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Abstract: The identification of maritime targets plays a critical role in ensuring maritime safety
and safeguarding against potential threats. While satellite remote-sensing imagery serves as the
primary data source for monitoring maritime targets, it only provides positional and morphological
characteristics without detailed identity information, presenting limitations as a sole data source. To
address this issue, this paper proposes a method for enhancing maritime target identification and
positioning accuracy through the fusion of Automatic Identification System (AIS) data and satellite
remote-sensing imagery. The AIS utilizes radio communication to acquire multidimensional feature
information describing targets, serving as an auxiliary data source to complement the limitations
of image data and achieve maritime target identification. Additionally, the positional information
provided by the AIS can serve as maritime control points to correct positioning errors and enhance
accuracy. By utilizing data from the Jilin-1 Spectral-01 satellite imagery with a resolution of 5 m and
AIS data, the feasibility of the proposed method is validated through experiments. Following prepro-
cessing, maritime target fusion is achieved using a point-set matching algorithm based on positional
features and a fuzzy comprehensive decision method incorporating attribute features. Subsequently,
the successful fusion of target points is utilized for positioning error correction. Experimental results
demonstrate a significant improvement in maritime target positioning accuracy compared to raw
data, with over a 70% reduction in root mean square error and positioning errors controlled within
4 pixels, providing relatively accurate target positions that essentially meet practical requirements.

Keywords: Automatic Identification System (AIS); optical remote-sensing image; maritime targets;
multi-source data fusion and application

1. Introduction

In the contemporary maritime environment, the complexity of maritime traffic un-
derscores the significance of researching the identification of abnormal ship targets at
sea. Maritime abnormal targets may include unknown targets not broadcasted by satel-
lite positioning systems (e.g., AIS). Identifying maritime targets is of vital importance for
ensuring maritime traffic safety, responding to emergencies, preventing illegal activities,
and achieving effective resource management [1,2]. There are many limitations to using
a single data source in the identification of abnormal ship targets at sea, primarily in the
limited coverage and dimensionality of the target information, which restricts the in-depth
understanding of the target. Satellite remote-sensing imagery, as a commonly used data
source, can provide the location and shape characteristics of the target, but its information
is still limited, and it is difficult to obtain detailed identity information about the target. To
make up for the shortcomings of a single data source, multi-source data fusion has become
an effective solution.

The Automatic Identification System (AIS) is widely deployed on maritime vessels,
achieving extensive coverage in maritime areas. It plays a significant role in maintaining
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maritime safety, as well as in planning and managing maritime traffic, among other sci-
entific research aspects [3–5]. AIS data is a commonly used auxiliary data source when
studying maritime targets. In combination with radar data [6–8], SAR data [9–11], and
optical remote-sensing image data [12,13], fusion has been widely employed and plays
a crucial role in various fields. The AIS transmits the dynamic information of the ship,
including but not limited to the ship name, call sign, speed, heading, destination, and so
on through radio communication. This information serves as a reliable foundation for
identifying abnormal ship targets at sea [14]. The fusion of satellite images and AIS data
can improve the accuracy and comprehensiveness of target identification by considering
static appearance and dynamic behavior.

Moreover, the AIS also uses GPS to obtain the ship position information. Each AIS-
equipped ship is equipped with a GPS receiver to acquire satellite signals and determine
the exact position of the ship [15]. AIS data that can provide accurate geolocation can
also be used as control points in oceanic areas to improve the accuracy of optical satellite
positioning of ship targets under uncontrolled conditions. Obtaining the precise posi-
tion of ship targets has important strategic, security, and economic significance in the
naval and nautical fields. Traditional correction methods for positioning errors in satellite
remote-sensing images usually rely on ground control point data acquired from calibration
fields [16]. However, for maritime areas, it is very difficult to obtain valid ground control
points. There are some correction methods that utilize public geographic information
and do not require ground control points data. By using auxiliary data such as publicly
available digital elevation models, or by using multiple images to match points of the same
name, the position, size, and other information of known target points are obtained, so as to
realize the correction of target positioning errors [17,18]. However, the application of these
uncontrolled methods is somewhat limited due to complex challenges, such as dynamic
changes in the sea surface and uncertainty in the quality of the geographic data. In this
context, multi-source data fusion has likewise become an effective method to improve the
accuracy of target positioning at sea.

In summary, the fusion of AIS data and optical remote-sensing images allows for
complementary advantages between the datasets, thereby enhancing the efficiency and
accuracy of maritime target monitoring. It serves as a reference for research on more
sensors and higher-level data fusion technologies, further advancing maritime situational
awareness. Additionally, the fusion of maritime targets based on the AIS data and optical
remote-sensing images is of significant importance for achieving satellite-based abnormal
target identification and positioning correction. By analyzing the fusion results of the two
datasets, the identity information of targets can be obtained, enabling the identification
of abnormal targets in maritime areas. Moreover, the positional information provided by
the AIS can serve as maritime control points, improving target-positioning accuracy and
reducing reliance on ground-based error correction, facilitating rapid on-orbit applications.
With a development strategy shifting focus from coastal regions to the open ocean, ship-
target identification and positioning technology based on the fusion of the AIS and optical
images will play a crucial role in oceanic observation.

