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Abstract: In the process of the intelligent inspection of belt conveyor systems, due to problems
such as its long duration, the large number of rollers, and the complex working environment, fault
diagnosis by acoustic signals is easily affected by signal coupling interference, which poses a great
challenge to selecting denoising methods of signal preprocessing. This paper proposes a novel
wavelet threshold denoising algorithm by integrating a new biparameter and trisegment threshold
function. Firstly, we elaborate on the mutual influence and optimization process of two adjustment
parameters and three wavelet coefficient processing intervals in the BT-WTD (the biparameter
and trisegment of wavelet threshold denoising, BT-WTD) denoising model. Subsequently, the
advantages of the proposed threshold function are theoretically demonstrated. Finally, the BT-
WTD algorithm is applied to denoise the simulation signals and the vibration and acoustic signals
collected from the belt conveyor experimental platform. The experimental results indicate that
this method’s denoising effectiveness surpasses that of traditional threshold function denoising
algorithms, effectively addressing the denoising preprocessing of idler roller fault signals under
strong noise backgrounds while preserving useful signal features and avoiding signal distortion
problems. This research lays the theoretical foundation for the non-contact intelligent fault diagnosis
of future inspection robots based on acoustic signals.

Keywords: inspection robots; acoustic signal preprocessing; denoising methods; fault diagnosis

1. Introduction

With the rapid development of intelligent coal mining technology, more and more
intelligent equipment is being applied in coal mines. Most coal mines transform towards
the production method of “reducing manpower by digitalization, minimizing human
intervention by automation, and requiring no human presence by intelligence”, leading
to significant improvements in coal mine safety and production [1]. There are six main
systems in coal mines: mining systems, tunneling systems, electromechanical systems,
transportation systems, ventilation systems, and drainage systems. The transportation
system stands out as one of the most critical components. Challenges such as equipment
reliability, costly repairs after failures, and low levels of predictive maintenance during
long-distance transportation in the coal industry have driven the development of intelligent
solutions for conveyor systems. Achieving real-time monitoring and fault diagnosis of
mine belt conveyors has become one of the research focuses [2]. Currently, more and
more inspection robots have been applied to the monitoring operation of belt conveyors,
enabling functionalities such as audio–video capture, infrared temperature measurement,
gas detection, intrusion object identification, wireless communication, data storage and
retrieval, fixed-point monitoring, automatic power monitoring, and autonomous recharg-
ing. For the monitoring of coal mine transportation systems, traditional vibration sensors
have problems such as large number and difficulty in signal transmission. In intelligent
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inspection, using sound and visual sensors to achieve predictive maintenance is one of the
research focuses.

According to a statistical analysis, 79% of downtime is caused by roller failures. Visual
sensors alone cannot effectively identify problems such as roller jamming and abnormal
bearings. Therefore, the diagnosis of roller faults based on acoustic signals is of great
significance [3]. Due to the long working distances, large number of rollers, and complex
underground environments, the collected acoustic signals will be affected by coupling
interference such as that from the components of environmental noise and non-periodic
transient impact caused by abnormal acoustics. Therefore, in the context of the intelligent in-
spection of the operational status of idler rollers, a critical challenge is how to reduce signal
redundancy, enhance the denoising capabilities during data preprocessing, and improve the
diagnostic proficiency of acoustic measurement methods during non-contact inspections.

Recently, numerous scholars have conducted research on denoising algorithms for
both acoustic and vibration signals. Huang et al. [4] introduced the Empirical Mode De-
composition (EMD) algorithm, which adaptively decomposes nonlinear and non-stationary
signals into multiple components. The Empirical Mode Decomposition method is uti-
lized to decompose noisy signals, and relevant components are selected for superim-
posed reconstruction. Zhang et al. [5] solved the problem of severe noise contamination
in non-stationary signals from flood discharge structures. They proposed a denoising
method based on Complete Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) and singular value decomposition (SVD), validating the effectiveness
of noise filtering through practical examples. Zhang et al. [6] combined Empirical Mode
Decomposition with multi-point optimal minimum entropy deconvolution. They recon-
structed gear vibration signals by selecting Intrinsic Mode Function (IMF) components
with larger kurtosis values, achieving signal denoising for gearboxes. Zhang et al. [7]
proposed a novel vibration signal denoising method based on an improved adaptive
noise complementation system, Empirical Mode Decomposition, permutation entropy,
and singular value decomposition. Experimental validation confirmed its effectiveness
for the vibration signals of hydroelectric units. Addressing the weak adaptive capabil-
ity in the denoising process of partial discharge signals from switchgear equipment, Jin
et al. [8] introduced a novel Adaptive Integrated Empirical Mode Decomposition method.
This approach adaptively selects Intrinsic Mode Functions for denoising reconstruction,
providing a new strategy for preprocessing PD signals in switchgear. In response to the
challenge of not being able to choose the most suitable wavelet mother function based on
different tasks when using wavelet transform for denoising, Ngui W.K. et al. [9] proposed
a novel technology to determine the optimal wavelet mother function through quantita-
tive methods. Hua T. et al. [10] presented a denoising method for laser radar echo signals
based on Parameter-Optimized Variational Mode Decomposition (VMD) combined with
Hausdorff Distance (HD) and wavelet transform (WT). The simulation and experimental
results indicated a higher effectiveness and robustness compared to traditional denoising
methods, improving the ranging performance of laser radar in adverse environments. Ali
M.N. et al. [11] investigated the impact of wavelet denoising algorithms on heart acoustic
signals under different wavelet functions and decomposition levels. Through experiments,
they demonstrated that the decomposition level and threshold type are crucial parame-
ters influencing the denoising algorithm. Long J. et al. [12] addressed the limitation of
existing denoising algorithms in simultaneously suppressing various types of noise. They
proposed a novel approach combining variational mode decomposition and wavelet trans-
form, proving through simulation and experiments that this method effectively denoises
while preserving the original signal features. Baldazzi et al. [13] explored a stationary
wavelet transform denoising algorithm for electrocardiographic signals. The experimental
results showed that this method improves the signal-to-noise ratio of electrocardiographic
signals while preserving the original features. Zhang et al. [14] combined adaptive noise
Complete Ensemble Empirical Mode Decomposition with wavelet packet decomposition to
denoise MC spindle vibration signals, effectively eliminating noise. Xie et al. [15] merged



