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Abstract: The maturity of fruits and vegetables such as tomatoes significantly impacts indicators
of their quality, such as taste, nutritional value, and shelf life, making maturity determination vital
in agricultural production and the food processing industry. Tomatoes mature from the inside out,
leading to an uneven ripening process inside and outside, and these situations make it very chal-
lenging to judge their maturity with the help of a single modality. In this paper, we propose a deep
learning-assisted multimodal data fusion technique combining color imaging, spectroscopy, and
haptic sensing for the maturity assessment of tomatoes. The method uses feature fusion to integrate
feature information from images, near-infrared spectra, and haptic modalities into a unified feature set
and then classifies the maturity of tomatoes through deep learning. Each modality independently ex-
tracts features, capturing the tomatoes’ exterior color from color images, internal and surface spectral
features linked to chemical compositions in the visible and near-infrared spectra (350 nm to 1100 nm),
and physical firmness using haptic sensing. By combining preprocessed and extracted features from
multiple modalities, data fusion creates a comprehensive representation of information from all three
modalities using an eigenvector in an eigenspace suitable for tomato maturity assessment. Then, a
fully connected neural network is constructed to process these fused data. This neural network model
achieves 99.4% accuracy in tomato maturity classification, surpassing single-modal methods (color
imaging: 94.2%; spectroscopy: 87.8%; haptics: 87.2%). For internal and external maturity unevenness,
the classification accuracy reaches 94.4%, demonstrating effective results. A comparative analysis
of performance between multimodal fusion and single-modal methods validates the stability and
applicability of the multimodal fusion technique. These findings demonstrate the key benefits of
multimodal fusion in terms of improving the accuracy of tomato ripening classification and provide
a strong theoretical and practical basis for applying multimodal fusion technology to classify the
quality and maturity of other fruits and vegetables. Utilizing deep learning (a fully connected neural
network) for processing multimodal data provides a new and efficient non-destructive approach for
the massive classification of agricultural and food products.

Keywords: multimodal fusion; tomato maturity; deep learning; non-destructive testing

1. Introduction

In recent years, market globalization has significantly increased the demand for high-
quality products, underscoring the necessity of rapidly, non-destructively evaluating pro-
duce maturity, such as predicting the ripening stages and storage shelf lives of fruits and
vegetables like tomatoes [1]. The accurate assessment of maturity also plays a key role in
supply chain management. Tomatoes, which are rich in vitamins A and C, boast bioactive
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components with antioxidant properties—carotenoids, flavonoids, and phenolic acids [2].
Furthermore, their antioxidant, anti-inflammatory, and antihypertensive properties have
been linked to reducing the risk of cardiovascular diseases [3]. As tomatoes continue to
ripen and undergo physiological changes post harvest [4], variability in their maturity
post harvest can lead to higher spoilage risks in over-ripe tomatoes, resulting in significant
losses during transportation and stores. Therefore, the objective and accurate classification
of tomato maturity at harvest is crucial for grading and marketing, which could enhance
the farm gate value of tomato production.

Traditional methods for assessing fruit and vegetable maturity, such as compression
and puncture tests, have been widely used but are destructive and compromise the prof-
itability of produce [5,6]. With technological advancements, a range of non-destructive
techniques, including haptics [7,8], machine vision [9,10], visible and near-infrared spec-
troscopy (Vis/NIR) [11,12], hyperspectral imaging [13,14], electronic noses (e-noses) [15,16],
and magnetic resonance imaging (MRI), now facilitate comprehensive maturity detection
without damage [17,18]. These methods enable the evaluation of both internal and external
fruit characteristics, offering insights into multiple quality parameters simultaneously.
Specifically, non-destructive techniques like machine vision, Vis/NIR spectroscopy, and
haptics have become pivotal in assessing tomato maturity and color grades. Machine vision,
enhanced by deep learning, has shown remarkable success in classifying tomato maturity,
with accuracies exceeding 90.7% [19–21]. However, while it is adept at identifying external
maturity indicators, machine vision struggles with internal changes. Conversely, Vis/NIR
spectroscopy has been effective in examining internal attributes, with various wavelengths
revealing distinct ripening stages [22,23]. Additionally, the evolution of flexible sensor
technology has propelled the use of tactile sensors in robotic applications, offering precise
maturity assessments through firmness detection [24–27].

