different network
architectures and whether to use the data augmentation strategy, while the vertical axis represents
the corresponding network’s AP metric or AT metric: (a) Comparison of AP metric. (b) Comparison
of AT metric.

After integrating ECA, the parameter sizes remain almost unchanged, with no signifi-
cant impact on detection speed. Meanwhile, the accuracy improvements are limited, and
some networks, including MobileNetv2 and ResNet34, even experience a decline.

The network that combined all modules shows an improvement in all accuracy metrics
compared to the detection network without any integrated modules. However, compared
to the network with only the FPN module, the combined network shows a decline in
certain accuracy metrics, which does not meet the expected performance improvement.
For instance, in the network with EfficientNetB0 and FPN, the AP value increases to 0.85,
whereas after integrating all modules, the AP value only improves to 0.79. The reason is
that combining all modules leads to a larger number of parameters and a deeper structure,
which makes the model more complicated and easier to fit unsuitable features and noise,
especially when the dataset has limited sample numbers. However, by augmenting the
dataset with image transformations and cropping, the number of training samples increases,
which allows the model to learn features that are invariant after such transformations. As
these features exhibit enhanced generalization capabilities, they help improve the model
performance when the model is too complicated for a limited dataset. We also evaluate
the performance of the combined network after data augmentation. The results show an
improvement in accuracy metrics. Notably, the AP75 scores of all combined networks,
except EfficientNetB0, exceed the improvements achieved by integrating any single module.

4. Conclusions

To solve the problem of the long-term online automatic monitoring of fish for deep-sea
aquaculture, we constructed a fish dataset based on an above-water infrared camera. At the
same time, we carried out detailed comparative experiments on fish detection performance
using the Faster R-CNN model and its variants. Our experimental results show that in
our self-built dataset, the one-stage detection network Faster R-CNN outperforms the
two-stage detection network YOLOv5 in terms of accuracy metrics. The features extracted
by different backbone networks and the use of different layers as inputs for ROI pooling
and RPN in Faster R-CNN affect both the accuracy and efficiency metrics. Additionally,
a deeper network is not always superior, and an appropriate depth can achieve higher
accuracy while maintaining a smaller parameter size. In most cases, integrating extra
network modules will enhance the accuracy performance of the original network, with
the FPN making a notable improvement. Moreover, data augmentation is an effective
method to enhance model performance; it improves the detection accuracy of both the
combined and original networks. Comparing all experimental results, Faster R-CNN with
EfficientNetB0 and the FPN achieves excellent results with an AP value of 0.51 and an AP50
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value of 0.85, which are competitive with the VGG16+All Module network trained with
data augmentation. At the same time, it takes a significantly shorter detection time while
maintaining the high AP values, making it a good choice for our application.
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