Sensors 2024, 24, 2446 3 of 20

local projection with wavelet packet decomposition. Through multiple iterative denoising
using the local projection method combined with wavelet packet decomposition, they
successfully suppressed medium- to high-intensity noise. He et al. [16] utilized Empir-
ical Mode Decomposition to process effective Intrinsic Mode Function components of
acoustic emission signals generated during welding using wavelet packet decomposition.
This approach effectively reduced the noise in acoustic emission signals. He et al. [17]
proposed a new threshold considering temporal scale correlation, using the propagation
characteristics of wavelet coefficients to determine the threshold. The simulation results
indicated that the proposed method has good denoising effects. Yang et al. [18] presented
a denoising model that combines a dual-parameter threshold quantization function with
wavelet packet algorithms. The experimental validation demonstrated the feasibility and
superiority of this method for denoising pipeline valve leakage signals. Li et al. [19] pro-
posed an adaptive wavelet threshold denoising algorithm based on wavelet transform,
specifically designed for the noise characteristics of low-altitude flying acoustic target
signals. The algorithm achieved multi-scale segmentation through the adaptive adjustment
of the threshold function, significantly improving the signal-to-noise ratio and denoising
effectiveness. Xu et al. [20] proposed a two-level denoising framework with singular value
decomposition and adaptive wavelet denoising to address the problem of weak lidar echo
signals. The joint denoising performance of singular value decomposition and adaptive
wavelet denoising under Gaussian white noise was simulated and analyzed. Tang et al. [21]
addressed the problem of local discharge signals from equipment being susceptible to
contamination by on-site white noise. They proposed a method that combines wavelet
thresholding and total variation denoising using convex optimization theory. Through
experiments, they validated that the proposed algorithm exhibits a superior denoising
performance compared to other denoising models. Jang et al. [22] selected the optimal
wavelet mother function and decomposition levels based on a quantitative analysis. The
feasibility of this denoising method in improving the quality of Doppler electrocardiograms
has been verified through experiments.

Numerous scholars have developed new denoising models that have successfully
implemented signal preprocessing in various fields. But there has been relatively limited
research in the context of acoustic signal denoising for belt conveyor rollers. The most
existing methods have insufficient effects on noise reduction and cannot effectively extract
fault feature information. In order to reduce the impact of a strong noise environment
on the preprocessing of acoustic and vibration signals of belt conveyor rollers during
inspection, and to improve the generalization and noise reduction ability of existing noise
reduction models, two aspects of research are presented in this paper:

(1) The biparameter and trisegment threshold function (BT) is proposed to address the
pseudo-Gibbs problem caused by the mutation of the hard threshold function and soft
threshold function. This function can adapt to signals with different characteristics
through flexible factor adjustments. The feasibility and advantages of this function are
theoretically demonstrated, providing a theoretical foundation for signal denoising in
the intelligent diagnosis process of inspection robots.

(2) To verify the denoising characteristics of the new threshold function, comparative
experiments are carried out using a controlled variable approach. The experiments
maintain a constant threshold, wavelet basis functions, and decomposition levels
while only changing the threshold function. Denoising preprocessing is applied
to two types of artificially noised simulated signals and experimental signals. A
quantitative analysis is performed using three evaluation metrics: the Normalized
Cross-Correlation (NCC), Root Mean Square Error (RMSE), and signal-to-noise ratio
(SNR). The feasibility and advantages of the proposed threshold function are validated
with the experiments.
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2. Theoretical Research on Denoising Model
2.1. The Denoising Model of the BT-WTD Algorithm
2.1.1. Principle of Wavelet Threshold Denoising

The mathematical model of the original one-dimensional signal containing noise can
be represented as

S(ti)
= f(ti)