Assessing fruit maturity is a complex process encompassing color, internal quality, and
firmness [28]. Current maturity detection often relies on a single non-destructive testing
(NDT) method, yielding partial information that may lead to inaccurate maturity assess-
ments. While imaging techniques can evaluate appearance, they often cannot adequately
assess internal quality and firmness. Similarly, Vis/NIR spectroscopy offers insights into
internal quality via spectral data, and tactile sensing technology captures fruit firmness
through signal strength. However, each method’s perspective does not fully address the
multidimensional nature of fruit maturity. Multimodal fusion technology, which integrates
data from multiple NDT methods, has emerged as a solution to overcoming these limi-
tations, enhancing accuracy and compensating for the limitations of individual methods.
Currently, multimodal fusion techniques have been used in a variety of fields, such as
medical diagnosis [29], emotion recognition [30], education [31], industrial fault diagno-
sis [32], and autonomous driving [33]. A number of reports have applied multimodal
fusion technology to agriculture-related research [34–38]. The application of multimodal
fusion technology in agricultural technology, especially in the assessment of fruit and
vegetable maturity, not only improves the accuracy and efficiency of the assessment but
also provides a new perspective for agricultural production and quality assessment supply
chain management.

The utilization of deep learning for determining the maturity of fruits and vegeta-
bles has garnered significant interest lately. Researchers are increasingly applying deep
learning algorithms to decipher ripening data for maturity assessments. For instance,
Suharjito et al. [39] enhanced the quality of oil palm fruits by integrating deep learning with
machine vision for maturity detection and classification. Similarly, Raghavendra et al. [40]
leveraged a combination of convolutional neural networks (CNNs) and multilayer percep-
trons (MLPs) with data from RGB and hyperspectral imaging to accurately identify banana
maturity, achieving a remarkable accuracy of 98.4%. Deep learning not only increases
recognition accuracy but also expedites processing, facilitates the extraction of features
from intricate datasets, and enables precise classification and prediction.
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This study aimed to classify tomato maturity through a tri-modal fusion approach
incorporating imaging, Vis/NIR spectroscopy, and haptic technologies. Its significant
contributions include the following: (1) establishing a multimodal tomato dataset reflecting
various maturity stages, using data comprising RGB images, transmission spectra, and
haptic signals, categorized into immature, semi-mature, and mature stages; (2) analyzing
disparities in ripening within and on the surface of tomatoes that lead to misjudgments
when using single-modal technologies and addressing these through multimodal fusion
techniques; and (3) designing a multimodal fusion classification network for accurate
maturity estimation.

2. Materials and Methods
2.1. Experimental Design

Tomatoes without stems were obtained from a greenhouse farm in Tongzhou District,
Beijing, China. Based on USDA standards [41] and previous studies [23,42], the color of
the exocarp and cut surface along the equator of each tomato was obtained. The maturity
categories in this study are defined as follows: immature (less than 10% red on the exocarp
and cross-section), mature (more than 90% red on the exocarp and cross-section), and semi-
mature (between 10 and 90% red on the exocarp or cross-section). In total, 214 tomatoes
were classified into 79 immature, 60 semi-mature, and 75 mature tomatoes. In order to
further study the multimodal technique, we also selected two negative samples and one
positive sample for analysis. Negative sample 1 tomatoes had a red pericarp but a light
green inner fruit cavity and flesh during the maturing process; negative sample 2 tomatoes
had a red pericarp but a white inner cavity; and positive sample tomatoes had a uniform
red color inside and outside for the best maturity. To mitigate environmental impact on
prediction accuracy, the tomato samples were acclimated to a laboratory setting at 20 ◦C and
60% relative humidity for 12 h. To minimize error and ensure data reliability, each of the
214 tomato fruits was measured four times along the equatorial plane using each of the three
devices, rotating 90◦ between acquisitions. This process generated 2568 data acquisitions
encompassing image, spectral, and haptic modalities. Figure 1 shows a flowchart of the
multimodal fusion tomato maturity prediction process.
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Figure 1. Flowchart of multimodal fusion tomato maturity prediction process.