2. Materials and Methods

This paper explores the application of maritime target fusion in the fields of identity
recognition and positioning based on two data sources: the AIS and remote-sensing im-
ages (Changguang Satellite Technology Co., Ltd., Changchun, China). The innovation is
mainly manifested in two aspects. Firstly, the fusion method comprehensively considers
the multidimensional feature information of targets from both datasets, enhancing the
distinguishability between targets, and thereby, resulting in more accurate fusion results.
Secondly, addressing the challenge of geometric correction in remote-sensing images of
the open sea, this paper proposes an innovative approach. By introducing the AIS data
(China Communications and Information Center-myships.com, Beijing, China) as control
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points, it successfully solves the problem of geometric correction in marine surveying
remote-sensing images, thus improving the accuracy of maritime target positioning.

The general implementation process of the proposed method is as follows: Initially,
preprocessing is applied to both datasets to extract multi-dimensional features of ship
targets. The common features shared by both datasets, including position, heading, and size,
are selected as fusion features to align the features and coordinate systems. Subsequently,
using the Coherent Point Drift algorithm, the preliminary association between targets from
the two datasets is achieved based on position features. After introducing attribute features,
target fusion from both datasets is accomplished through fuzzy comprehensive decision-
making to identify the same target from disparate sources, obtaining a comprehensive
description of the target. Finally, using AIS-provided target positions as control points, they
are incorporated into the established positioning error correction model to enhance the
positional accuracy of maritime targets in remote-sensing images, simultaneously obtaining
precise positioning along with ship-identity information.

2.1. Data Preprocessing
2.1.1. Optical Remote-Sensing Image Object Detection Based on RTMDet

The optical remote-sensing images used in this study are sourced from the Jilin-1
satellite, specifically the Jilin-1 Spectral-01 satellite. This satellite was successfully launched
on 21 January 2019, from the Jiuquan Satellite Launch Center. The technical specifications
of the satellite are detailed in Table 1. The Spectral-01 satellite is equipped with various
payloads, including a multispectral imager, short-wave, mid-wave, and long-wave infrared
cameras, along with an onboard intelligent processing system. This configuration allows
the satellite to capture remote-sensing data with a resolution of 5 m and to cover 26 different
spectral bands. The experiment utilized a remote-sensing image of the waters surrounding
Hong Kong, taken by the Jilin-1 satellite on 20 September 2019. The spatiotemporal
information and related auxiliary data associated with this image are illustrated in Figure 1.

Table 1. Payload specifications of Jilin-1 Spectral-01 satellite.

Spectral Type Spatial
Resolution

Orbit
Altitude

Orbit
Inclination

Angle
Revisit Period Swath Width Imaging Mode

Visible Light,
Near Infrared 5 m

528 km 97.54◦
2–3 days (for a

twin
satellite system)

Greater than
110 km

Push-broom,
Night-light,

Space
target imaging

Short-wave Infrared,
Mid-wave Infrared 100 m

Long-wave Infrared 150 m
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Figure 1. Single image from the Jilin-1 satellite and its related information.
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Due to the significant size differences among various types of vessels in the remote-
sensing image, including the possibility of smaller-sized ships, and considering the image
resolution of the used remote-sensing image, this paper chooses to train the network by
autonomously constructing a dataset. Data augmentation is a commonly used technique for
self-building datasets, not only helping alleviate overfitting issues but also enhancing the
network’s robustness to various scenes and transformations [19,20]. By applying diverse
transformations such as rotation, scaling, zooming, gaussian blur, etc., the dataset becomes
more enriched and diversified. To ensure the effectiveness of training, the number of
images in the dataset is expanded to over 2000, and examples of images from the dataset
are shown in Figure 2.
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In maritime scenarios, ships may appear in various postures and rotational angles,
such as navigating, anchoring, or tilting due to wind and waves. Rotation target detection
can more effectively capture crucial information about the orientation of maritime ship
targets, providing a more comprehensive source of information for subsequent target fusion
and result analysis. When addressing the task of rotation target detection, the choice of
algorithm is crucial, and RTMDet stands out among many algorithms with its unique
design and efficient performance [21]. One of its core advantages lies in the clever use of
large-kernel depth convolution. By introducing this design into the backbone and neck,
the model can comprehensively capture the features of rotating targets, improving the
accuracy of detection. The structure of the RTMDet network is illustrated in Figure 3. The
rotating bounding box plays a key role in the research process, as a pre-step to obtain
important feature information such as target size and orientation, which provides an
accurate positioning and identification basis for the whole target detection process. The
RTMDet network will finally output the information content such as the position, type, and
confidence of the target.
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2.1.2. AIS Data Processing

Usually, the AIS includes static information, dynamic information, and voyage in-
formation, such as the ship name, ship type, latitude, longitude, speed, and heading
information, etc., and the specific information covered can be seen in Table 2. Due to
factors such as equipment malfunctions, signal interference, configuration issues, forgery,
or improper operations, received AIS data may present various errors, including data miss-
ing, duplication, and anomalies. To ensure the accuracy and reliability of the AIS data in
practical applications, the preprocessing stage involves filtering out these erroneous values.

