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Abstract: Leveraging data from various modalities to enhance multimodal segmentation tasks is
a well-regarded approach. Recently, efforts have been made to incorporate an array of modalities,
including depth and thermal imaging. Nevertheless, the effective amalgamation of cross-modal
interactions remains a challenge, given the unique traits each modality presents. In our current
research, we introduce the semantic guidance fusion network (SGFN), which is an innovative cross-
modal fusion network adept at integrating a diverse set of modalities. Particularly, the SGFN features
a semantic guidance module (SGM) engineered to boost bi-modal feature extraction. It encompasses
a learnable semantic guidance convolution (SGC) designed to merge intensity and gradient data from
disparate modalities. Comprehensive experiments carried out on the NYU Depth V2, SUN-RGBD,
Cityscapes, MFNet, and ZJU datasets underscore both the superior performance and generalization
ability of the SGFN compared to the current leading models. Moreover, when tested on the DELIVER
dataset, the efficiency of our bi-modal SGFN displayed a mIoU that is comparable to the hitherto
leading model, CMNEXT.

Keywords: semantic segmentation; cross-modal interactions; semantic guidance module

1. Introduction

Semantic segmentation presents a formidable challenge in several sectors, includ-
ing autonomous driving, robotics, and virtual reality [1–4]. While neural networks have
brought about a significant improvement in the accuracy and speed of RGB-based semantic
segmentation in recent years, these models fall short when tasked with comprehensive
3D scene understanding. This is largely due to their inability to perceive crucial three-
dimensional geometric information [5], thereby narrowing their practical applicability.
Researchers have sought to mitigate these deficiencies by incorporating depth informa-
tion [6] or thermal maps [7] into the semantic segmentation process. With advancements in
sensor technology, an increasing number of sensors can now provide complementary detail
to RGB images. However, the integration of multiple modalities is more challenging than a
purely RGB-focused approach, as it requires effectually incorporating and leveraging the
disparate characteristics of each modality. Therein lies the need for a flexible and adaptable
network architecture specifically suited to multimodal segmentation.

The majority of current techniques for multimodal fusion can be categorized into
two main strategies: early fusion and intermediate fusion. Early fusion involves merging
RGB data with another modality at the channel level during the input stage [8–10]. Its
downside is that it treats different modalities as uniform, thereby limiting its ability to fully
exploit complementary information and pose challenges when applied to various modality
combinations. On the flip side, intermediate fusion approaches [11–13] typically consist of
parallel branches, where each branch is tasked with processing data from a specific modality.
The features extracted at each layer from different modalities are then combined and passed
through subsequent layers for semantic prediction. This layout is easily extendable to
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different RGB-based combinations. However, most existing models are tailor-made for
specific combinations such as ACNet [14] and SA-Gate [11] for RGB-Depth data, resulting
in underperformance when used for RGB-T segmentation (Figure 1). Therein lies the need
for a robust and versatile multimodal network, one capable of adapting to diverse sensors
without the necessity for dedicated architectures per modality. Unfortunately, the pursuit
of this type of multimodal segmentation remains insufficient.
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Figure 1. Comparative results of our SGFN on different benchmarks. (a) RGB and Depth on NYU
Depth V2 [15] dataset; (b) RGB and Thermal on the MFNet [7] dataset; (c) RGB and degree of linear
Polarization (DoLP) on ZJU [16] dataset; (d,e) RGB-Event and RGB-LiDAR on DELIVER [17] dataset.

Moreover, many existing models [6,18,19] operate by assuming that each modality
in multimodal data is invariably accurate. However, real-world measurement systems
are prone to sensor faults, resulting in partial inaccuracies. For instance, issues such as
LiDAR Jitter can introduce misalignments to sensing data [17]. Crucially, attempts at fusing
such misaligned information could negatively impact overall segmentation performance,
as depicted in Figure 1. Furthermore, multimodal data often display substantial levels
of noise across the various sensing modalities. This noise can arise from various factors,
including limited depth detection ranges [11], resulting in low-quality distance estimations
and uncertainties revolving around dynamic cases [20]. It is critical to address these
noise factors when dealing with multimodal data to ensure the reliability and accuracy
of segmentation.

In light of these challenges, we present the semantic guidance fusion network (SGFN),
a versatile cross-modal fusion network for multimodal semantic segmentation. Our model
comprises two parallel transformers [21] paired with a novel Semantic Guidance Feature
Fusion Module (SG-FFM) for pixel prediction. During the fusion, we introduce a semantic
guidance module (SGM) for the extraction of supplementary multimodal information,
which encompasses a learnable semantic guidance convolution (SGC). The SGC calcu-
lates the semantic distance of the supplementary modality to rectify the RGB data. This
adjustment allows the fused feature to concentrate more on the complementary infor-
mation while minimizing the negative impact of misalignments and noise from diverse
modalities effectively.