2.2. Data Acquisition
2.2.1. Image Acquisition

A schematic diagram of the data acquisition device, as shown in Figure 2, shows the
acquisition devices for image, spectral, and tactile information from left to right.
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Figure 2. Diagram of data acquisition device.

Color images were captured using a DaHeng MER-030-120UC color industrial camera.
The tomatoes were placed on a conveyor platform and rolled along it. Each tomato fully
entered the camera’s field of view for image acquisition. It was rotated 90◦ for each
acquisition and turned four times to capture a complete image of the tomato’s surface. The
surfaces of the light sources were equipped with diffuse reflectors to prevent any exposure
on the tomato’s outer surface. Each diffuse reflector was located between the light source
and the sample and was made of frosted glass.

2.2.2. Vis/NIR Spectral Information Acquisition

Spectral data were acquired using an AvaSpec-ULS2048XL-EVO spectrometer, cover-
ing a wavelength range of 350 nm to 1100 nm. Two 250 W halogen lamps, positioned 20 cm
away from the sample, served as light sources in a transmission-based acquisition system.
To guarantee the light’s stability and uniformity, the lamps were preheated for 15 min prior
to the experiments. The sample was positioned on a fruit cup, beneath which optical fibers
were arranged to capture spectral information. Data acquisition was facilitated through an
external trigger mechanism employing a photoelectric switch to gather spectral data. The
integration time was set to 35 ms, with averaging performed five times to ensure accuracy
and consistency in data collection.

2.2.3. Tactile Information Acquisition

The haptic information acquisition system utilized flexible thin-film pressure sensors
(i-Motion, model IMS-C10A) attached to both sides of mechanical jaws to detect the sam-
ple’s firmness. Data collection was conducted at a sampling frequency of 100 Hz for 15 s.
The method entailed positioning a tomato on the experimental platform, maneuvering the
robotic arm toward the sample at a set speed of 0.5 m/s, and then clamping the mechanical
jaws to secure the tomato and collect data. To mitigate the impact of variable surface
firmness on tomatoes, data were obtained from four equatorial points on each tomato. The
overall pressure value for each tomato was calculated by averaging these four readings.

2.3. Data Preprocessing

Corresponding preprocessing was performed for the image, spectral, and tactile raw
data, respectively, to reduce noise and improve the signal-to-noise ratio.

The chromatic distinction between the tomato and its background was pronounced.
For image processing, we converted the image to grayscale and applied a fixed threshold
of 50 to separate the tomato from the background. Subsequently, the pixel dimensions of
the segmented image were standardized to 150 × 150.

Spectral data underwent preprocessing to counteract noise and bias from the spec-
trometer’s dark current, including a black-and-white correction based on reference data
obtained with the light source on (Rw) and off (Rd), using the formula

R =
Rraw − Rd
Rw − Rd

(1)
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The haptic data experienced instability during collection which was attributed to
mechanical vibrations. We designed a Butterworth low-pass filter to eliminate the impact
of environmental factors. We set the cutoff frequency of the filter to 10 Hz and the order to
4 for filtering.

2.4. Sample Quality Measurement

The firmness of the fruit was defined as the force (F) per unit area (A) using the
equation P = F/A, and it was computed using the measured force value in newtons and
the probe’s contact area in square meters, where P was the firmness of the measured
fruit and the unit was Pa. The firmness of the tomato fruit was measured by pushing
the plunger tip (8 mm) into the opposite cut surface along the equatorial region using a
hand-held penetrometer (GY-4, HANDPI, Beijing, China), and the value was expressed in
Pa. Subsequently, the SSC of each tomato fruit was determined using traditional destructive
methods. Each tomato was cut into small pieces, juice was then extracted from the entire
tomato and filtered using double-layer gauze, and 1 mL of juice was dropped onto a fruit
sugar refractometer (PAL-1, ATAGO, Tokyo, Japan).