Table 2. AIS static, dynamic, and voyage information.

Dynamic Information Static Information Voyage Information

Longitude and latitude IMO number Route planning
UTC MMSI code Port of destination
COG Call sign and ship name Ship draught
SOG The length and width of the ship Type of goods

Sailing condition Antenna position
ROT Ship type

The receiving range of the satellite-based AIS is generally over a thousand kilometers,
far exceeding the coverage of remote-sensing images. This enables the satellite-based
AIS to simultaneously cover large maritime areas, monitor the real-time positions of
numerous vessels, and acquire relevant information. In contrast, remote-sensing images
are constrained by the field of view of the satellite camera and the satellite’s orbit, allowing
them to capture images of only specific regions at a time. To ensure the temporal and
spatial consistency between the AIS data and remote-sensing images, it is necessary to
perform temporal and spatial calibration before the formal fusion [22]. In spatial calibration,
the AIS data needs to be filtered based on the imaging geographic range of the remote-
sensing image. This involves aligning the image coordinates with the coordinates provided
by the AIS for target points and correcting the installation position of the GPS antenna
with the centroid position extracted in the preprocessing stage. For temporal calibration,
the steps include selecting the AIS data within a certain time range before and after the
imaging-center moment. Based on the existing trajectory sequence of ships, the position
and heading values of a vessel at the imaging-center moment are predicted. Temporal and
spatial calibration is a crucial preprocessing step for heterogeneous data, eliminating errors
caused by differences in data sources and characteristics, thereby enhancing the efficiency
of subsequent data fusion and analysis.

2.1.3. Feature Extraction and Alignment

The essence of data fusion is to establish connections between two heterogeneous data
sources at the same moment, same geographical position, and same target. This implies that
after extracting feature information from remote-sensing images, there is a need to align
the common fusion features from both sources, ensuring their consistency in describing
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the features of ship targets. The AIS data contains a diverse set of target information.
In comparison, features extracted from remote-sensing images are relatively limited and
mainly rely on ship size, heading, and geographical position information obtained through
rotating object detection boxes. The ship-target features common to both data are position,
size, and heading. The image data is passed through the target-detection network, and the
schematic of the output rotated bounding box can be seen in Figure 4 below.
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(1) Target heading feature extraction and alignment

The angle of the rotating bounding box provides information about the heading of
the target. By measuring the angle of the rotating bounding box relative to the horizontal
direction, the orientation of the ship relative to the image can be determined. Heading is
one of the important features of a ship target in a remote-sensing image, and it is crucial for
the analysis of the heading and the judgment of its behavior. In Figure 4, the acute angle of
the long side of the rotating bounding box relative to the positive direction of the x-axis is θ.
The formula for the direction θ of the rotating box is as follows:

θ = arctan(
y1 − y4

x1 − x4
) (1)

The angle θ0 represents the angle of the remote-sensing image itself relative to the
true north direction in the WGS84 coordinate system. The final calculation formula for the
heading θ1 is as follows:

θ1 = θ0 + θ (2)

(2) Target size feature extraction and alignment

The width and height of the rotating bounding box provide information about the
dimensions of the target. The coordinates of the four vertices of the rotating bounding box
are (x1, y1), (x2, y2), (x3, y3), and (x4, y4), and the length and width of the rotating box can
be approximately regarded as the length and breadth of the ship target under the image
coordinate system. In order to ensure their consistency with the ship size units provided
in the AIS data, the row spatial resolution and column spatial resolution of the remotely
sensed image need to be considered. P is the spatial resolution of the image, and the actual
length and breadth of the final ship target are calculated by the following formula:

length =
√
(x1 − x4)

2 + (y1 − y4)
2 × P

width =
√
(x2 − x1)

2 + (y2 − y1)
2 × P

(3)

(3) Target position feature extraction and alignment
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The pixel position of the ship-target center point (x0, y0) can be calculated by rotating
the coordinate positions of the four vertices of the bounding box with the following formula:

x0 = x1+x2+x3+x4
4

y0 = y1+y2+y3+y4
4

(4)

2.2. Data Fusion

The process of target association and fusion typically involves considerations of both
spatial position features and attribute features. In cases where spatial relationships play a
significant role in target association, prioritizing the use of position information is advanta-
geous. However, in certain scenarios, relying solely on position information may not be
sufficient to distinguish targets with close proximity but different attributes. Introducing
attribute features can provide richer and more discriminative target information, aiding in
addressing some challenges in target association. Association is a prerequisite for fusion,
and fusion algorithms can be used to analyze and evaluate preliminary association results.

