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Abstract: Deep learning methodologies employed for biomass prediction often neglect the intricate
relationships between labels and samples, resulting in suboptimal predictive performance. This paper
introduces an advanced supervised contrastive learning technique, termed Improved Supervised Con-
trastive Deep Regression (SCDR), which is adept at effectively capturing the nuanced relationships
between samples and labels in the feature space, thereby mitigating this limitation. Simultane-
ously, we propose the U-like Hierarchical Residual Fusion Network (BioUMixer), a bespoke biomass
prediction network tailored for image data. BioUMixer enhances feature extraction from biomass
image data, facilitating information exchange and fusion while considering both global and local
features within the images. The efficacy of the proposed method is validated on the Pepper_Biomass
dataset, which encompasses over 600 original images paired with corresponding biomass labels.
The results demonstrate a noteworthy enhancement in deep regression tasks, as evidenced by per-
formance metrics on the Pepper_Biomass dataset, including RMSE = 252.18, MAE = 201.98, and
MAPE = 0.107. Additionally, assessment on the publicly accessible GrassClover dataset yields metrics
of RMSE = 47.92, MAE = 31.74, and MAPE = 0.192. This study not only introduces a novel approach
but also provides compelling empirical evidence supporting the digitization and precision improve-
ment of agricultural technology. The research outcomes align closely with the identified problem and
research statement, underscoring the significance of the proposed methodologies in advancing the
field of biomass prediction through state-of-the-art deep learning techniques.

Keywords: deep learning; biomass prediction; deep regression

1. Introduction

In the face of global challenges such as population growth, climate change, and threats
to food security, the adoption of digitalization and precision agriculture has become es-
sential for the current and future development of agriculture. A research report indicates
that relying solely on existing agricultural technologies may be inadequate to meet the
increasing food demands projected for 2050 [1]. Aboveground biomass (AGB), a critical
physiological parameter influencing crop growth and development, serves as a key in-
dicator for assessing crop health and productivity. It plays a crucial role in various field
management practices, including fertilizer application, weed and pest control, and exhibits
a close correlation with crop yield [2–4]. Biomass, encompassing the total organic matter
within a defined area over a specific timeframe, is measured in units of (g/m2), with AGB
specifically referring to the total organic matter of vegetation above the ground surface. In
a broader context, the aboveground components of vegetation, including branches, leaves,
and fruits, are also recognized as constituents of biomass at a given moment. Furthermore,
the aboveground biomass of deceased trees is also factored into biomass assessments [5,6].

Despite its significance, traditional AGB monitoring methods face numerous challenges
and limitations. These conventional approaches often involve destructive operations on crops,
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such as cutting and harvesting in specific areas, to measure fresh or dry weight based on
different varieties [7,8]. However, these methods are time consuming, labor intensive, and
possess limited coverage. They are further constrained by factors such as topography and land
use. Additionally, the sampling process typically covers only a small fraction of experimental
plots, potentially resulting in estimation biases for non-uniform plots.

With the continuous advancement of machine learning and deep learning algorithms,
non-destructive methods are progressively replacing conventional monitoring techniques.
Morais [9] and colleagues conducted a comprehensive examination of 26 literature sources,
focusing on the application of machine learning and remote sensing data in predicting AGB
in grasslands. Their findings revealed limitations in the universality and model validation
of machine learning algorithms. In a different approach, Revenga [10] and Revenga’s team
integrated machine learning techniques with high-resolution LiDAR data, utilizing an ex-
tremely randomized tree regression model for real-time AGB prediction. They achieved a
noteworthy predictive performance with an R2 value of 0.48 at a spatial resolution of 0.35 m2.
Gao [11] and collaborators employed airborne LiDAR and hyperspectral remote sensing data,
extracting crucial features from both data types. Their optimized AGB models, constructed
using random forests and multi-step regression methods, exhibited high accuracy levels for
various tree species. Furthermore, Zhang [12] and Zhang’s team estimated maize biomass un-
der different nitrogen fertilizer levels in Pingshan County, Jilin Province, utilizing low-altitude
unmanned aerial vehicles and hyperspectral images. Employing the XGBoost model, they
achieved high-precision predictions for fresh weight and dry weight AGB, particularly during
the V6 growth stage (R2 = 0.81, RMSE = 0.27 t/ha).

However, the integration of machine learning into AGB prediction methods often
requires manual intervention. The manual extraction and selection of crop phenotypic
or physiological parameters as features from source data introduce subjectivity and in-
consistency, influenced by the operator’s experience. Further feature selection requires
specialized knowledge and subjective judgment, potentially leading to result uncertainties.

Compared to traditional machine learning, deep learning exhibits significant advantages
in biomass prediction [13,14]. Firstly, deep learning constructs end-to-end networks that can
directly learn and forecast AGB from sensor data, eliminating the need for manual feature
extraction. This reduces reliance on domain-specific knowledge, enhancing system intelligence
and real-time capabilities. Schreiber et al. [15] introduced an approach using visible spectrum
images captured by drones, artificial neural networks, and convolutional neural networks for
estimating the AGB of Brazilian wheat. This method bypasses feature extraction by directly
inputting wheat images into the model to obtain predictions. Buxbaum et al. [16] proposed
a deep learning method for directly predicting the biomass of lettuce plants from color and
depth image data, particularly suitable for growth conditions involving self-occlusion or
neighboring plant obstruction. This method demonstrated outstanding performance on a
large-scale test dataset, significantly outperforming previous approaches.