+ n(ti)
i = 0, 1, 2, . . . , N − 1 (1)

In the formula, f(ti)
is a valid signal; n(ti)

is noise signals.
The core principle of wavelet decomposition is to use the Mallat tower algorithm to

reduce the order of the signal. The wavelet decomposition process requires the selection of
a wavelet basis function to perform multi-scale wavelet decomposition on the signal to be
processed. The decomposition at each scale can be expressed as in Equation (2):

ci =
N

∑
j=1

ci−1hj

bi =
N

∑
j=1

ci−1gj

(2)

In the equation, N is sampling points; i is the number of decomposition layers; j is
scale metric space of filters; hj, gj are low-pass filters and high-pass filters, respectively; ci, bi
are low-frequency wavelet coefficients (the coefficient approximation, CAi), high-frequency
wavelet coefficients (the coefficient detail, CDi) (Figure 1).
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Threshold function denoising is a crucial step in the process of wavelet threshold
denoising. Its principle is to select a certain threshold based on the noise level and signal
characteristics, and perform zeroing or proportional reduction on wavelet coefficients of
different sizes to achieve the purpose of filtering the noise signal. The process of wavelet
reconstruction consists of recombining the wavelet estimated coefficients and approximate
coefficients processed by a threshold function, and the mathematical expression for this
process can be expressed as in Equation (3).

ci−1 =
N

∑
j=1

cihj +
N

∑
j=1

ωigj (3)
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The meaning represented by the parameters in the equation is the same as in Equation (2);
ωi is the wavelet coefficient value before the i-th layer processing.

2.1.2. The Denoising Model of the BT-WTD

In wavelet threshold denoising, the threshold function reflects different processing
methods for wavelet coefficients outside the threshold range. After the wavelet decom-
position of acoustic signals, it is necessary to use the threshold function to process the
approximation coefficients at different decomposition levels to obtain the wavelet estima-
tion coefficients. Therefore, the design of the threshold function is at the core of the wavelet
threshold denoising method.

In the threshold processing of signals, the problem of discontinuous points in the
hard threshold function can cause additional oscillations in the reconstructed signal, and
the smoothness of the processed signal will be greatly reduced compared to the original
signal. When using a soft threshold function for signal processing, this processing method
at |ω| ≥ λ will result in a constant bias between ωλ and λ, subsequently affecting the
accuracy of the reconstructed signal. The comparison of the characteristics of using soft
and hard threshold functions for wavelet denoising is shown in Table 1.

Table 1. Characteristics of soft and hard threshold functions.

Characteristics Hard Threshold Function Soft Threshold Function

RMSE Low High
Smoothness Bad Good
Continuity Good Bad

Generation of additional oscillations Yes No

In order to address the shortcomings of the classical soft threshold and hard threshold
functions, this paper proposes a biparameter and trisegment wavelet denoising threshold
function with characteristics such as continuity, constant deviation, symmetry, and flexi-
bility. The new threshold function with exponential functions and adjustment parameters
divides the processing interval into three segments in the form of two thresholds: propor-
tional reduction interval, transitional reduction interval, and zero setting interval. The
expression for the new threshold function is as follows:

ωλ =


sgn(ω) · (|ω| − λ

1+eα
√

(|ω|−λ)(|ω|−λ0)
) |ω| > λ

sgn(ω) · ( |ω|−λ0
λ−λ0

) · λ

1+eα
√

(|ω|−λ)(|ω|−λ0)
λ0 ≤ |ω| ≤ λ

0 |ω| < λ0

(4)

In the formula, e is the natural constant, λ and λ0 are both thresholds, satisfying
λ0 = βλ. α and β are adjustable parameters, where α ∈ (0,+∞) and β ∈ (0, 1). ω is the
wavelet coefficient obtained through decomposition. The rationale for choosing this range
of values will be provided in Section 2.2.3.

This threshold function achieves the flexible adjustment of the threshold range and
constant bias through two adjustable parameters. When the wavelet decomposition coeffi-
cient is larger than the threshold, it can quickly approximate the curve of the hard threshold
function, reduce the constant bias, and avoid signal distortion (proportional reduction in-
terval). When the wavelet decomposition coefficients are between two thresholds, this can
avoid the occurrence of the pseudo-Gibbs problem (transition reduction interval). When
the wavelet decomposition coefficient is less than the threshold, the wavelet coefficients
are zeroed to preserve more useful signal features. This not only enhances the correlation
between the wavelet coefficients in the soft threshold function but also compensates for
the discontinuity at the threshold point in the hard threshold function. The flowchart of
the BT-WTD algorithm for the acoustic signal denoising method proposed in this paper is
shown in Figure 2.
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2.2. Analysis of BT Threshold Function Characteristics
2.2.1. Continuity

Due to the presence of two thresholds in the proposed threshold function, it is necessary
to prove the continuity of the piecewise function separately for both threshold points.