2.2.1. Preliminary Target Association Based on Position Feature

Point-set matching is a method to establish an association or correspondence between
two or more datasets by finding points in them that correspond to each other and is widely
used in the fields of computer vision, various types of image processing, and pattern recog-
nition. In this framework, each ship target is represented in the point set as a unique point
that is at the center moment of image imaging. The key challenge in point-set matching
is determining the correspondence between two point sets. To measure these correspon-
dences, the Coherent Point Drift (CPD) algorithm introduces the concept of probability
values, where higher probability values indicate higher certainty in the correspondence.
The core idea of the CPD algorithm involves introducing a Gaussian Mixture Model (GMM)
as a probability density function to model the probability relationships between point
sets [23–25]. This approach provides flexibility to adapt to the spatial topology of point
sets, enabling the algorithm to handle various complex scenarios, including non-rigid
deformations, target deformations, and noise.

Assuming the target point set is X = {x1, x2, . . ., xN}, and the reference point set is
Y = {y1, y2, . . ., yN}, where xi and yj are the positional coordinates of the corresponding ship
targets in sets X and Y, respectively. Taking the points in the reference set Y as the centroids
of the GMM, the probability density function can be represented by the following formula:

p(x) =
M
∑

m=1
P(m)p(x|m)

p(x|m) = 1
(2πσ2)

D/2 exp− ∥x−ym∥2

2σ2

(5)

where p(x|m) denotes the probability density of the m-th Gaussian component.
The objective function of the CPD algorithm consists of two parts: the squared error

term for point-set alignment and the regularization term. The inclusion of the regularization
term balances the point-set alignment and the model complexity in the optimization process,
which helps to control the complexity of the transformation matrix, making it more general
and preventing overfitting. The objective function can be expressed as follows:

E(R, t) =
1
2∑i,j Pij∥R · xi + t − yj

∥∥2
+

β

2
Tr(RT R) (6)

where β is the regularization parameter, Tr (·) denotes the trace operation of the matrix, R is
the transformation matrix for, t is the translation vector, and P is the probability matrix.



Sensors 2024, 24, 2443 8 of 21

2.2.2. Target Fusion Incorporating Attribute Features

The attribute features of ship targets are generally relatively stable. Combining them
with the existing position features can complement each other, significantly enhancing the
overall effectiveness of the strategy. Adopting this integrated approach aims to achieve the
final fusion of targets from the AIS data and image data through fusion decisions. This
approach indirectly verifies the accuracy of the initial target association results, providing
strong support for a comprehensive understanding of the targets. Among the many fusion
strategies, the fuzzy integrated decision-making method has attracted much attention
for its ability to handle uncertainty and ambiguity. The fuzzy comprehensive decision-
making method, by introducing fuzzy logic thinking, considers the fuzziness of fusion
results, making it advantageous in addressing complex uncertainty issues in practical
applications [26–28]. The specific steps for target fusion based on the AIS data and image
data are as follows:

(1) Build the factor set

In the common feature vector of the AIS and image data, each type of feature represents
an independent factor influencing the fusion algorithm. Therefore, the feature vector
{position, heading, ship width, ship length} forms the factor set. The constructed factor set
A is as follows:

A =
{

aposition, aheading, awidth, aheight

}
(7)

(2) Build the weight set

The weight set is used to represent the relative importance of each factor or attribute
for the final comprehensive decision. The weights determine the contribution of each factor
in the overall assessment, indicating their impact on the overall decision. The specific
weights for each factor can be determined through subjective judgment, expert experience,
and other methods. The constructed weight set W is as follows:

W =
{

wposition, wdirection, wwidth, wheight

}
(8)

(3) Build the evaluation set

The evaluation set is used to assess the degree of target fusion, playing a crucial role
in fuzzy comprehensive decision-making. Considering the characteristics of the data and
the requirements of the results in this paper, the constructed evaluation set B is determined
as follows:

B = {Fusion success, only image data exists, only AIS data exists} (9)

(4) Determine the fuzzy matrix

The fuzzy matrix is a tool in fuzzy mathematics used to represent fuzzy relations. In
fuzzy comprehensive decision-making, the fuzzy matrix is commonly used to indicate the
degree of matching between different factors. In the fuzzy matrix, each element’s value is
not a traditional precise numerical value but a fuzzy numerical value belonging to the [0, 1]
interval. Each row or column in the fuzzy matrix typically represents the fuzzy relationship
between one element and other elements, expressing the fuzzy similarity or membership
degree between things. The fuzzy matrix R composed of the similarity of the i-th target in
the AIS data and the similarity of the characteristic factors of all targets in the image data is
as follows:

R =


rposition(posAIS

i , posimage
1 ) rdirection(θ

AIS
i , θ

image
1 ) rheight(wAIS

i , wimage
1 ) rwidth(hAIS

i , himage
1 )

rposition(posAIS
i , posimage

2 ) rdirection(θ
AIS
i , θ

image
2 ) rheight(wAIS

i , wimage
2 ) rwidth(hAIS

i , himage
2 )

· · · · · · · · · · · ·
rposition(posAIS

i , posimage
j ) rdirection(θ

AIS
i , θ

image
j ) rheight(wAIS

i , wimage
j ) rwidth(hAIS

i , himage
j )


j×4

(10)
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(5) Build the comprehensive evaluation model for integrated judgment

Multiply each feature factor in the rows of the fuzzy matrix R by the corresponding
feature factor weight values in the weight set W, establishing the fuzzy evaluation matrix B
for the i-th target in the AIS data with all targets in the image data:

B = R · W =


b1
b2
· · ·
bj


j×1

(11)

Repeat steps (4) and (5) to establish a fuzzy evaluation matrix for all targets in the AIS
data with all targets in the image data. Take the maximum value in matrix B as the image
data target point successfully fused with the AIS data target point.

2.3. Positioning Error Correction

Section 2.2 successfully establishes the link between the target in the AIS and image
data and fuses the multi-dimensional feature information of the ship targets. Due to
various factors such as sensor attitude errors and atmospheric effects, there are errors
in the positioning of targets on remote-sensing images. This section aims to apply the
fusion results to the field of positioning, reducing such errors and ensuring high-precision
positioning of image data in geographical space.

The positioning error correction model is the core of the overall process, and its main
task is to correct the position of the target in remote sensing by considering multiple sources
of error and adopting the form of a mathematical model. In this process, the position
information provided by AIS serves as the true position of ship targets, correcting the
positioning errors of all targets in the image and updating the coordinates of all targets. The
polynomial model is widely used in the correction of positioning errors in remote-sensing
images. Its core idea is to model the position error in the image through a polynomial
function, whose mathematical expression is [29,30]:

P(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + · · · (12)

where P(x, y) represents the corrected position, x and y are the horizontal and vertical coor-
dinates of the pixels in the image, and ai are the polynomial coefficients obtained through
least squares fitting. This model allows for flexible adjustment of polynomial coefficients.

3. Experimental Results and Analysis
3.1. Data Preprocessing Results

In deep-learning object detection, network outputs typically include crucial informa-
tion such as the target’s position, type, and confidence level. Optical remote-sensing images
were fed into the RTMDet network, which resulted in 647 ship-target detection results, as
shown in Figure 5. This process produced two key output files: one is the picture-detection
result and the other is the rotated-target-bounding-box information result. In the picture-
detection result, the rotated bounding box is utilized to be able to obtain information about
the exact position of the target in the image, the type of target, and the confidence level for
this classification. In the rotated-box-information result, the network generates information
about the specific position of the target in the image and the confidence level that it belongs
to a certain category. The output of the rotated target bounding box was in the form of
(cx, cy, w, h, angle), which consisted of the x-coordinate of the target center point, the
y-coordinate of the target center point, the width of the rotated target bounding box, the
height of the rotated target bounding box, and the angle of rotation.
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Figure 5. Example of rotating target detection results. (a) Image-detection results; (b) rotating-
bounding-box-detection results.

Currently, only a few satellites are equipped with both optical payloads and AIS
devices. Therefore, the AIS data used in this experiment was obtained from Shipxy.com
and covers both dynamic and static information, which is synchronized with the remote-
sensing images in terms of time and geographic location. Filtering the AIS data within the
latitude and longitude range of the four corner points of the remote-sensing image, and
consulting the literature combined with the data in this paper, the center moment chosen as
the reference is 20 September 2019 12:38:43. Subsequently, further filtering was conducted
for the AIS data around the center moment, with a time range of 10 min before and after,
specifically from 20 September 2019 12:28:43 to 20 September 2019 12:48:43 AIS data for
calibration. Using the remote-sensing image as the base map and visualizing the AIS data
as point features, it was observed that the two types of data had achieved a preliminary
correspondence. After preprocessing, spatial calibration, and temporal calibration of the
AIS data, the effect diagrams of its correspondence with the remote-sensing image are
shown in Figure 6 as (a), (b), and (c), respectively, where the red cross dots denote the target
positions provided by the AIS, which will be used as the data source for target fusion with
the remote-sensing image. After the complete processing workflow, a total of 265 AIS data
were retained, at which time each ship target had only one trajectory point at the center
moment of remote-sensing image imaging.
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3.2. Data Fusion Results
3.2.1. Preliminary Association Results Based on Position Feature

Since the number of ship-target position information from the AIS data was less than
that from the image data, the ship-target point set from the AIS data was chosen as the
reference point set when associating targets using the CPD algorithm. This strategy aimed
to let the ship-target point set from the image data with a larger number be the target
point set so that it gradually approached the reference point set to realize the effective
association between the two targets. After the AIS data preprocessing in Section 2.1.2
and the feature alignment work in Section 2.1.3, the position coordinates of the targets in
the two datasets were unified and were in the UTM projected coordinate system, which
facilitated the calculation of the distance between the point pairs.