Furthermore, deep learning models possess the capability to automatically learn
complex relationships and patterns within large-scale and diverse datasets, providing
a more robust processing capacity and comprehensive capture of the intricacies of crop
growth. Additionally, they exhibit increased efficiency in handling large datasets, thereby
enhancing prediction accuracy and generalization. For instance, Ma et al. [17] proposed
a straightforward method for estimating the AGB of winter wheat using on-site digital
images and a deep convolutional neural network (DCNN). Despite various influencing fac-
tors, the DCNN demonstrated optimal robustness with a high coefficient of determination
(R2 = 0.808) and low root mean square error (RMSE = 0.8913 kg/plot, NRMSE = 24.95%).
Similarly, Castro et al. [18] introduced and evaluated a method based on deep learning and
RGB images captured by unmanned aerial vehicles (UAVs). They examined two convo-
lutional neural network (CNN) models, namely AlexNet and ResNet18, and compared
them with the previously used VGGNet in grass biomass estimation. The results indicated
that AlexNet and ResNet18 achieved commendable performance, promising enhanced
efficiency in estimating grass biomass.
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1.1. Related Work
1.1.1. Biomass Prediction Based on Images

RGB images are captured by conventional optical digital cameras, which offer the
advantages of high resolution and low cost. UAVs possess advantages such as high spatial
resolution, flexible perspectives, and the ability to access multiple locations in a short
period. Leveraging these characteristics, some researchers have utilized images captured
by UAVs to estimate the AGB [19–23]. This integrated use of digital cameras and UAVs
provides an effective and cost-efficient approach for accurately estimating the AGB. In
addition to directly predicting biomass values, there are studies that use image data to
predict the relative content of a specific plant or crop, such as the percentage occupied,
among other metrics [24–26]. Most of these studies analyze different grass contents in
grasslands, for instance, Skovsen [27] and colleagues utilized convolutional neural networks
to determine the biomass species composition of mixed crops from high-resolution color
images. Data collection was conducted at four experimental sites over three growing
seasons, and the method excelled in predicting the relative biomass content of clover
(R2 = 0.91). Narayanan [28] and Narayanan’s team employed weakly supervised multi-
objective deep learning methods to extract grass phenotypes and biomass percentages from
a small dataset.

In contrast to RGB image information, multispectral and hyperspectral images often carry
richer spectral and band information, albeit at a higher cost and lower cost-effectiveness. Some
researchers have utilized hyperspectral images for biomass prediction. For instance, Li [29]
and colleagues employed a low-altitude UAV to acquire RGB and hyperspectral image data
of potato canopies at two growth stages, estimating AGB and predicting crop yield. They
proposed a Partial Least Squares Regression model based on the entire wavelength spectrum,
demonstrating improved yield prediction accuracy (R2 = 0.81). Liu [30] and team explored
various machine learning methods, including a Support Vector Machine (SVM), Random
Forest (RF), and Gaussian Process Regression (GPR), to extract multiple variables (including
the Canopy Original Spectrum (COS), First Derivative Spectrum (FDS), Vegetation Index (VI),
and Crop Height (CH)) from UAV hyperspectral images for estimating potato AGB. In the
realm of multispectral image information, some scholars have combined machine learning or
deep learning methods to predict crop biomass [31–33].

1.1.2. Contrastive Learning

Contrastive learning, recognized as an effective method for representation learning,
has garnered significant achievements across various domains, drawing widespread atten-
tion. The foundation of contrastive learning was laid by the earliest self-supervised learning
proposed by Becker and Hinton [34], which emphasized maximizing consistency between
similar inputs and underscored the intrinsic relationships among samples. Representative
methods in contrastive learning include SimCLR [35] and MoCo [36], both defining positive
samples as augmented samples from the same input data without the need for labels. By
maximizing the feature similarity of similar samples, these methods achieve clustering of
similar samples in the feature space. Supervised contrastive learning approaches, such as
SupCon [37], define positive samples as those belonging to the same category. This method
trains by emphasizing the similarity among samples of the same category, providing effec-
tive representations for classification tasks. The aforementioned approaches have played
a pivotal role in advancing contrastive learning methodologies and contributing to their
widespread application and recognition.

In the context of deep regression, the application of contrastive learning methods is
referred to as deep regression. Wang et al. [38] introduced a novel approach known as
CRGA, designed for the unsupervised extension of visual estimation in target domains.
CRGA integrates contrastive domain generalization and contrastive self-training adapta-
tion, effectively narrowing the features of similar gaze directions and achieving robust
regression outcomes. Barbano et al. [39] proposed a new contrastive learning regression
loss for accurately predicting brain age through MRI scans. This method exhibits out-
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standing performance in handling diversity in datasets from different sites and scanners,
demonstrating optimal results in the OpenBHB challenge. Zha et al. [40] introduced Rank-
N-Contrast (RNC), a framework for learning continuous representations in regression.
In contrast to traditional deep regression models, RNC emphasizes the ranking of con-
trastive samples in the target space, ensuring that the learned representations align with
the target order. Theoretical and empirical results suggest that RNC not only outperforms
in performance but also demonstrates significantly improved robustness, efficiency, and
generalization capabilities. Keramati et al. [41] presented ConR, a contrastive regularization
method, to address imbalanced regression problems in deep learning. Through contrastive
regularization, ConR simulates the similarity of global and local labels in feature space,
preventing the merging of features from minority-class samples into majority-class samples,
and effectively resolves imbalanced regression issues in deep learning.

1.2. Main Contributions

While there have been considerable advancements in biomass prediction method-
ologies utilizing image data and deep learning techniques, the current body of literature
exhibits a noticeable oversight regarding the intricate relationship between image features
and corresponding labels. Moreover, prevalent methodologies predominantly rely on clas-
sical convolutional neural networks (CNNs) or their refined iterations, often overlooking
a thorough examination of the intricate relationships inherent in deep regression tasks
involving images and labels. Acknowledging these significant gaps, this study conducts a
comprehensive investigation into the nuanced relationships between image features and
labels within the realm of deep regression tasks. To address these identified deficiencies,
we propose an augmented Supervised Contrastive Deep Regression (SCDR) framework
specifically tailored for biomass prediction. Additionally, we introduce a novel biomass
prediction network optimized for image data, termed the U-Like Hierarchical Residual
Fusion Network (BioUMixer).

The essence of biomass prediction via deep learning resides in the intricate endeavor
of accurately projecting continuous labels employing deep learning methodologies. Given
the limited consideration accorded to image and label features in existing biomass predic-
tion frameworks, this paper introduces a paradigm shift towards supervised contrastive
learning within the domain of deep regression, termed SCDR. Inspired by established
methodologies such as InfoNCE [42] and ConR [41], SCDR embodies a comprehensive
approach, both algorithmically and structurally, aligning more closely with the demands
and underlying motivations inherent in deep regression tasks. As a result, SCDR not only
addresses the aforementioned limitations but also significantly enhances the efficacy of
downstream deep regression tasks, including the prediction of Above-Ground Biomass
(AGB). Figure 1 illustrates the Mean Absolute Error (MAE) values of various models on the
Pepper_Biomass dataset under both conventional regression loss and the SCDR method.