At the threshold point λ, the following applies:

• When |ω| → λ+ ,

f (λ+) = lim
|ω|→λ+

sgn(ω) · (|ω| − λ

1 + eα
√

(|ω|−λ)(|ω|−λ0)
) = λ − λ

2
=

λ

2
(5)

• When |ω|→ λ− ,

f (λ−) = lim
|ω|→λ−

sgn (ω) · ( |ω| − λ0

λ − λ0
) · λ

1 + eα
√

(|ω|−λ)(|ω|−λ0)
=

λ

2
(6)

Thus, it can be concluded that f (λ+) = f (λ−), so the improved threshold function is
continuous at the threshold point λ.

At the threshold point λ0, the following applies:

• When |ω| → λ0+ ,

(λ0+) = lim
|ω|→λ0+

sgn (ω)(
|ω| − λ0

λ − λ0
)

λ

1 + eα
√

(|ω|−λ)(|ω|−λ0)
= 0 (7)

• When |ω| → λ0− ,
f (λ0−) = 0 (8)

Thus, it can be concluded that f (λ0+) = f (λ0−), so the improved threshold function
is continuous at the threshold point λ0.
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From the above proof process and continuity definition, it can be seen that the im-
proved threshold function is both continuous at two threshold points λ and λ0. Taking
λ = 2, it can be seen from the function graph shown in Figure 3 that the piecewise function
is continuous within its domain.
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2.2.2. Parity

To verify the parity of the piecewise function f (w), it is only necessary to prove the
mathematical equivalence between f (ω) and f (−ω). From the properties of the piecewise
function and the values of its domain, the following can be inferred:

sgn(− ω) · (|ω| − λ

1+eα
√

(|ω|−λ)(|ω|−λ0)
) = −sgn(ω) · (|ω| − λ

1+eα
√

(|ω|−λ)(|ω|−λ0)
) |ω| > λ

sgn (− ω) · ( |ω|−λ0
λ−λ0

) · λ

1+eα
√

(|ω|−λ)(|ω|−λ0)
= −sgn(ω) · ( |ω|−λ0

λ−λ0
) · λ

1+eα
√

(|ω|−λ)(|ω|−λ0)
λ0 ≤ |ω| ≤ λ

0 = 0 |ω| < λ0

(9)

Therefore, within the corresponding domain range, f (−ω) = − f (ω) holds true. From
Figure 3, it can also be observed that this piecewise function is symmetric at about ω = 0
within its domain and has f (ω) = 0. Thus, it can be concluded that this new threshold
function is an odd function.

2.2.3. Bias

The ultimate goal of wavelet decomposition is to minimize the value of |ωλ − ω|;
when evaluating the denoising performance of the threshold function, it is necessary to
compute the deviation between the improved threshold function and the hard threshold
function outside the threshold range. Due to the fact that both the hard threshold function
and the improved threshold function are odd functions within the domain range, when
calculating the difference between both, only the change in the difference over the range
ω ≥ λ needs to be calculated.

• When ω → +∞ ,

lim
ω→+∞

(|ωλ| − ω) = lim
ω→+∞

(
λ

1 + eα
√

(|ω|−λ)(|ω|−λ0)
) = lim

ω→+∞
(

λ

1 + eαω
) (10)
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From the definition of the exponential function, we know that when α > 0,
lim

ω→+∞
(|ωλ| − ω) = 0; when α = 0, lim

ω→+∞
(|ωλ| − ω) = λ

2 ; when α < 0, lim
ω→+∞

(|ωλ| − ω) = λ.

From Figure 4, the characteristics of the function graphs with different values of parameter
α under the condition of ω → +∞ and β = 0.95 can also be observed. Therefore, in order
to reduce the deviation of the improved threshold function when the wavelet decomposi-
tion coefficients tend to infinity, the range of values for the adjustable parameter α should
be α ∈ (0,+∞), and in verification of the relevant properties of the improved threshold
function, α only considers the case of taking positive numbers.
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2.2.4. Asymptote

From the above proof process, it can be seen that when α ∈ (0,+∞) and |ω| ≥ λ,
we have

lim
ω→∞

ωλ

ω
= lim

ω→∞

ω − λ

1+eα
√

(ω−λ)(ω−λ0)

ω
= lim

ω→∞
(1 − λ

ω(1 + eα
√

(ω−λ)(ω−λ0))
) = 1 (11)

From the above equation, it can be seen that when |ω| ≥ λ, the asymptote of the
improved threshold function is f (ω) = ω, and the slope of the asymptote of the hard
threshold function is consistent with the improved threshold function.

2.2.5. Biparameter Analysis

In the new threshold function, these two adjustable parameters introduced are the
slope adjustment parameter α and the threshold range adjustment parameter β. From
Figure 4, it can be observed that when the threshold range adjustment β is set to 0.95, as
the range of values for α increases from 0 to positive infinity, the asymptote of the new
threshold function approaches y = x, which is the same as the asymptote of the hard
threshold function. This significantly reduces the deviation of wavelet coefficients outside
the threshold range in the wavelet denoising process.