The scatter distribution of ship targets in the AIS and image data before position
association is shown in Figure 7. Through the scatter distribution plot, it can be observed
that the distribution characteristics of ship targets in the AIS and image data were roughly
similar. The distribution of the ships in the shore area was relatively centralized, and the
distribution of the ships in the area far away from the shore was relatively dispersed. The
plot already shows many points exhibiting overlapping phenomena. To determine whether
these coincident point pairs from the two data sources represent the same ship target and to
validate the effectiveness of associating ship targets based on position features, Section 2.2.1
employed the CPD algorithm to establish associations between the two sets of points.
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Figure 7. Scatter plot of ship targets in the AIS and image data before position correlation.

When associating point sets based on position features, using distance as a threshold
condition was an effective choice. If the distance between pairs of points successfully
matched by the algorithm was less than this threshold, it was retained; otherwise, it was
rejected. Ultimately, the association results obtained using the CPD algorithm amounted
to 156 pairs. This indicates that not all points from the AIS dataset have corresponding
counterparts in the image data, aligning with the actual scenario. The association results
are illustrated in Figure 8, where point pairs with matching numbers indicate that they
represented the same ship target.
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Figure 8. Correlation results obtained using the CPD algorithm.

From observing Figure 8, it can be observed that the successfully matched point pairs
by the CPD algorithm are relatively close in distance. However, upon combining with
actual remote-sensing images, it was discovered that there are cases of incorrect matching
of ship targets. Taking point pair 107 as an example, as shown in Figure 9, it is evident
from Figure 9b that these two target points are far apart in the actual image and cannot
possibly belong to the same ship target. However, the algorithm results still consider them
as successfully matched point pairs. Through the CPD algorithm, each AIS data point
is matched to an image data point with the optimal relative position relationship. This
does not correspond to the actual situation, as some targets only exist in one of the two
types of data and should present a matching failure result. This occurrence suggests that
relying solely on positional features for correlation has certain limitations. It is necessary
to consider more features of the targets to improve matching accuracy and eliminate
incorrectly matched results. At this point, the importance of attribute features becomes
particularly prominent.
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3.2.2. Target Fusion Results Incorporating Attribute Features

Introducing the attribute features of ship targets not only could further validate the
successful target point pairs matched by the CPD algorithm, but also can add multi-
dimensional information to the target points to enhance the differentiation between the
targets, improve the matching accuracy, and ultimately realize the target fusion of the AIS
data and image data. Using the fuzzy comprehensive decision-making, the target fusion
experiment based on the AIS data and image data was successfully implemented, and the
overall flow chart is shown in Figure 10.
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The specific implementation steps of the target fusion experiment based on the AIS
data and image data are as follows:

(1) On the basis of the correlation experiment results based on the ship-target position
characteristics in Section 3.2.1, the preliminary correlation results of the target obtained
through the CPD algorithm were input.

(2) Determine the priority and value of each feature in the weight set W. The priority is
set to ensure that the more important features can influence the final fusion result
to a greater extent among the information provided by different data sources. The
weighting values are ordered as wposition > wheading > wwidth = wheight. Position informa-
tion is generally considered the most critical and fundamental feature; hence, it is
assigned the highest weight value. Direction and size are equally important in some
scenarios; heading information is crucial for predicting the target’s motion direction
and determining its intentions, while size information aids in distinguishing between
different types of targets, particularly between large and small targets.
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(3) Although there is a priority among the features, the fusion result must fully consider
the influence of all features. Successfully fused target points should be well-matched
in all aspects, rather than being considered a successful fusion result solely because of
high similarity in a few features, leading to the maximum value in matrix B. Therefore,
before calculating the fusion result value bi, it is necessary to scrutinize the similarity
situation of each feature between the point pairs and filter out the targets that are more
matched in some features but less matched in other features by setting a similarity
threshold. Such filtering not only enhances the credibility of fusion results but also
aids in identifying more precise reasons for fusion failure.

The success or failure of fusion directly reflects the consistency between the AIS
data and image data. Ship-target fusion of the two data sources was accomplished by
introducing attribute features, and the final fusion results can be summarized into the
following three cases:

(1) The fusion is successful in finding the same ship target from the AIS data and
the image data. An example is shown in Figure 11, where the red dots represent the
target coordinate points provided by the original AIS, the red crosses represent the target
coordinate points provided by the successfully matched AIS, and the green crosses represent
the target coordinate points on the successfully matched image. This category means that
an effective link between the target in the AIS data and the target in the corresponding
remote-sensing image has been successfully established. Through the AIS data, precise
target positions, MMSI code, and other identity information were successfully obtained,
while image data presented the visual appearance features of the targets, including shape,
size, and other visual information. This not only verifies the effectiveness of the fusion
method but also provides substantial data support for a comprehensive understanding of
the targets. The successful fusion results lay a solid foundation for further analysis and
inference, achieving the identity recognition task for the ship target.
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Figure 11. Fusion Success Example.