Our primary contributions are as follows:

1. This paper produces the Pepper_Biomass dataset, an exhaustive and carefully curated
resource for pepper biomass research. The dataset consists of over 600 raw images,
each carefully labeled with the appropriate biomass tag, attesting to the rigorous
organization process and high-quality standards of the dataset.

2. An enhanced SCDR was introduced for deep regression tasks. This approach was
meticulously tailored to align more closely with the requirements and motivations
inherent in such tasks, ultimately bolstering the performance of downstream deep
regression tasks, notably in biomass prediction.

3. The U-Like Hierarchical Residual Fusion Network (BioUMixer) was introduced as a
dedicated network designed for image data. BioUMixer undertakes feature extraction
on biomass image information, fostering robust information exchange and fusion
across modules. This facilitates the harmonious intertwining of global and local
information features within the images.
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Figure 1. Displays the Mean Absolute Error (MAE) values for various models under two distinct loss
functions. The corresponding letters and models are as follows: R—ResNet50; E—EfficientNetV2;
M—MLP_Mixer; V—ViT; D—DaViT; EV—EfficientViT; S—SwinTransformers; C—ConvNeXtV2; and
B—BioUMixer.

2. Materials and Methods
2.1. SCDR—Supervised Contrastive Learning for Deep Regression

The fundamental innovation of SCDR resides in its unique methodology for comput-
ing contrastive loss, which holds pivotal significance in mitigating the regression challenges
inherent in biomass prediction tasks utilizing deep learning methodologies. This pioneering
framework encompasses two critical components: Firstly, the utilization of advanced tech-
niques such as data augmentation and anchor data selection to generate two augmented
samples for each data point, thereby enriching the training dataset and bolstering model
robustness. Subsequently, SCDR integrates supervised contrastive learning with thrust
weight computation, wherein weight calculation simultaneously considers both sample fea-
tures and label similarities. This integration ensures that samples with analogous biomass
values are strategically positioned closer in the feature space, facilitating precise prediction,
while those with substantial biomass disparities are delineated by greater distances, thereby
augmenting the model’s discriminative capabilities. Notably, in calculating thrust between
negative sample pairs, the framework meticulously accounts for both label values and the
similarity of feature pairs for negative samples, thus mitigating interference from inaccu-
rately labeled pairs and further amplifying the accuracy and comprehensiveness of thrust
calculations. This comprehensive approach, amalgamating both types of information, not
only advances the accuracy of biomass prediction but also furnishes an extensive compre-
hension of the interplay between image features and biomass labels, as exemplified in the
schematic depiction in Figure 2, illustrating thrust computation between sample pairs.
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Figure 2. Schematic diagram of thrust calculation between sample pairs.

2.1.1. Problem Definition

Given a dataset containing N samples, denoted as {(xi, yi)}N
i=0, where xi ∈ Rd is the

input sample data, yi ∈ Rd′ is the value of the label corresponding to the input sample.
d and d′ are the dimensions of the representation space to which the input samples and
their corresponding labels belong. Given a feature encoder ε(·) and a regression prediction
function R(·), these two components form a regression model. The goal is to train the
regression model R(ε(·)) such that the final model output ŷi = R(ε(xi)) minimizes the L1
distance from the true label value yi, given the sample dataset. In this section, xi is the crop
image data, yi is the real AGB value corresponding to xi, and ŷi is the AGB value predicted
by the regression model.

2.1.2. Anchor Data and Pair Selection

For the input data xi, we perform a generalization operation based on the modal type
of the data to produce two generalized samples. For a given dataset {(xi, yi)}N

i=0, the set of
samples after generalization is

{
(x̃j, ỹj)

}2N
j=0. Where x̃2k = t(xk), x̃2k−1 = t′(xk), and t(·)

and t′(·) are independently sampled generalization operations. That is, for each sample xk,
the samples after generalization are x̃2k and x̃2k−1, where k ∈ [0, N]. And for the label of
the corresponding data of the expanded samples, there is ỹ2k = ỹ2k−1 = yk, i.e., the label
value of the expanded data does not change. SCDR plays a synergistic role in the selection
of sample pairs and in changing the distance between sample pairs. For each sample after
augmentation, SCDR first determines whether the samples are paired with each other, and,
if they are paired, whether they are positive sample pairs or negative sample pairs. After
that, in the case of at least one negative pair, the sample is considered anchor data and
SCDR pulls the positive pairs together and rejects the negative pairs relatively.

(1) Pairing Choice

Consider two samples in the augmented sample set, (x̃i, ỹi) and (x̃j, ỹj), which are
passed through the feature encoder ε(·) to produce two feature vectors vi and vj, i.e.,
vi = ε(xi) and vj = ε

(
xj
)
, respectively. After that, the regression function R(·) is used to

obtain the predicted values ŷi and ŷj, respectively. The predicted and actual labeled values
are used to determine whether the examples should be positive sample pairs, negative
sample pairs, or unpaired. SCDR determines the similarity between labeled or predicted
values in the augmented samples by defining a similarity threshold at ω. Given a similarity
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function, Sim(·, ·) ∈ R, two labeled values ỹi and ỹj (or predicted values ŷi and ŷj) are
considered similar if they have Sim

(
ỹi, ỹj

)
≥ ω (or Sim

(
ŷi, ŷj

)
≥ ω). Two samples are

considered positive if they have similar labeled values, and negative if they do not have
similar labeled values but have similar predicted values. Outside of these two cases they are
considered unpaired. The detailed process of pairwise selection for SCDR is shown in Figure 3.
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Figure 3. Pairwise selection process of SCDR. For every augmented sample pair, SCDR initially
evaluates the proximity of their labels; in the event of close proximity, the pair is categorized as a
positive sample pair. Concurrently, the samples are encoded and subjected to a regression function
to derive predicted values. Should the labels of a sample pair not exhibit proximity in distance, yet
their predicted values demonstrate closeness, they are classified as negative sample pairs. Any cases
beyond the aforementioned criteria are not paired.

(2) Selected Anchor Data

For each sample j, (x̃j, ỹj), we denote the set of feature vectors for positive and negative

sample pairs for that example as P+
j =

{
(vp)

}N+
j

p=0 and P−
j =

{
(vq)

}N−
j

q=0, respectively,

where N+
j is the number of positive samples and N−

j is the number of negative samples.