2.5. A Deep Learning Framework for Multimodal Fusion

Multimodal fusion involves combining data from different modalities. Commonly
used multimodal information fusion methods include feature-level fusion, decision-level
fusion, and model-level fusion [43]. This study employed a multimodal feature fusion
scheme. Following data collection, we performed data preprocessing and feature extraction
for all modalities, including background removal for images, a black-and-white correction
for spectral data, and filtering for tactile data. The features were then fused, and the
fused features were input into a fully connected neural network for maturity prediction, as
described next.

2.5.1. Feature Extraction

Visual Geometry Group 16 (VGG16), developed by Oxford University’s Visual Geom-
etry Group in 2014, is a convolutional neural network adept at processing image data [44].
VGG16 consists of five convolutional blocks and three fully connected layers. The first
two convolutional blocks are composed of two convolutional layers and one pooling layer,
and the last three convolutional blocks are composed of three convolutional layers and
one pooling layer. The process of image feature extraction is shown schematically in
Figure 3a. This study utilized VGG16 for tomato image feature extraction, as depicted in
Figure 3a. By inputting pre-processed tomato images into the VGG16 model, we extracted a
1 × 8192-dimensional feature vector from the output of the model’s fully connected layer,
representing the tomato image feature.

The primary benefit of CNN lies in its algorithmic strategy for directly extracting fea-
tures from raw input data [45]. Its capabilities in learning and classification surpass those
of conventional neural networks. Hence, a 1D-CNN model was developed for spectral
feature extraction, as depicted in Figure 3b. The 1D-CNN model was composed of three
convolutional layers; each layer was followed by batch normalization, a ReLU activation
function, and a maximum pooling layer, and, finally, the classification results were out-
put through two linear layers. The de-noised spectral data were fed into the 1D-CNN
model, in which the convolution layer served the purpose of feature extraction, yielding a
1 × 10-dimensional spectral feature vector.

A Long Short-Term Memory (LSTM) network, a specialized variant of Recurrent Neu-
ral Network (RNN), incorporates long-term memory into an RNN by facilitating constant
error backpropagation through its internal memory cells [46]. This attribute renders it ex-
ceptionally suitable for processing sequences with significant temporal structures, finding
extensive application in tactile information processing [47,48]. An LSTM network was
designed to decode one-dimensional tactile signals, as depicted in Figure 3c, and comprised
three gates (input, forget, and output) and a unit state. This structure allowed the network
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to retain information over ambiguous time periods and to learn detailed temporal features.
Our haptic dataset was input into the model, and the model fully learned the tactile feature
information and finally extracted a 1 × 64-dimensional tactile feature vector to represent
the texture information of tomato.
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2.5.2. Feature Fusion

Various feature fusion techniques exist, such as feature weighting [49] and feature
mapping [50], yet these approaches often necessitate complex model adjustments and
might lead to information loss. Feature weighting may fail to fully capture information
across all modes, and feature mapping could compress information, omitting vital details.
In multimodal feature fusion, early data fusion occurs at the input layer, known as feature
stitching [37]. We utilized feature splicing to merge image, spectral, and haptic data in the
fusion process. This method combined different modes into a single multimodal input,
[m, n, z], where m, n, and z denote the feature vectors for image, spectral, and haptic
data, respectively. Thus, we created a comprehensive cross-modal feature vector with a
dimensionality of 1 and a total length of 8266, equal to the sum of the three feature vectors.
These spliced feature vectors were then input into the deep learning model for training,
validation, and testing.

This approach not only augmented feature dimensionality but also preserved the
integrity of each data type. By enabling the deep learning network to independently assess
the relevance of each data type, we enhanced information richness and reduced error po-
tential. This method offered a nuanced and thorough analysis, allowing for comprehensive
insights into tomato maturity.