(2) Fusion failed, only the AIS data exists. An example is shown in Figure 12, where
the red dots represent the target coordinate points provided by the original AIS and the
red crosses represent the target coordinate points provided by the AIS to be matched. The
accuracy of the algorithm in detecting ship targets in remote-sensing images is constrained
by various factors, including image resolution, background interference, and others. Since
not all ship targets can be detected with 100% accuracy in the image, some targets may
not pass the detection phase to enter subsequent stages of feature extraction and target
association fusion research. If there are a large number of such failures in the fusion
results, it may be necessary to consider adjusting the algorithm parameters or trying to
replace other target detection networks to improve the detection accuracy of ship targets in
remote-sensing images.
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Figure 12. Example of fusion failure with only the AIS data exists.

(3) Fusion failure, only image data exists. An example is shown in Figure 13, where
the green cross represents the target coordinate point on the image to be matched. When
encountering such fusion failures, it is crucial to carefully assess whether the AIS equip-
ment aboard the vessel is experiencing anomalies. If the AIS equipment anomaly is due
to human shutdown or malfunction, it may indicate potential illegal vessel activity or
security risks. In such cases, image data can provide valuable appearance characteristics
and positional information of the abnormal target. Utilizing these known features from
the image data, relevant authorities can track down vessels that have disabled their AIS
equipment and address potential equipment maintenance or communication issues to
ensure compliance with safe navigation protocols. Conversely, if the AIS device anomaly
involves military vessels, it may be related to military tactics, security protocols, or stealth
operations. Understanding the intent behind military vessel activities and recognizing mili-
tary considerations is essential for distinguishing routine operations from potential security
threats. This comprehensive understanding contributes to real-time monitoring, ensuring
the security of surrounding waters, and provides vital intelligence for military operations.
Ultimately, it offers essential data support for strategic decision-making processes.
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Figure 13. Example of fusion failure with only image data exists.

In this study, a similarity threshold r0 is set to 0.6, indicating that the similarity in a
specific feature between two targets must reach 60% or higher to be considered potentially
the same target and proceed to the next fusion step. If the similarity result in any feature falls
below r0, the initial association result is deemed a fusion failure after secondary verification.
The detailed outcomes of the final target fusion results, based on fuzzy comprehensive
decision-making, are outlined in Table 3. Out of 156 initial target associations used as input
data, 142 passed further verification, successfully consolidating the same ship targets from
both data sources. By integrating attribute features, 14 erroneous results were effectively
rectified, including 3 cases of heading mismatch and 11 cases of size mismatch. This
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outcome reaffirms the importance of integrating attribute features into the fusion process.
Through the fuzzy comprehensive decision-making process, the accuracy of the final fusion
results has been significantly enhanced compared to the results presented in Section 3.2.1.
This provides further validation for the necessity of integrating attribute features into the
fusion methodology.

Table 3. Ship-target fusion results based on fuzzy comprehensive decision-making.

Number of AIS Data Number of Image Data Number of Results Evaluation Set Results

142 Fusion success

265 647 123 Fusion failed, only the
AIS data exists

505 Fusion failed, only
image data exists

The optical image-based target detection yielded 647 ship-target data while prepro-
cessing of the AIS data retained 283 ship-target data. The significant difference in the
quantity of the two types of data resulted in many fusion failures solely based on image
data. The main reasons can be summarized as follows: Firstly, the area covered by the
optical image is mainly concentrated along the shore, where many ships moored along the
shore might not have their AIS turned on, thus failing to receive AIS messages from these
vessels. Secondly, during the preprocessing stage of the AIS data, only data within 10 min
before and after the imaging-center moment were selected. Due to the frequency of AIS
message transmission by these ships, they were not included in the time filtering range
and thus were not involved in subsequent processing. Figure 14 shows the fusion results of
ship targets in a certain area. Among the five targets, target No. 4 exists solely based on
image data and, therefore, fusion fails. Targets No. 1, 2, 3, and 5 have successfully fused,
and the various information obtained after fusion can be seen in Table 4.
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Table 4. Cont.