For sample j, sample (x̃j, ỹj) is considered as anchor data if N−
j > 0 is available.

2.1.3. Supervised Contrastive Loss for Deep Regression

For the SCDR method, we introduce the loss function LSCDRj . For sample j, if it is
not selected as anchor data, there is LSCDRj = 0. Otherwise, this loss function draws the
positive sample pairs closer in the feature space, and at the same time draws the negative
sample pairs closer to each other proportionally according to the similarity of their labels
and eigenvalues, as shown in the following formula:

LSCDRj = − log
1

N+
j

∑
vi∈P+

j

exp(vj · vi/τ)

∑vp∈P+
j

exp(vj · vp/τ) + ∑vq∈P−
j
Sj,q exp(vj · vq/τ)

(1)

where τ is the temperature parameter and vj is the feature vector generated by the anchor
data after the feature encoder. Sj,q is the thrust between each negative sample pair, which
is given by

Sj,q = fS
(

ηj, Siml
(
ỹj, ỹq

)
, Sim f

(
vj, vq

))
(2)

In Equation (2), fS (·) is the negative sample pair pushover calculation function, ỹq is
the label value of sample xq, ηj is the weight coefficient, and Siml(·, ·) and Sim f (·, ·) are
the label similarity calculation function and sample feature similarity calculation function,
respectively. Sj,q the computed value of ηj is proportional to and inversely proportional
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to Siml
(
ỹj, ỹq

)
and Sim f

(
vj, vq

)
. We consider both the similarity between labeled values

and the similarity of negative sample pair features when calculating the thrust between
negative sample pairs. Considering both kinds of information simultaneously makes the
thrust calculation more accurate and comprehensive, and also reduces the interference of
wrong labels on the thrust calculation.

In Equation (2), the absence of weight calculation gives rise to notable issues. Firstly,
the model may inadequately address crucial yet infrequently encountered negative samples,
resulting in diminished efficacy in modeling these instances. Secondly, with prevailing
negative samples, undue model concentration may induce overfitting of their relationships,
thereby adversely affecting overall generalization performance.

The incorporation of weight calculation substantially enhances the capacity of SCDR
to accurately evaluate relationships between samples. This augmentation allows for a
more focused consideration of significant negative samples, effectively mitigating concerns
related to overfitting concerning commonly occurring negative samples. Fine-tuning of
weights enables optimization of the model’s learning process across diverse samples,
facilitating more adept adaptation to intricate relationships inherent in real-world scenarios.
Consequently, this augmentation significantly elevates the overall performance of the SCDR
method in the realm of deep regression tasks.

Therefore, incorporating weight calculation into the SCDR method not only rectifies
potential issues arising from the absence of such consideration but also bestows upon the
model a heightened capacity for precise and reliable relationship modeling. This refinement
empowers the model to manifest superior performance, particularly when confronted with
intricate datasets of a complex nature.

The loss function LSCDR is the average of the loss summed over all the generalized
samples, i.e.,

LSCDR =
1

2N

2N

∑
j=0

LSCDRj (3)

Finally, the total loss function for deep regression for supervised comparisons is a
weighted sum of LSCDR and regression losses:

Lsum = αLR + βLSCDR (4)

Through the above SCDR method and loss function, from the view of the sample as
a whole, we make the distance between the model predicted values and labeled values
decrease; at the same time, for the inner sample, through the selection of the positive and
negative sample pairs and the change in their relative distances, we make the samples
themselves and the labeled values in the feature space in accordance with their relative
order, which further increases the prediction accuracy.

2.2. BioUMixer—U-Like Hierarchical Residual Fusion Network

In preceding investigations concerning image-based biomass prediction, the prevalent
utilization of comparatively straightforward models has been observed. These inquiries
frequently employ Convolutional Neural Network (CNN) models initially designed for
classification tasks directly in the context of biomass prediction, lacking a comprehensive
consideration of the distinct attributes characterizing biomass prediction tasks. It is imperative
to underscore that the essence of biomass prediction tasks lies in the precise estimation of
continuous and variable biomass values, as opposed to the mere classification of static images.

The distinctiveness intrinsic to biomass prediction becomes evident in the impera-
tive to quantify the volume of living organisms. This necessitates models endowed with
heightened precision and regression capabilities to apprehend the intricacies of biological
structures and tissue information encapsulated within images. In contrast, traditional
classification tasks are inclined to prioritize the delineation of object categories over spe-
cific quantitative values. Thus, when confronting biomass prediction tasks, models must
cultivate a profound understanding of the spatial distribution, morphological features,
and quantitative relationships governing biological entities within images. A meticulous
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consideration of the idiosyncrasies inherent in biomass prediction tasks is essential to
efficaciously address this challenge.

In the developmental and training phases of models, the imperative arises for the
incorporation of more adaptive and intricate deep learning architectures. This is requisite
to effectively encapsulate biological information within images and to ensure the precise
and continuous estimation of biomass. This specialized deep learning paradigm tailored
for biomass prediction tasks inherently surpasses the efficacy of simplistic classification
models, adeptly catering to the unique prerequisites of precision and granularity entailed
in biomass prediction.

To surmount this challenge, this paper posits the introduction of a novel network chris-
tened BioUMixer, featuring a U-like hierarchical residual fusion structure. This network
seamlessly integrates BioBlock and FeatureBlock for meticulous feature extraction from
biomass image information. Additionally, the incorporation of the SimAM lightweight
attention mechanism expeditiously facilitates attention weight calculations by resolving the
energy function, thereby extracting pivotal information from images without incurring sig-
nificant computational overhead. Lastly, the U-like hierarchical residual structure amplifies
information exchange and fusion among modules, effectuating the symbiotic integration
of global and local information features within images. The comprehensive architectural
schematic of BioUMixer is delineated in Figure 4.
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Deep Feature Extraction Module

(1) FeatureBlock

The FeatureBlock, integrating ConvNeXt and Transformer structures, is employed
to enhance the model’s perceptual range in scenarios characterized by dense vegetation
and complex background images. The introduction of BatchNorm serves to stabilize
the feature distribution, thereby augmenting the model’s robustness. The utilization of
Global Response Normalization (GRN) systematically addresses the challenge of feature
folding, ensuring the comprehensive capture of global information within the images [43].
Concurrently, the integration of DropPath as a regularization technique effectively mitigates
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overfitting, consequently contributing to the enhanced accuracy of biomass prediction. The
architecture of FeatureBlock is illustrated in Figure 5.
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(2) BioBlock