2.5.3. Multimodal Fusion Classification Networks

In this study, a fully connected deep neural network model was proposed for pro-
cessing multimodal data, as shown in Figure 4. The model adopted a multi-layer fully
connected architecture that incorporated a residual learning mechanism to enhance the
model’s learning ability and generalization performance when processing complex datasets.
The model had a total of four fully connected layers, each of which contained 8266, 512, 512,
and 256 neurons, respectively, and each fully connected layer was immediately followed
by a batch normalization layer, a ReLU activation function, and a Dropout layer. The first
two fully connected layers were used for feature extraction, and two fully connected layers
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were used for classification. In addition, a residual block was introduced between the
second and third fully connected layers which contained two fully-connected layers, and
the two connected layers were followed by the batch normalization and Dropout layers
after each layer. The batch normalization layer was used to normalize the output of the
layer to improve training stability and efficiency. The ReLU activation function was applied
to introduce nonlinearities and enhance the expressive power of the model. The Dropout
layer prevented overfitting by setting a reasonable scale size. The whole network realized
the efficient processing of multimodal data through this layered structure and residual
learning strategy.
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2.6. Model Evaluation

To comprehensively evaluate the model performance, we chose three key metrics for
the classification model, namely, accuracy, precision, and recall, to evaluate the model.

A TP (True Positive) result indicated that the actual situation was a positive situation
and the prediction was positive, i.e., the prediction was correct, and the same result could be
obtained for TN (True Negative), FP (False Positive), and FN (False Negative) results [51].

Accuracy reflected the proportion of samples that the model recognized correctly and
was a fundamental measure of the overall performance of the model.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

The precision rate, on the other hand, focused on the proportion of samples predicted
by the model to be positively classified over all positively classified samples (TP + FP) and
focused on assessing the classification accuracy of the model.

Precision =
TP

TP + FP
(3)

Recall measured the proportion of positively classified samples identified by the model
among all positively classified samples (TP + FN), and it is critical for assessing the model’s
ability to capture positively classified samples.

Recall =
TP

TP + FN
(4)

These three indicators together constitute a comprehensive and in-depth system of
evaluating the model’s performance which can reflect the performance of the model in
multimodal data processing.
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The experimental computer platform utilized Windows 10 Professional 64-bit on an
Intel Core i7-7700HQ @ 2.80GHz quad-core processor. The maturity assessment model was
developed using PyCharm IDE and the PyTorch framework, with training conducted on
an NVIDIA GeForce GTX 1050 Ti 4GB GPU.

3. Results and Discussion
3.1. Analysis of Soluble Solids and Firmness of Tomatoes

The internal nutrients of tomatoes change during ripening in addition to changes
in the exocarp and internal color. This study also investigated changes in the soluble
solids content and hardness during the tomato ripening process, which can further be
used for the establishment of SSC and hardness prediction models in future research. As
shown in Figure 5, the soluble solids content of the tomatoes showed an ascending trend
as they ripened, while the firmness of the tomatoes decreased gradually. The mean SSC
values of tomatoes in different ripening periods were 4.15, 4.85, and 5.5 Brix, and the
mean values of firmness were 2.82, 1.96, and 1.1 MPa. These findings indicate a clear
negative correlation between the soluble solids content and fruit firmness during the
tomato maturation process. However, these traditional methods of maturity assessment
are destructive, posing challenges for rapid and non-destructive testing requirements in
fruit and vegetable quality monitoring and inspection.
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3.2. Analysis of Original Data
3.2.1. Image Data Analysis