From Figure 5, it can be concluded that when α = 2 is fixed and the threshold range
adjustment parameter β changes from 0 to 1, the zeroing interval of the threshold function
increases from small to large. The new threshold function exhibits varying capabilities
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in handling wavelet coefficients within a given threshold range from strong to weak.
Therefore, by adjusting the range of β, it is possible to flexibly handle noise signals across
various frequency bands. This approach can effectively preserve the useful features of the
original signal during denoising while achieving a significant reduction in noise signal.
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2.3. Denoising Quantitative Evaluation Indicators

The signal-to-noise ratio (SNR), Root Mean Square Error (RMSE), and Normalized
Correlation Coefficient (NCC) are commonly used evaluation indicators to assess the
quality of denoising effects. This paper will quantitatively evaluate the denoising model
BT-WTD through these three indicators.

The mathematical expression for the SNR is given in Equation (12).

SNR = 10lg
∑n

i=1 x(i)2

∑n
i=1 (x(i) − x(i) ′)2 (12)

In the equation, x(i) represents the denoised signal sequence, x(i) ′ represents the
original (without noise) sequence, and n is the length of the signal sequence.

The mathematical expression for the RMSE is given in Equation (13).

RMSE =

√
∑n

i=1 (x(i) − x(i) ′)2

n
(13)

The mathematical expression for the NCC is given in Equation (14).

NCC =
∑n

i=1 As(i)Ad(i)√
∑n

i=1 As2
(i)∑

n
i=1 Ad2

(i)

(14)

In the equation, As refers to the original signal (i.e., the clean signal), and Ad refers to
the signal sequence after denoising.
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3. Simulation Experiment Verification
3.1. Signal Simulation

The vibration and acoustic signals of faulty conveyor belt rollers usually contain
modulated components of stationary signals and periodic impacts. In order to verify the
denoising performance of the BT algorithm on one-dimensional data signals, referring to
the vibration and acoustic signal models of roller bearings, the simulation of stationary
signals is achieved using the characteristics of sine signals. Based on the periodic impact
characteristics generated during local faults in the outer ring of the bearings, the simulation
of fault impact signals was carried out.

3.1.1. Sine Wave Simulation Signal

Sine function:
x1(t) = sin(2π · fn · t) (15)

In the formula, function x1(t) is the expression of the sine signal function, fn is the
frequency of the simulated sine signal, and t is the sampling time. The parameters include
the sampling frequency f s = 5120 Hz, number of samples N = 5120, sine signal frequency
fn = 15 Hz, and sampling time t = 1 s.

3.1.2. Periodic Impact Simulation Signal

In the process of constructing the periodic impact signal, it is assumed that the outer
ring of the bearing is stationary and there is a localized fault, while the inner ring rotates
at a certain speed along with the shaft. The periodic impacts caused by the fault can be
represented as a sine function with amplitude decaying exponentially.

x2(t) = y0e−2π fngtsin(2π fnt
√

1 − g2) (16)

In the formula, y0 is the amplitude displacement, g is the damping coefficient of the
bearing system, and fn is the natural frequency of the bearing system.

Based on the above expression of the impact signal, the amplitude displacement
y0 = 5 m · s−2, the natural frequency of the bearing system fn = 3000 Hz, the damping
coefficient g = 0.04, the sampling frequency f s = 20 kHz, and the number of samples
N = 20, 000 are determined.

3.1.3. Adding Gaussian White Noise to Signal

In the real environment, noise is not only caused by a single source. It is usually a
superposition of vibration or acoustic signals from multiple factors and sources. When
simulating noise addition to simulated signals, Gaussian white noise is commonly used to
approximate this complex and uncertain noise distribution situation. Its expression can be
represented as

xnoise(t) = N
√

Pnoise = N

√
Psignal

10
SNR

10
= N

√√√√∑N
i

xi
2

N

10
SNR

10
(17)

In the formula, N is the length of the original signal, Pnoise and Psignal are the average
power of the Gaussian white noise signal and the original signal, respectively, and the SNR
is the signal-to-noise ratio of the added Gaussian white noise.

In order to fully validate the effectiveness and robustness of the BT-WTD algorithm
denoising model, six different noise signals with signal-to-noise ratios of −15 dB, −10 dB,
−5 dB, 5 dB, 10 dB, and 15 dB will be added to the stationary simulation signal and periodic
impact simulation signal.
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3.2. Selection of Denoising Model Basic Parameters

Selection of threshold: It can be understood from the characteristics of the noise distri-
bution that under the first decomposition scale, the wavelet decomposition coefficients have
the highest noise content, which rapidly decays as the wavelet threshold decomposition
levels increase. Considering the correction of noise variance on the threshold size, the
fixed threshold is adjusted according to the formula as shown in Equation (18). Finally, the
calculation formula for the fixed threshold is shown in Equation (19).

σi =
median(|ωi|)

0.6745
(18)

λ = σi

√
2lg(N) (19)

In the formula, median() is the median function, capable of calculating the median of
the wavelet decomposition coefficients under a given decomposition scale. i represents the
number of levels of the decomposition scale. Since there are more noise signal components
in the first decomposition scale, i = 1 is used.