The objective of the BioBlock design is to intricately merge primary and deep features
through residual connections, enabling a highly detailed extraction of image features. The
incorporation of a memory-efficient “sandwich layout” design and a parameter reallocation
strategy not only contributes to an improved model efficiency but also renders it more apt
for the processing of large-scale biomass image data [44]. The introduction of the SimAM
attention mechanism, amalgamating channel, and spatial attention facilitates more precise
3D-weight calculations, allowing for a more accurate capture of features in different regions
of the image [45]. Consequently, this enhancement effectively improves the accuracy of
biomass prediction. Figure 6 presents the schematic representation of BioBlock’s structure,
offering a clear depiction of its intricate information extraction process within the context
of biomass prediction tasks.
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(3) U-Like Hierarchical Residual

Unet-type networks have exhibited substantial advantages in the domain of image seg-
mentation owing to their encoder-decoder architecture and the incorporation of skip connec-
tions [46–50]. The U-like hierarchical residual connections proposed in this paper extend the
Unet network structure and adeptly integrate features of diverse scales through skip connec-
tions. This architectural framework demonstrates exceptional efficacy in biomass prediction
tasks, adeptly harmonizing global and local information within images, thereby underscoring
its significance in extracting nuanced features from biomass images. This design accentuates
the distinctive advantages it holds within the realm of biomass prediction.The overall structure
of the U-Like Hierarchical Residual is illustrated in Figure 7.
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Figure 7. Depicts the U-Like hierarchical residual connections. The structural framework, as depicted
in Figure 4, embodies a U-shaped network configuration.

2.3. Experimental Setup

Baseline models:
In tasks involving the deep learning prediction of biomass, ResNet [51] is a commonly

employed network. As there is limited research specifically dedicated to proposing networks
tailored for biomass prediction tasks, we chose networks that have demonstrated superior per-
formance in visual classification tasks, including ResNet50, ConvNeXtV2 [43], EfficientViT [44],
EfficientNetV2 [52], ViT [53], DaViT [54], SwinTransformer [55], and MLP_Mixer [56].

Evaluation Metrics:
To assess the performance of the proposed methods and models, we utilized three

evaluation metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE). RMSE serves as a standard deviation measure
for predicting errors. The computation involves squaring the prediction errors of each
observed value, calculating the mean, and then taking the square root. It is notable for
being highly influenced by outliers, as the squared errors amplify the impact of outliers.
RMSE is more sensitive to large errors, making it suitable for scenarios where sensitivity to
errors is crucial. The mathematical formula is given by

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

The MAE (Mean Absolute Error) is the average absolute value of prediction errors.
The calculation involves taking the absolute value of the prediction error for each observed
value and computing the mean.

MAE =
1
n

n

∑
i=0

|yi − ŷi| (6)
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The MAPE (Mean Absolute Percentage Error) represents the average absolute error in
percentage form. The calculation involves taking the absolute value of the prediction error
for each observed value and then dividing it by the actual observed value.

MAPE =
1
n

n

∑
i=0

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (7)

Implementation details:
This experiment was conducted on the Ubuntu 20.04.4 LTS 64 operating system

(Canonical Ltd., London, UK), utilizing an Intel® Xeon® Silver 4214 processor with a clock
speed of 2.20 GHz and 32 GB of RAM (Intel, Santa Clara, CA, USA). The graphics processing
unit (GPU) employed was an NVIDIA Tesla T4 with 16 GB of video memory (Nvidia, Santa
Clara, CA, USA). We utilized the Adam optimizer, performed training for 80 epochs, and
implemented cosine annealing to decay the learning rate.

3. Experiments
3.1. Dataset

In September 2023, we conducted the inaugural data collection for pepper biomass in
Shawan City, Xinjiang. Twenty one-meter × three-meter subplots were delineated using
one-meter-high PVC plastic stakes and plastic lines arranged in a serpentine pattern, each
subplot accompanied by a numbered placard. Utilizing drone aerial imagery ensured both
the consistency and comprehensiveness of the gathered data.

In October 2023, data collection for bell pepper biomass was carried out in Yanqi County,
Xinjiang. A total of 80 1-m × 1.5-m subplots, each covering a row of bell pepper plants, were
demarcated using PVC pipes. Employing two sets of parallel measurements and handheld
selfie sticks equipped with smartphones facilitated the acquisition of image data. Trained
harvesters, wearing gloves, harvested the bell peppers, which were then individually labeled
with corresponding numbers, weighed, and recorded. Additionally, during both harvest
sessions, above-ground stems exceeding 30 cm in length were harvested, with the total mass
encompassing both fruit and stem weights. In response to post-captured images, we employed
various image enhancement techniques, encompassing cropping, flipping, adjusting color
contrast, and normalization. This enhancement process bolstered the robustness and diversity
of the dataset. Additionally, images that could not be recognized were systematically excluded.
The chili pepper image data collected in September and October were amalgamated and
collectively referred to as “Pepper_Biomass”. A sample image of the chili pepper data is shown
in Figure 8. Additional details concerning the data collection process are elaborated upon
in Table 1. For a comprehensive overview of the specifications pertaining to the capturing
devices, we direct the reader’s attention to Table 2.
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Table 1. Acquisition details of the Pepper_Biomass dataset.

Timing September 2023 October 2023

Location China, Xinjiang, Shawan City 84◦57′ E, 43◦29′ N China, Xinjiang, Yanqi County 86◦44′ E, 42◦20′ N
Camera equipment DJI drones Smartphone

Chili varieties Line pepper (Capsicum annuum var. longum) Chili pepper (Capsicum annuum)
Delineation of subregions 1–20 21–100

Sub-area area 3 m2 1.5 m2

Acquisition method Hand-picked Hand-picked
timing September 2023 October 2023

Location China, Xinjiang, Shawan City 84◦57′ E, 43◦29′ N China, Xinjiang, Yanqi County 86◦44′ E, 42◦20′ N
Camera equipment DJI drones Smartphone

Delineation of subregions 1–20 21–100
Sub-area area 3 m2 1.5 m2

Acquisition method Hand-picked and sickle harvesting Hand-picked and sickle harvesting

Table 2. Specific parameters of the filming equipment.