As illustrated in Figure 6a, significant color changes were observed in the tomatoes
during ripening. The exocarp and mesocarp evolved from greenish-white to pink and
finally to bright red, while the endocarp transitioned from green to white to red. Similarly,
the funiculus color shifted from green to light yellow, culminating in red at full maturity.
These color changes effectively illustrate the progression from immature to semi-mature
and ultimately mature stages, highlighting the dynamic nature of the ripening process.
Images, as the most commonly used means of determining tomato ripeness, are capable
of capturing color changes in exterior appearance, and, as shown in Figure 6a, image
processing techniques are able to calculate the percentage of red color on the surface of a
tomato and classify it correctly, thus accurately determining tomato ripeness by appearance.
Due to a variety of factors, tomato maturity was not uniform, and there were cases in
which the exterior was mature but the interior was not, making it impossible to identify the
interior color and texture from the exterior image. As shown in Figure 6b, we analyzed three
categories of tomatoes with a red appearance but different internal maturity conditions
and determined by their appearance that the tomatoes had all reached maturity. Negative
samples 1 and 2 were judged to be mature according to their appearance; the outer skin
color ratio reached more than 95% but the interior was not mature, and the color ratio was
about 70%. The color ratio of the positive sample reached more than 95%, showing the best
mature state. Immature tomatoes contain lycopene, which can be harmful to the human
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body after consumption [52], so it is necessary to combine a variety of nondestructive
testing techniques to determine the maturity of tomatoes comprehensively.
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3.2.2. Analysis of Spectral Data

The ripening of the tomatoes was marked by significant changes in their internal
nutrient composition, including a decrease in chlorophyll content and an increase in antho-
cyanin content [53]. These alterations are mirrored in the measured spectral absorbance
curves presented in Figure 7a. The curves demonstrate consistent trends across different
maturity stages, with mature tomatoes exhibiting higher spectral intensities between 600
and 950 nm. Notable absorption peaks were observed at 630 nm, 730 nm, 830 nm, and
1070 nm, corresponding to chlorophyll pigments, the O-H band’s third overtone, the C-H
band’s fourth overtone, and the absorption region for carbohydrates [54]. Additionally,
the 970 nm–1180 nm range was influenced by O-H bonds [22]. During tomato ripening, a
decrease in chlorophyll content and an increase in lycopene combined to cause a change in
the light transmission spectral curve of the tomato. These changes indicate a significant
correlation between the optical properties of tomatoes and their natural growth processes.
The spectra also can discriminate between unevenly internally and externally ripened toma-
toes. The mean spectra with standard deviation values for the three categories of tomatoes,
namely negative sample 1, negative sample 2, and the positive sample, are depicted in the
Figure 7b. The spectral trends of the three types of samples are basically consistent. There
is a slight difference in spectral signals between negative sample 2 and the normal sample,
but they have a significant difference compared to negative sample 1. For similar maturity,
Vis/NIR spectroscopy could not completely differentiate maturity categories, so it was
necessary to further rely on other NDT measurements. In daily life, touching tomatoes
with hands to determine their texture is one of the important ways of judging ripeness in
addition to vision. Therefore, haptic technology was introduced to solve the problem of
tomato ripeness assessment.
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3.2.3. Analysis of Haptic Data

Pronounced changes in tomato firmness throughout ripening were depicted using 3D
color-mapped surfaces of tactile pressure signals (Figure 8a). Mature tomatoes exhibited
pressure values ranging from 13 to 26 kPa, semi-mature tomatoes exhibited pressure values
ranging from 26 to 46 kPa, and immature tomatoes exhibited pressure values ranging
from 52 to 65 kPa. These variations were attributed to the enzymatic breakdown of pectin,
leading to tissue softening [55]. Consequently, the marked differences in firmness at each
ripening stage suggest a potential for non-destructive maturity assessments through haptic
analysis, offering a straightforward method for evaluating tomato quality. In a case of
heterogeneous internal and external ripening, the interior of negative sample 2 was off-
white and the texture of the tomato was hard, so we utilized the characteristic of negative
sample 2’s hard texture to differentiate negative sample 2 from the positive sample by
the haptic technique. As shown in Figure 8b, negative samples 1 and 2 were less mature
and had a hard texture, but the mature positive sample had a softer texture. From the
data, the pressure values of negative samples 1 and 2 reached approximately 29 kPa,
and the pressure value of the positive sample reached about 13 kPa. Therefore, negative
sample 2 and the positive sample could be distinguished through the difference in pressure
values, thereby making up for the inability of the spectrum to distinguish samples from the
two groups.
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Although the internal ripening situation could not be identified through external color
in the images, the combination of near-infrared spectroscopy and haptic sensing technology
avoided the shortcomings of the images. The study results suggest that during the ripening
process of tomatoes, the apparent color, internal structure, and firmness of tomatoes
became inhomogeneous, resulting in inaccurate single-modal maturity classification, and
the interference of other factors during the ripening process could not be ruled out.