Selection of wavelet basis functions: The acoustic and vibration signals of faulty
rollers in belt conveyors are both impact signals. When denoising the signals, wavelet
basis functions with shapes closest to the faulty impact signals can best preserve the
useful signal characteristics and improve the signal-to-noise ratio. Therefore, this model
chooses Coif 10 as the wavelet basis function for the denoising preprocessing of acoustic
and vibration signals.

Selection of decomposition level: In the process of performing wavelet threshold
decomposition on the signal, more decomposition levels will make the distinction between
the noise signal and useful features more noticeable, which is more conducive to separating
the two signals. However, more decomposition levels will also result in the greater dis-
tortion of the reconstructed signal after wavelet denoising. Therefore, taking into account
the characteristics of the roller acoustic signal and the sampling frequency, the wavelet
decomposition level is set to five layers.

3.3. Simulation Signal Denoising Verification

After selecting Coif 10 as the wavelet base function and setting the decomposition
level to 5, the performance of the BT-WTD algorithm will be verified. The hard thresholding
function, soft thresholding function, and BT-WTD algorithm will be used to denoise two
types of simulation signals. The quantitative evaluation of the denoising results will be
carried out using three indicators: the waveform similarity, signal-to-noise ratio, and Root
Mean Square Error.

As shown in Figure 6, after denoising the impulse signals with Gaussian white noise
of different signal-to-noise ratios, the denoising method using the BT-WTD algorithm
significantly outperforms the other two methods in terms of the waveform similarity.
The denoising performance for the impulse signals is improved by 308.01% using the
BT-WTD algorithm.

As shown in Figure 7, after denoising the impulse signals with Gaussian white noise
of different signal-to-noise ratios, the BT-WTD algorithm also outperforms the other two
methods in terms of the signal-to-noise ratio. The denoising performance of the impact
signal is maximally improved by 32.36%, while the denoising performance of the stationary
signal is maximally improved by 267.97%.
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(b) stationary signal.

As shown in Figure 8, after denoising the impulse signals with Gaussian white noise
of different signal-to-noise ratios, the Root Mean Square Error of the BT-WTD algorithm is
significantly lower than the other two methods. The maximum optimization of the Root
Mean Square Error for the impact signal is 61.796%. And for the stationary signal, the
maximum optimization is 61.480%.

The experimental results above indicate that using the BT-WTD denoising model
can effectively denoise stationary and impact simulation signals. The performance of the
BT-WTD algorithm is improved significantly compared to the hard threshold functions
and soft threshold functions. As shown in Figure 9, during the denoising process of the
stationary signal, a comparison is made between the signal characteristics before and after
denoising in the environment with Gaussian white noise added at a signal-to-noise ratio of
5 dB. In terms of the time domain, the BT-WTD denoising method can effectively denoise
the simulated signal while ensuring that the signal does not exhibit distortion as much as
possible. In terms of the frequency domain, the frequency domain characteristics of the
signals before and after denoising are analyzed using power spectral density. The energy
level of the signal before denoising is between 1 × 10−2 and 1 × 10−5, while the frequency
energy level after denoising is between 1 × 10−2 and 1 × 10−18. The denoising effect is
particularly noticeable at both low and high frequencies. The denoising algorithm can
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significantly reduce the noise energy of the simulation signal at the overall characteristic
frequency and preserve the energy of the sine signal well at 15 Hz. As shown in Figure 10,
during the denoising process of the impact signal, Gaussian white noise with the same 5 dB
signal-to-noise ratio is added. In terms of the time domain, the BT-WTD denoising model
can effectively preserve the impact characteristics of the signal and reduce non-impact
signal time-domain indicators. In terms of the frequency domain, the energy of the signal
at the natural frequency of 3000 Hz remains unchanged before and after denoising while
the overall frequency energy distribution of the signal changes from [1 × 10−3, 1 × 10−7] to
[1 × 10−3, 1 × 10−8] after denoising, with a significant denoising effect at high frequencies.
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4. Experimental Data Collection and Validation
4.1. Experimental Data Collection

Due to the high-speed, long-term, and high-load working characteristics of the roller,
problems such as coal accumulation, high temperature of bearings, and vibration between
equipment can cause problems such as roller jamming, bearing failure, and support frame
failure, ultimately leading to roller failure. Therefore, this paper completes the collection
of experimental data by simulating the following four working conditions of the roller:
maintain consistency in the model and size of the rollers, and fix them with ropes to
simulate the conditions of a roller jam fault; simulate bearing failure by damaging the inner
race and retainer of the bearing; and simulate the loosening fault condition of the support
frame by loosening the fixing bolts of the roller support frame. And then, we collected
acoustic and vibration signals under normal working conditions and three types of fault
conditions, with a sampling frequency of 12.8 kHz. The parameters of the experimental
platform equipment and the acquisition instrument are shown in Table 2. The layout of
the experimental platform and sensors is shown in Figure 11. The simulated working
conditions to the bearing’s failure and the loosening of the fixing bolts on the support
bracket are shown in Figure 12.
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Table 2. Parameters of each device in the experimental platform.