Capturing Devices Color Depth Image Size Spatial Resolution

DJI 14-bit 5472 × 3078 pixels 10 cm2

Smart Phone 10-bit 3000 × 3000 pixels 16 cm2

GrassClover is a diverse open dataset compiled from outdoor agricultural environ-
ments, encompassing a variety of images and biomass data. The images feature dense
mixtures of grass and clover communities, characterized by significant occlusion and the
presence of weeds. The dataset’s primary challenge lies in predicting the species composi-
tion within the vegetation images and biomass, crucial for understanding the impact of
local species composition on mixed-crop fertilization and treatments. The dataset was col-
lected using three different acquisition systems, with a ground sampling distance ranging
from 4 to 8 pixels/millimeter. The observed mixed crops exhibit variations in settings (field
vs. plot experiments), seed composition, yield, establishment years, and seasonal timing.
Among the dataset images, 435 are designated for biomass prediction.An example image
from the GrassClover dataset is shown in Figure 9.
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The datasets Pepper_Biomass and GrassClover were partitioned into training and
testing sets. Subsequently, exclusive data augmentation was applied solely to the training
set. Following augmentation, Pepper_Biomass and GrassClover comprised approximately
2000 and 1000 images, respectively.
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3.2. Experimental Results

In this investigation, three regression-oriented loss functions—namely, Focal_L1 [57],
RNC, and ConR—were meticulously chosen for a comparative analysis. The performance
results of nine models, including our novel proposition, BioUMixer, on the Pepper_Biomass
dataset, are comprehensively presented in Table 3. Notably, SCDR emerges as the pre-
eminent loss function, consistently surpassing Focal_L1 and the other two alternatives
in predicting Pepper_Biomass across a majority of the models. This observation implies
that SCDR effectively adjusts sample distances by evaluating label and feature similarities,
thereby mitigating potential biases that may arise with Focal_L1. Specifically, SCDR_Loss
demonstrates a significant average decrease of 4.68% in MAPE across all models when
compared to Focal_L1, indicating a substantial enhancement in overall model performance.

Table 3. The performance of various models and regression losses in predicting pepper biomass on
the dataset is demonstrated.

Metrics RMSE MAE MAPE

Model/Loss Focal_L1 RNC ConR SCDR_Loss Focal_L1 RNC ConR SCDR_Loss Focal_L1 RNC ConR SCDR_Loss

ResNet50 372.15 335.12 326.44 293.08 319.24 279.69 258.84 236.51 0.184 0.147 0.137 0.125
EifficientNetV2 356.35 320.5 295.93 290.03 293.95 256.86 234.39 231.06 0.172 0.131 0.123 0.122

MLP_Mixer 366.15 325.21 315.23 294.29 298.73 272.87 255.71 236.12 0.179 0.146 0.135 0.126
ViT 376.72 366.01 346.78 328.23 313.38 304.38 284.61 266.38 0.182 0.162 0.154 0.14

DaViT 428.23 427.01 429.17 429.21 382.96 385.59 388.17 387.93 0.219 0.198 0.197 0.197
EfficientViT 348.25 314.49 302.31 295.79 297.32 258.69 241.89 241.53 0.158 0.135 0.123 0.128

Swin
Transformers 435.53 435.59 384.51 352.53 388.23 388.08 318.82 295.11 0.203 0.198 0.172 0.15

ConvNeXtV2 433.51 326.06 321.81 301.95 381.8 265.73 260.17 252.16 0.216 0.142 0.138 0.132
BioUMixer 316.03 302.39 286.07 252.18 262.66 250.67 236.34 201.98 0.136 0.127 0.121 0.107

BioUMixer exhibits commendable performance exclusively with the Focal_L1 loss
function, showcasing RMSE, MAE, and MAPE values of 316.03, 262.66, and 0.136, respec-
tively. Its efficacy lies in meticulous feature extraction from images, achieving superior
biomass prediction by seamlessly integrating global and local features through multi-layer
residual structures. Upon incorporating the proposed SCDR method, BioUMixer attains
optimal performance, yielding RMSE, MAE, and MAPE values of 252.18, 201.98, and
0.107, respectively. Remarkably, models relying on pure Transformer structures manifest
mediocre performance in biomass prediction tasks employing image data. This may be
attributed to limitations in capturing local information, susceptibility to overfitting, and
inadequate modeling of translation invariance.

Although CNN-type and hybrid models surpass pure Transformers, they have not
yet attained optimal levels of performance. CNNs excel in capturing image information
but exhibit relative weakness in fusing global and local data, particularly in the context
of biomass prediction tasks. The proposed BioUMixer addresses this by introducing a
U-like hierarchical residual structure, thereby enhancing information exchange and fusion
between modules to facilitate improved convergence of global and local information in
images—attributes particularly advantageous for biomass prediction tasks.

Parallel experiments conducted on the GrassClover dataset, involving nine models
and four loss functions, consistently underscore the effectiveness of the proposed SCDR
method. When coupled with SCDR, BioUMixer achieves peak performance on GrassClover,
exhibiting RMSE, MAE, and MAPE values of 47.92, 31.74, and 0.192, respectively.The
specific results are presented in Table 4.

Figure 10 presents attention visualization images of the top three models ranked by
evaluation metrics on the Pepper_Biomass dataset. The first column displays the original
image data fed into the models, while the subsequent three columns exhibit attention
visualization images generated by the BioUMixer, ResNet50, and EfficientV2 models,
respectively. Attention visualization images utilize a color mapping scheme to denote
the degree of focus exerted by the models. Common color mappings include heatmap
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representations, where warmer colors such as red typically signify areas of high focus,
while cooler colors such as blue or black denote areas of low attention.

Table 4. Showcases the biomass prediction performance of different models on the GrassClover dataset.