3.3. Multimodal Fusion Maturity Classification Model
3.3.1. Unimodal Maturity Classification

Before performing multimodal fusion classification, we first built unimodal deep
learning classification models for the three categories of tomato maturity: immature, semi-
mature, and mature. We developed three deep learning models for this purpose: a VGG16
model for imaging, a one-dimensional CNN for spectral analysis, and an LSTM network
for haptic data. The dataset was split as follows: 64% for training, 16% for validation, and
20% for testing. The dataset was divided into a training set, test set, and validation set at a
ratio of 8:4:5. The outcomes of model training are detailed in Table 1.

Table 1. Tomato unimodal classification performance.

Models

Accuracy Precision Recall

Training
Set

Validation
Set Test Set Training

Set
Validation

Set Test Set Training
Set

Validation
Set Test Set

Imagery 94.0% 93..4% 94.2% 94.5% 94.6% 94.2% 94.8% 94.7% 91.7%
Spectral 87.3% 84.7% 87.8% 89.7% 87.6% 89.9% 66.3% 65.2% 64.8%
Haptic 90.0% 88.7% 87.2% 90.4% 89.7% 89.9% 66.7% 66.7% 66.7%

Table 1 shows the accuracy, precision, and recall of the models built on images, spectra,
and haptics, and the performance of the test set is further discussed. The three optimal
image, spectral, and haptic unimodal classification models reached 99.2%, 87.8%, and 87.2%
accuracy and 89.9%, 89.9%, and 99.2% precision. The recall rates of the three optimal uni-
modal classification models showed poor levels in general, especially for the spectral and
haptic classification models that demonstrated only 64.8% and 66.7%, respectively. VGG16
demonstrated high accuracy in classifying tomato maturity, proving its effectiveness in dis-
tinguishing image variations associated with maturity levels. This underscored the potent
utility of images in discerning tomato ripeness. However, images fell short in detecting the
internal ripening stages of tomatoes, necessitating the integration of additional methods
for a thorough analysis of tomato maturity. The spectral and haptic analyses showed lower
accuracy values, particularly in recall rates. This could be attributed to the models’ inability
to adequately capture features essential for differentiating between categories, complicating
the accurate identification of specific sample categories during prediction. Consequently,
for spectral and tactile data, the deployment of more sophisticated models or enhanced
feature engineering might be necessary to unearth more distinctive characteristics. For
instance, employing more advanced deep learning frameworks or developing custom
models tailored to specific tasks could have enhanced model accuracy.

3.3.2. Multimodal Fusion Maturity Classification

To evaluate the efficacy of the multimodal fusion technique, we conducted a compara-
tive analysis between unimodal and multimodal fully connected neural network (FCNN)
classification models across image (VGG16), spectral (1D-CNN), and haptic (LSTM) modal-
ities, focusing on recall, precision, and accuracy metrics. Figure 9a showed that the FCNN
model achieved the highest performance, with 99.4% recall, 99.3% precision, and 99.4%
accuracy. In comparison, the VGG16 model showed 91.7% recall and over 94% for both
precision and accuracy. The 1D-CNN and LSTM models demonstrated lower recall rates
(66.7% and 64.8%, respectively) but maintained high precision at 89.9%, with accuracy rates
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of 87.2% and 87.8%. Overall, the FCNN model shows good comprehensive performance,
and the recall, precision and accuracy in the test set of the FCNN model are significantly
improved compared to the unimodal classification model, with an up to 34.6% improve-
ment in recall and up to 9.4% and 12.2% improvements in precision and accuracy. The
effectiveness and superiority of multimodal fusion methods in deep learning classification
tasks are demonstrated.
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Figure 9. Comparison of model (a) evaluation metrics, (b) confusion matrix, and (c) Loss.