NO MMSI Ship Name Ship Flag Ship Type Length/Width Image

2 229006000 MALIK
ALASHTAR Malta Container ship 366 m/48 m
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4 353111000 MSC
SHANELLE V Panama Container ship 294 m/32 m
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3.3. Positioning Error Correction Results

Among the fused successful point pairs, 50 points evenly distributed throughout the
geographic area were selected to participate in the error correction and accuracy analysis
work of the target. Based on these 50 successfully fused points, 40 control points are selected
to participate in the error correction work, and the remaining 10 are used as checkpoints to
verify the accuracy of the results. The accuracy evaluation was performed by calculating
the mean error in the X and Y directions for the checkpoints on the original and corrected
remote-sensing image. Subsequently, the root mean square error (RMSE) between the
coordinates was calculated to assess the correction accuracy. The formula for calculation is
as follows: 

RMSE_x =

√
∑m

i=1 (xi−Xi)
2

q

RMSE_y =

√
∑m

i=1 (yi−Yi)
2

q

RMSE =

√
∑m

i=1 [(xi−Xi)
2+(yi−Yi)

2]
q

(13)

where q is the number of checkpoints, xi, and yi denote the coordinates of the checkpoints
on the original image, and Xi and Yi denote the coordinates of the checkpoints on the
error-corrected image.

The RMSE after correction using the polynomial model is shown in Table 5. From
the table, it can be observed that the maximum RMSE for the checkpoints is 14.52 m, the
minimum is 1.01 m, and the average is 4.46 m. The resolution of the remote-sensing image
used in this paper is 5 m. Therefore, the root mean square error of the positioning of the
10 checkpoints is within the maximum of 5 pixels, and the average is controlled to be about
1 pixel. The overall root mean square error (RMSE) after error correction is 30.5162 m,
which is a 73.5% improvement compared to the pre-correction RMSE of 115.034 m. The
deviation line chart for the checkpoints in the x and y directions before and after correction
is shown in Figure 15. This visually demonstrates that the deviation of the 10 checkpoints
in the x and y directions has effectively decreased after the position correction.

The comparison of the correspondence effect between the remote-sensing image and
the AIS data before and after the correction of the positioning error is shown in Figure 16,
where the red dots indicate the target positions provided by the AIS, whose positions are
fixed. Through comparison, it can be observed that the ship targets in the image are closer
to their real positions after correction, aligning with the calculated results and expectations
from the checkpoints. This indicates that the approach of using AIS-provided positions as
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control points for correcting positioning errors in ship targets in remote-sensing images is
feasible. In the case of fusion failure where only image data exists, the target can be able to
be successfully targeted through its appearance and precise positioning information.

Table 5. Error values for 10 checkpoints.

No. RMSE_x (m) RMSE_y (m) RMSE (m)

1 −1.69257 −2.96624 3.41517
2 −0.04506 −2.0298 2.0303
3 2.211928 −14.3563 14.52568
4 0.415481 −0.93009 1.018672
5 −0.01672 −1.55454 1.55463
6 −2.22911 −4.54245 5.059919
7 3.399991 −1.17741 3.598087
8 −1.28536 −8.51976 8.616174
9 −0.61811 −2.27077 2.353392
10 −0.56849 −2.34278 2.410767
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4. Conclusions

Addressing the practical demand for optical satellite ship-target monitoring and the
challenge of precise geometric correction of remote-sensing images in remote oceanic areas
where effective control points are difficult to obtain, this paper proposes a method to
improve the accuracy of maritime abnormal target identification and localization based
on the fusion of the AIS and remote-sensing images. To enhance the accuracy of target
fusion, multiple-dimensional feature information of maritime targets is comprehensively
considered. The optimal fusion between targets is achieved successively using the CPD
algorithm and fuzzy comprehensive decision-making method, and the positional errors of
targets are ultimately corrected using a polynomial model. The proposed algorithm exhibits
low complexity and its reliability is demonstrated through experiments. Experimental
results show that, compared to the original data, the positional accuracy of the final image
is improved by over 70%. The positional deviations of 10 checkpoints in the x and y
directions are significantly reduced, and the localization errors are effectively controlled
within 4 pixels. In cases where fusion fails with only image data available, the image data
provides more accurate positional information for such abnormal targets. This method
offers a practical solution for maritime security by effectively enhancing the accuracy of
identification and localization through the comprehensive utilization of multi-dimensional
feature information, thereby providing crucial support for the safe and orderly conduct of
maritime activities. It also shows promising prospects in the field of geometric correction
of remote-sensing images in remote oceans. Moreover, the correlation fusion algorithm
involved in the process can be applied to other types of data, providing a reference for
research on data fusion technologies involving more sensors and higher levels.

Future research will focus on refining and improving the details of the overall process.
Ship trails are important features of moving vessels, containing rich information such
as physical, geometric, and optical characteristics, which provide important clues to the
vessel’s motion state and behavior characteristics. Extracting ship trail information can
not only assist in locating the geographical position of ship targets but also estimate key
motion parameters such as heading and speed, which are of high research and practical
value for achieving multi-faceted and large-scale remote-sensing monitoring of ship targets.
Furthermore, the uniform distribution of control points affects the final accuracy of remote-
sensing images. The complex marine environment, with scattered islands and large isolated
islands, may pose constraints on control-point selection. Exploring the separation of sea
and land and completing target-position correction in different regions is an interesting
direction for further investigation.
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