Metrics RMSE MAE MAPE

Model/Loss Focal_L1 RNC ConR SCDR_Loss Focal_L1 RNC ConR SCDR_Loss Focal_L1 RNC ConR SCDR_Loss

ResNet50 93.21 78.84 61.73 53.90 65.31 56.21 40.32 36.16 0.468 0.313 0.268 0.236
EifficientNetV2 89.13 77.29 58.63 48.97 66.67 53.49 42.16 37.4 0.422 0.357 0.297 0.275

MLP_Mixer 122.049 115.89 108.78 85.78 69.77 67.84 64.06 53.64 0.417 0.407 0.377 0.343
ViT 133.18 128.64 110.78 105.91 85.39 85.14 76.93 75.46 0.468 0.476 0.44 0.426

DaViT 137.5 136.73 137.65 138.05 90.53 90.82 90.58 90.54 0.501 0.492 0.493 0.487
EfficientViT 97.99 81.35 70.67 59.32 69.14 62.37 46.7 38.6 0.461 0.398 0.301 0.27

Swin
Transformers 146.07 145.94 139.53 137.49 90.53 90.54 91.41 90.58 0.505 0.498 0.507 0.489

ConvNeXtV2 143.09 140.13 137.80 127.5 91.20 90.09 86.15 80.75 0.528 0.525 0.487 0.466
BioUMixer 86.32 71.54 56.97 47.92 61.39 52.98 41.49 31.74 0.381 0.351 0.272 0.192
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Figure 10. Attention and region of interest visualization.

From the visualizations, it is evident that the attention regions of the BioUMixer
model closely align with densely populated regions of pepper fruits and stems in the
original images, particularly noticeable in the second row of images. In the images of the
second row, the lower-right corner corresponds noticeably to bare soil, while the peppers
on the left and top sides form a right angle, aligning closely with the red regions in the
heatmap. Conversely, the bare soil area in the lower right corner is represented by blue in
the heatmap. This observation indicates that the BioUMixer model actively learns regions
highly correlated with pepper biomass during its learning process. In contrast, attention
regions in the heatmap of the other two models exhibit misalignment or excessive focus on
areas unrelated to biomass contribution.

3.3. Ablation Study

(1) Module ablation experiments on BioUMixer

We conducted ablation experiments on key structural designs and modules of Bi-
oUMixer, systematically assessing their impact by replacing or removing them. Subse-
quently, we re-evaluated the model on two datasets under consistent conditions to validate
the significance of our meticulously designed modules. Ablation focused on three criti-
cal aspects: U-Like Hierarchical Residual, Feature_block, and Bio_block. Five scenarios
were tested: (1) only the main module network, excluding U-Like Hierarchical Resid-
ual, Feature_block, and Bio_block; (2) exclusively removing U-Like Hierarchical Residual;
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(3) solely removing Feature_block; (4) solely removing Bio_block; (5) the proposed Bi-
oUMixer model.The specific results are presented in Table 5.

Table 5. Ablation experiments on different modules of BioUMixer.

Settings Case1 Case2 Case3 Case4 Ours

U-Like Hierarchical Residual × × ✓ ✓ ✓

Feature_block × ✓ × ✓ ✓

Bio_block × ✓ ✓ × ✓

Pepper_biomass
RMSE 414.78 316.85 283.23 290.85 252.18
MAE 366.38 260.24 233.76 240.75 201.98

MAPE 0.192 0.136 0.121 0.125 0.107

GrassClover
RMSE 130.78 98.17 71.06 64.99 47.92
MAE 89.66 70.98 42.27 40.11 31.74

MAPE 0.485 0.454 0.247 0.235 0.192
“×” indicates the removal of the module, and “✓” indicates the retention of the module.

The BioUMixer model, as proposed in this study, adeptly integrates the unique charac-
teristics of the three modules. The observed performance enhancement resulting from the
combination of these modules defies a simple additive relationship, affirming the optimal
performance of the model and robustly validating the efficacy of the proposed modules.

(2) Parameter Ablation Experiment

In order to explore the effect of various parameters on the experimental results, we per-
formed parameter ablation experiments on the Pepper_Biomass dataset. The experiments
in Table 6 are the parameter ablation experiments for the coefficients β of the loss function
of LSCDR in the total loss function, fixing α = 1 (both α and β are weighting coefficients
in Equation (4)). From Table 6, it can be seen that the performance of the model is opti-
mized when β = 3. Through comprehensive analysis, it becomes apparent that superior
performance is achieved across all evaluation metrics when the weighting coefficient of
SCDR_Loss surpasses that of the Focal_L1 regression loss. However, it is imperative to
highlight that the weighting coefficient of SCDR_Loss is not boundless. Upon exceeding a
threshold of three, a discernible decreasing trend in evaluation metrics is observed as the
coefficient increases. This phenomenon can be attributed to the overarching imbalance in
overall loss when the weighting coefficient of SCDR_Loss significantly surpasses that of
the regression loss. Despite SCDR_Loss effectively incorporating the spatial relative order
between positive and negative sample pairs and considering label distances in biomass pre-
diction, substantial discrepancies in weighting coefficients may incline the model towards
emphasizing the contrast between positive and negative sample pairs during training. This
propensity has the potential to undermine the model’s proficiency in accurately predicting
biomass based solely on image data.

Table 6. β Parametric ablation experiments.

β RMSE MAE MAPE

0.1 288.86 238.02 0.122
0.5 295.93 244.72 0.128
1 304.51 251.63 0.131
2 292.58 241.02 0.127
3 252.18 201.98 0.107
4 268.51 214.83 0.114
5 265.14 215.54 0.112
6 271.04 227.42 0.123

In Table 7, τ is the temperature coefficients in Equation (1). When τ = 0.2 the model
is trained by SCDR and the best results are achieved on the biomass prediction task. In
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the realm of contrastive learning, the temperature hyperparameter assumes a pivotal role
in governing the relative comparison between positive and negative samples. Lower
temperatures bias the model towards prioritizing sample pairs characterized by heightened
contrast, while higher temperatures foster a balance in importance between positive and
negative samples, thereby facilitating a more comprehensive learning process. Within this
framework, the temperature parameter serves as a modulating agent, finely tuning the
sensitivity to contrast. In our investigation, we discerned that setting the temperature
parameter τ to 0.2 yields optimal performance for the model. This observation suggests
that, under this temperature setting, the model demonstrates an enhanced capacity to
discern subtle disparities between positive and negative sample pairs, leading to a more
proficient extraction of features and subsequent biomass prediction. Specifically, the lower
temperature parameter (τ = 0.2) heightens the model’s sensitivity to sample pairs with
pronounced contrast, thereby bolstering the precision and stability of biomass prediction.
Furthermore, we noted a marginal decrease followed by a subsequent uptick in model
performance within the temperature range of 0.3 to 1. This phenomenon may be ascribed
to the inherent instability of the regression contrast system engendered by fluctuating
temperature changes within this range. Conversely, as the temperature surpasses one,
model performance experiences a downturn. This decline could be attributed to the
heightened temperatures inducing an excessive balance in contrast, rendering it arduous
for the model to discern nuanced disparities between positive and negative sample pairs,
thereby compromising the accuracy of biomass prediction. It warrants emphasis that
temperatures that are either excessively low or high prove unsuitable for biomass prediction
tasks, thus underscoring the criticality of selecting the optimal temperature parameter.