To examine the multimodal fusion classification network from multiple perspectives
and demonstrate the classification results more intuitively, we plotted a confusion matrix
of the FCNN model’s classification results in Figure 9b. Only one mature sample is misclas-
sified as a semi-mature sample, which may have been caused by the closer proximity of the
test sample to the semi-mature sample, but overall, the overall classification accuracy is
still high. In addition, the loss values (Loss) during the model training process used to com-
prehensively assess the overall ability of the model were examined, as shown in Figure 9c.
The curves of the loss function values of the model on the training and test sets showed
a fast decreasing trend and then gradually stabilized. After approximately 30 instances
of training time, the loss values of the model’s training and test sets were stabilized at
0.03 and 0.09. The convergence of the model could be obtained through the Loss curve,
which indicates that the model’s training effect is relatively good and the model was able to
correctly capture the laws in the training data. By comprehensively analyzing the confusion
matrix and loss curves, we were able to understand the classification performance, training
process, and generalization ability of each model more comprehensively, thus providing a
more solid basis for model selection and adjustment.

3.3.3. Independent Validation of Heterogeneous Samples of Internal and External Maturity

Beyond classifying tomatoes into immature, semi-mature, and mature categories based
on apparent changes, the current study also extended to classifying tomatoes with uniform
external redness but varied internal ripeness levels. We employed VGG16, 1D-CNN, and
LSTM models to integrate the image, spectral, and haptic data into the fusion model for
this purpose. A validation set of eighteen samples yielded an accuracy rate of 94.4%. The
confusion matrix displayed in Figure 10a reveals a single instance in which a negative
sample 2 sample was incorrectly classified as a positive sample. The misclassified sample is
shown in Figure 10b. We measured a firmness value of 1.3 MPa for this sample. This could
be due to the low firmness value of this sample, which resulted in the misclassification
of this sample due to the close proximity of the three features extracted from the image,
spectral, and haptic data to the positive sample.
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4. Conclusions

In this research, a multimodal fusion approach was proposed for classifying the
ripeness of tomatoes. Image, Vis/NIR spectral, and haptic data were collected and ana-
lyzed. For a comparison with the multimodal fusion approach, three single-modal models
were developed, achieving an optimal performance of 94.2%. Further, a multimodal fusion
model utilizing a fully connected neural network was established which attained the best
classification accuracy of 99.4%, with a 5.2% improvement. The multimodal fusion network
outperformed the three traditional single-modal models by achieving a 99.4% accuracy,
99.3% precision, and 99.4% recall in classifying tomato maturity. In particular, the classifi-
cation accuracy reached 94.4% in the case of inconsistent internal and external maturity.
These findings prove that multimodal fusion technology can overcome the limitations of
single-modal classifications and highlights its specific advantages. The multimodal fusion
method identified different ripened tomatoes, improved food quality, developed a new way
of conducting rapid and non-invasive tomato maturity evaluations, and laid a foundation for
optimizing harvest time and maximizing the value of tomato products.

Despite the remarkable results of this research obtained, there are still some challenges
in integrating this technology into existing online sorting systems, such as the real-time
responsiveness of data processing and sorting, the adaptability of the fusion technology
to multiple fruits and vegetables, and the cost-effectiveness of sorting systems. Future
research requires the optimization of algorithms and hardware design, incorporating more
NDT techniques to explore the effectiveness of the large-scale online sorting of tomato
ripeness and other quality control parameters, such as pests or virus-infected tomatoes.
The multimodal fusion method can be used as a reference for other types of fruits and
vegetables in the future, such as kiwi, persimmon, and cucumber. If widely used, this
method can improve the quality of fruit and vegetable sales according to the different
maturity stages of fruits and vegetables in graded sales, bring significant economic benefits,
and improve consumer satisfaction. Therefore, multimodal fusion technology will have a
wide impact on the development of agriculture and food quality control technology.
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