In order to evaluate the efficacy of our proposed SGFN, we conducted exhaustive
evaluations on six datasets, covering five distinct combinations of multiple modalities:
RGB-Depth, RGB-Thermal, RGB-Polarization, RGB-Event, and RGB-LiDAR. Our results
are noteworthy, with the highest mIoU of 57.6% on the NYU Depth V2 (RGB-D) dataset [15],
59.9% on the MFNet dataset (RGB-T) [7], and 93.1% on the ZJU dataset (RGB-P) [16]. More-
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over, when tested on the DELIVER dataset [17], the performance of the SGFN is found to be
on par with the previous best method. It is important to underline the fact that the SGFN
surpasses specific architectures and outperforms existing multimodal methods, thereby
affirming its effectiveness and superiority in delivering precise and robust multimodal
semantic segmentation.

In summary, our research makes the following contributions:

1. We introduce a novel semantic guidance convolution (SGC) operation that calculates
the similarity of adjacent pixels under the guidance of another modality to enhance
the complementary cues and reduce the noise;

2. We further propose a new general multimodal segmentation network named SGFN,
which is built on the SDC. This network is adept at effectively integrating and fusing
bi-modal features from any amalgamation of modalities;

3. With comprehensive experiments on six datasets, our SGFN achieves state-of-the-art
performance, covering RGB-D, RGB-T, RGB-P, RGB-E, and RGB-L tasks.

2. Related Works
2.1. Semantic Segmentation

Semantic segmentation is an intensive prediction task that needs to make predictions
at the pixel level. Fully convolutional networks (FCNs) [22] first use a fully convolutional ar-
chitecture to make pixel-wise prediction, which opens a new era of semantic segmentation.
However, one upsampling step is insufficient to fully exploit the rich semantic informa-
tion contained within the feature map. U-Net [23] uses an encoder-decoder structure to
restore the image to its original resolution by multi-step upsampling while combining
high-level features with low-level features through skip connections to improve accuracy.
After that, a slew of advancements have been made to increase the receptive field for
superior contextual comprehension. For example, PSPNet [24] introduced a pyramid pool-
ing module to obtain contextual information at different scales. In parallel, the deepLab
series [25–28] proposed atrous convolution, which broadened the receptive field without
computational overhead. Some methods focus on improving semantic segmentation by
enhancing boundaries [29–31] or applying attention blocks [32–34].

Recently, vision transformers [35] have been adopted as the backbone in dense pre-
diction tasks [36,37] as well as in semantic segmentation tasks [21,38–40], demonstrating
the effectiveness of global receptive fields. Although previous approaches have achieved
impressive performance, they primarily rely on RGB images and, consequently, may suffer
in challenging real-world scenarios. For instance, situations such as low-light conditions
or fast-changing areas may expose the limitations of RGB images in accurately capturing
minute scene details.

2.2. Multimodal Semantic Segmentation

Multimodal semantic segmentation is considerably enriched by the incorporation
of disparate modalities, affording a more comprehensive understanding of scenes and
bolstering overall performance. Numerous pieces of research have been undertaken on
the fusion of RGB data with depth [6,9,11,19] and thermal [41–44] data, as they provide
complementary information for scene analysis. Additional cues, such as polarization [45,46]
and events [47,48], have also proven valuable in refining scene understanding. In the realms
of autonomous driving, the integration of LiDAR data [49,50] and optical flow data [51]
has drawn significant attention due to their essential contribution to perception tasks.

Despite these strides, many current approaches within this field tend to be tailored
to specific modalities. This lack of adaptability to different combinations of sensing data
impedes their broad application across various scenarios. CMX [52] offers a step towards
handling this by putting forth a unified cross-modal fusion architecture for RGB-X seg-
mentation, integrating cross-modal feature rectification and cross-attention feature fusion.
Nonetheless, these methods often struggle when confronted with misaligned data resulting
from sensor discrepancies.
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By considering these constraints, we present a versatile framework that integrates
cross-modal feature guidance to achieve robust segmentation. Our framework not only
handles diverse combinations of modalities but also successfully mitigates the issues
associated with misaligned data caused by sensor faults.