Equipment Name Equipment Parameters

Three-phase asynchronous motor Model YE2VP132M-4, rated speed 1455 r/min

Grooved buffer roller Inner diameter × outer diameter × roller
length: 45 mm × 133 mm × 380 mm

Signal data acquisition instrument INV3018CT
Accelerometer ICP INV9822

Acoustic pressure sensor ICP INV9206

4.2. Denoising Analysis of Experimental Data

The collected signals are input into the denoising model based on the BT-WTD algo-
rithm. As shown in Figure 13, it can be seen that the denoising model proposed in this
paper has a significant denoising effect on the acoustic signals under four different working
conditions. From the time domain perspective, the time domain indicators in the original
signal are retained, and to some extent, the noise components in the signal are filtered out,
and the overall signal does not have any distortion problems in the reconstructed signal;
from the frequency domain perspective, by comparing the power spectral density maps of
the signal before and after denoising, it can be seen that the energy of the denoised signal
has decreased in the overall frequency range, and the main frequency energy distribution
under various operating conditions has been well preserved. It can be considered that,
after denoising, the proportion of noisy energy in the original acoustic signal of the roller
has been reduced, and the influence of noise interference in the acoustic signal collected
against a strong noise background has been weakened.

To validate the generalization ability of the denoising model, the collected vibration
signals were also pre-processed using the denoising model. As shown in Figure 14, it can
be seen that before and after denoising, the denoising effect of the proposed denoising
model is still significant and able to simultaneously preprocess both acoustic and vibration
signals with strong denoising capabilities. This denoising model has been proven to exhibit
good denoising effects in both the low- and high-frequency bands of the entire signal, while
also reducing the impact of noise energy in the frequency domain of the signal.
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5. Conclusions

In this paper, a denoising model based on the BT-WTD algorithm was built and the
superiority of the threshold function used in the model was theoretically discussed. By
using two adjustment parameters, the interval length of the denoising threshold and the
asymptote slope of the threshold function outside the threshold interval can be flexibly
adjusted. And this method has been proven to improve the generalization ability of the
denoising model. The reliability of the denoising model based on the BT-WTD algorithm
was verified through denoising experiments of simulated signals and roller signals, which
compensated for the shortcomings of the soft threshold functions and hard threshold
functions. This effectively solved the problem of signal distortion after denoising in
the preprocessing process of the acoustic and vibration signals of belt conveyor rollers.
This method has ultimately been proven to retain the original advantages of wavelet
threshold denoising methods and improve the robustness and generalization ability of
denoising models.
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Abbreviations
The following abbreviations are used in this manuscript:

BT the function of biparameter and trisegment
SNR signal-to-noise ratio
MSE Mean Square Error
RMSE Root Mean Square Error
NCC Normalized Correlation Coefficient

References
1. Zhao, J. Research on coal safety production management under the new situation. Petrochem. Technol. 2020, 27, 155–156.
2. Zhang, Y.; Zhang, H.; Zhao, J.; Zhou, Z.; Wang, J. Review of non-destructive testing for remanufacturing of high-end mechanical

equipment. J. Mech. Eng. 2013, 49, 80–90. [CrossRef]
3. Cai, C. Fault analysis of mining machinery belt conveyor. Technol. Innov. Appl. 2012, 27, 102–103.
4. Huang, N.; Shen, Z.; Long, S.; Wu, M.; Shih, H.; Zheng, Q.; Yen, N.; Tung, C.; Liu, H. The empirical mode decomposition and the

Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 1998, 454, 903–995. [CrossRef]
5. Zhang, J.; Hou, G.; Bao, Z.; Zhang, Y.; Ma, Y. A signal denoising method for vibration signals from flood discharge structures

based on CEEMDAN and SVD. J. Vib. Shock 2017, 36, 138–143.
6. Zhang, X.; Zhao, J.; Ni, X.; Sun, F.; Ge, H. Fault diagnosis for gearbox based on EMD-MOMEDA. Int. J. Syst. Assur. Eng. Manag.

2019, 40, 836–847. [CrossRef]
7. Zhang, F.; Guo, J.; Yuan, F.; Shi, Y.; Li, Z. Research on Denoising Method for Hydroelectric Unit Vibration Signal Based on

ICEEMDAN–PE–SVD. Sensors 2023, 23, 6368. [CrossRef] [PubMed]
8. Jin, T.; Li, Q.; Mohamed, M.A. A novel adaptive EEMD method for switchgear partial discharge signal denoising. IEEE Access

2019, 7, 58139–58147. [CrossRef]
9. Ngui, W.K.; Leong, M.S.; Hee, L.M.; Abdelrhman, A.M. Wavelet analysis: Mother wavelet selection methods. Appl. Mech. Mater.