Table 7. τ Parametric ablation experiments.

τ RMSE MAE MAPE

0.1 301.85 254.71 0.132
0.2 252.18 201.98 0.107
0.3 277.68 226.02 0.12
0.5 267.04 220.58 0.117
1 260.19 214.95 0.112
2 278.53 232.29 0.123
5 280.86 226.73 0.121

Figure 11 shows the effect and influence of the SCDR samples on the η parameter in
the thrust calculation and the model are optimized when η = 0.01. When the value of η
falls below 0.01, the model may disregard certain significant yet infrequently encountered
negative samples, leading to a diminished capacity to model these instances effectively.
Consequently, the model might fail to comprehensively capture specific patterns or re-
lationships embedded within the dataset, thus adversely affecting its predictive efficacy.
Moreover, excessively small values of η may prompt the model to excessively rely on a
limited subset of samples, resulting in an incomplete comprehension of the overall data
distribution and consequently hampering the model’s ability to generalize.

Conversely, as η surpasses the threshold of 0.01, the model may exhibit an undue
emphasis on commonly occurring negative samples, potentially culminating in overfitting
to their respective relationships. This phenomenon could manifest as a diminished perfor-
mance when the model encounters unseen data, as it overly concentrates on assimilating
information from familiar instances while neglecting relationships among other data points
within the dataset. Furthermore, when η exceeds an optimal range, the model may dispro-
portionately rely on a subset of data, thereby disregarding the broader characteristics of the
dataset’s distribution and consequently compromising its generalization capabilities.
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Hence, both suboptimal values of η, below or above 0.01, can be attributed to the
model’s inability to effectively balance the emphasis placed on crucial samples and to
mitigate overfitting. Consequently, when selecting values for η, it is imperative to carefully
consider achieving a balance in the model’s attention across diverse samples and preventing
overfitting to known data instances. Such meticulous consideration enhances the model’s
capacity to generalize and augments its predictive performance.

4. Discussion

The experimental findings of this study demonstrate a significant improvement in
predicting biomass from images when compared to traditional regression methods such
as SCDR and the BioUMixer network. Furthermore, the appropriate selection of hyperpa-
rameters positively influences the outcomes of deep regression. In contrast to analogous
regression methods like ConR [41] and RNC [40], SCDR incorporates the similarity between
image features into the calculation of pairwise affinities. This integration allows SCDR
to concurrently consider both types of information, resulting in more accurate and com-
prehensive affinity calculations and reducing interference from erroneous label pairs. The
experimental results underscore the superiority of SCDR over ConR and RNC methods.

In similar endeavors targeting biomass prediction tasks, both of Albert’s studies
have focused on forecasting the Above-Ground Biomass of pasture grass. Leveraging the
Irish dry herbage mass dataset (the dataset is not publicly available), Albert embarked
on two distinct initiatives. In the initial endeavor, Albert [58] adopted ResNet50 as the
foundational neural network, merely modifying the ultimate output prediction head to
forecast the herbage biomass. This approach yielded a peak performance with az HRMSE
(RMSE in this paper) of 92.69. Subsequently, in the subsequent project, Albert [59] proposed
a semi-supervised learning methodology in conjunction with high-resolution enhance-
ment of drone imagery to estimate biomass, culminating in an improved HRMSE of 85.7.
Comparative analysis of these two endeavors underscores the fundamental contributions
of the present study. The proposed SCDR methodology addresses, at its core, the issue
of relative sequence disparities between images and labels in regression tasks, offering a
holistic resolution. Furthermore, the introduced BioUMixer, in contrast to conventional
networks like ResNet, demonstrates superior feature extraction capabilities, rendering it
better suited for biomass prediction tasks.
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Nevertheless, this study does present certain limitations. For instance, the BioUMixer
network exhibits a slightly complex structure and imposes a considerable computational
burden. While SCDR accounts for image feature similarity, it also introduces additional
computational overhead. The applicability of SCDR to non-image data remains uncertain
and warrants further investigation. Potential solutions to address these limitations may
involve the adoption of lightweight network architectures and the optimization of affinity
and similarity calculation methods within SCDR to alleviate computational burdens.

In the future, we intend to explore enhancements to SCDR for non-image modalities, such
as point cloud data, and strive to refine it into a modality-agnostic deep regression method.

5. Conclusions

This study is dedicated to the task of predicting aboveground crop biomass through im-
age data. To address this challenge, we introduce the SCDR for the first time. This learning
paradigm incorporates supervised contrastive learning into deep regression problems, inno-
vatively considering labels and sample features when calculating sample pair forces. This
innovation leads to a more ordered arrangement of sample labels in downstream regres-
sion tasks. Furthermore, we introduce the U-Like Hierarchical Residual Fusion Network
(BioUMixer), a network designed for feature extraction from biomass image data, enhanc-
ing information exchange and fusion while comprehensively considering both global and
local information features in images. Finally, we create a novel biomass prediction dataset
named “Pepper_Biomass” and validate the effectiveness of our proposed methods and
models on this dataset and the publicly available GrassClover dataset. Evaluation results on
the Pepper_Biomass dataset yield RMSE = 252.18, MAE = 201.98, and MAPE = 0.107, while
on the GrassClover dataset, the results are RMSE = 47.92, MAE = 31.74, and MAPE = 0.192.
Future research directions will include considering different modal data generated from
various sensors to enhance the accuracy of biomass prediction. Additionally, we plan to
explore joint predictions of biomass by combining multimodal data.
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