2013, 393, 953–958. [CrossRef]
10. Hua, T.; Dai, K.; Zhang, X.; Yao, Z.; Wang, H.; Xie, K.; Feng, T.; Zhang, H. Optimal VMD-based signal denoising for laser radar

via Hausdorff distance and wavelet transform. IEEE Access 2019, 7, 167997–168010. [CrossRef]
11. Ali, M.N.; El-Dahshan, E.-S.A.; Yahia, A.H. Denoising of heart sound signals using discrete wavelet transform. Circuits Syst.

Signal Process. 2017, 36, 4482–4497. [CrossRef]
12. Long, J.; Wang, X.; Dai, D.; Tian, M.; Zhu, G.; Zhang, J. Denoising of UHF PD signals based on optimized VMD and wavelet

transform. IET Sci. Meas. Technol. 2017, 11, 753–760. [CrossRef]
13. Baldazzi, G.; Sulas, E.; Urru, M.; Tumbarello, R.; Raffo, L.; Pani, D. Wavelet denoising as a post-processing enhancement method

for non-invasive foetal electrocardiography. Comput. Methods Programs Biomed. 2020, 19, 105558. [CrossRef]
14. Zhang, H.; Li, K.; Wang, T. A denoising method for MC spindle vibration signals based on wavelet packet and CEEMDAN. Comb.

Mach. Tool Autom. Process. Technol. 2020, 6, 71–75.
15. Xie, J.; Feng, L.; Gao, J.; Gao, Z.; Gao, X. Chaos denoising method for monitoring sequences of complex electromechanical systems

based on LP and wavelet packets. Vib. Shock 2020, 39, 1–7.
16. He, K.; Xia, Z.; Si, Y.; Lu, Q.; Peng, Y. Noise reduction of welding crack AE signal based on EMD and wavelet packet. Sensors 2020,

20, 761. [CrossRef] [PubMed]
17. He, C.; Xing, J.; Li, J.; Yang, Q.; Wang, R. A new wavelet threshold determination method considering interscale correlation in

signal denoising. Math. Probl. Eng. 2015, 2015, 280251. [CrossRef]
18. Yang, L.; Li, S.; Wang, Z.; Hou, J.; Zhang, X. Research on signal feature extraction of natural gas pipeline ball valve based on the

NWTD-WP Algorithm. Sensors 2023, 23, 4790. [CrossRef] [PubMed]

https://doi.org/10.3901/JME.2013.07.080
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1007/s13198-019-00818-5
https://doi.org/10.3390/s23146368
https://www.ncbi.nlm.nih.gov/pubmed/37514668
https://doi.org/10.1109/ACCESS.2019.2914064
https://doi.org/10.4028/www.scientific.net/AMM.393.953
https://doi.org/10.1109/ACCESS.2019.2949063
https://doi.org/10.1007/s00034-017-0524-7
https://doi.org/10.1049/iet-smt.2016.0510
https://doi.org/10.1016/j.cmpb.2020.105558
https://doi.org/10.3390/s20030761
https://www.ncbi.nlm.nih.gov/pubmed/32019131
https://doi.org/10.1155/2015/280251
https://doi.org/10.3390/s23104790
https://www.ncbi.nlm.nih.gov/pubmed/37430703


Sensors 2024, 24, 2446 20 of 20

19. Li, S.; Zhou, Y.; Zhou, Y. Application of adaptive wavelet threshold denoising algorithm in low altitude flying acoustic target. Vib.
Shock 2017, 36, 153–158.

20. Xu, X.; Luo, M.; Tan, Z.; Pei, R. Echo signal extraction method of laser radar based on improved singular value decomposition
and wavelet threshold denoising. Infrared Phys. Technol. 2018, 92, 327–335. [CrossRef]

21. Tang, J.; Zhou, S.; Pan, C. A denoising algorithm for partial discharge measurement based on the combination of wavelet
threshold and total variation theory. IEEE Trans. Instrum. Meas. 2019, 69, 3428–3441. [CrossRef]

22. Jang, Y.I.; Sim, J.Y.; Yang, J.-R.; Kwon, N.K. The Optimal Selection of Mother Wavelet Function and Decomposition Level for
Denoising of DCG Signal. Sensors 2021, 21, 1581. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.infrared.2018.06.028
https://doi.org/10.1109/TIM.2019.2938905
https://doi.org/10.3390/s21051851
https://www.ncbi.nlm.nih.gov/pubmed/33800862

	Introduction 
	Theoretical Research on Denoising Model 
	The Denoising Model of the BT-WTD Algorithm 
	Principle of Wavelet Threshold Denoising 
	The Denoising Model of the BT-WTD 

	Analysis of BT Threshold Function Characteristics 
	Continuity 
	Parity 
	Bias 
	Asymptote 
	Biparameter Analysis 

	Denoising Quantitative Evaluation Indicators 

	Simulation Experiment Verification 
	Signal Simulation 
	Sine Wave Simulation Signal 
	Periodic Impact Simulation Signal 
	Adding Gaussian White Noise to Signal 

	Selection of Denoising Model Basic Parameters 
	Simulation Signal Denoising Verification 

	Experimental Data Collection and Validation 
	Experimental Data Collection 
	Denoising Analysis of Experimental Data 

	Conclusions 
	References