2.3. Central Difference Convolution

In order to improve edge performance, researchers have integrated gradient oper-
ators into vanilla convolutions, as the original convolution operation tends to smooth
local features, resulting in decreased edge sharpness. By utilizing the fixed binary values,
which are treated as filters, in convolution instead of learnable kernel weights, local binary
convolution (LBC) [53,54] has been explored as an efficient alternative to traditional convo-
lutions in various computer vision tasks. In the context of central difference convolution
(CDC) [55–57], learnable kernels are employed to capture edge and texture details from the
central difference map effectively; that is, yc = ∑n−1

0 wi · (xi − xcenter), where w indicates
the kernel weights, and xi represents the surrounding pixel of the center entry in the lo-
cal patch. It calculates the difference between pixel values in the horizontal and vertical
directions to estimate the gradient information. By aggregating the gradient-level details
within the local patch, CDC demonstrated impressive performance in anti-spoofing tasks.
Furthermore, pixel difference convolution (PDC) [58] offers a more versatile approach
to encoding local differences by modifying sampling strategies within the local region.
This flexibility allows PDC to explore microstructures with greater adaptability. Semantic
difference convolution (SDC) [59], on the other hand, draws inspiration from the diffusion
process [60] and amplifies semantic boundary awareness by incorporating a similarity map,
which is generated by calculating semantic similarity. However, all these aforementioned
operators entirely concentrate on the extraction of features from the current modality to
enhance edge representation. In contrast to previous work [11,52,61], we are dedicated to
developing an innovative and effective operator-level solution that incorporates a guidance
map derived from another modality to extract complementary information.

3. Proposed Method

In this section, we will initially provide a detailed elaboration of the SGFN framework
designed for multimodal semantic segmentation (Section 3.1), then the Semantic Guidance
Feature Fusion Module (SG-FFM) is covered in Section 3.2, the Semantic Guidance Convo-
lution (SGC) is covered in Section 3.2.1, and the corresponding semantic guidance module
(SGM) is covered in Section 3.2.2.

3.1. Framework Overview

In Figure 2a, We apply an encoder-decoder structure to our SGFN. The encoder
consists of two parallel backbones designed to extract features from RGB images and other
modalities, including Depth, Thermal, Polarization, Event, LiDAR, and more. By following
most of the previous works [24,32,62], we used a four-stage structure in the backbone to
extract pyramidal features from each modality. At the end of each stage, the features from
different modalities are rectified by the cross-modal feature rectification module (FRM) [52],
which is crucial to promote interactions and reduce noise. Thus, the calibrated features are
sent back to the backbone to continue the extraction of deeper characteristics. Moreover,
as shown in Figure 2b, we designed a Semantic Guidance Feature Fusion Module (SG-
FFM) to fuse the rectified features at each stage of the encoder, termed F. Within SGM,
we introduce a semantic guidance convolution operator that takes the feature maps of
another modality as a guide, thereby formulating a more enriched feature map. Ultimately,
the features of four stages, F ∈ {F1, F2, F3, F4}, are passed to the decoder to predict the
semantic map.
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Figure 2. (a) The overall architecture of our SGFN. It is composed of a parallel encoder to fuse RGB
data and other modality data. (b) Details of the Semantic Guidance Feature Fusion Module (SG-FFM).
(c) Detailed architecture of semantic guidance module (SGM).

3.2. Semantic Guidance Feature Fusion Module

It is worth highlighting that the pixels share the same semantic label, demonstrating
a higher degree of similarity. Extracting valuable features is essential when dealing with
different modalities, as they often possess complementary information [11,14]. In this
subsection, shown in Figure 2, we propose a new learnable approach known as the Seman-
tic Guidance Feature Fusion Module (SG-FFM) to interact with two distinct modalities
effectively. The SG-FFM consists of a semantic guidance module, comprising a parametric
semantic guidance convolution operator, followed by a straightforward feature fusion
process that generates enhanced features. Specifically, as indicated in Figure 2b, the chan-
nel dimensions of both modalities are initially compressed by a factor of one-eighth for
reduction. Next, the modalities are sent into the SGM, which generates enhanced features.
Subsequently, the outputs of SGM are convolved to achieve channel-wise alignment. At last,
the generated outputs are integrated with “X” features and RGB features by performing an
element-wise summation.

3.2.1. Semantic Guidance Convolution

By taking inspiration from SDC, which effectively applies semantic difference convolu-
tion to mimic the diffusion process and has shown substantial improvements in boundary
performance, our approach also incorporates central difference into our SGC, emulating the
diffusion process. The SGC encompasses two primary stages. In our method, the sampling
step over the input feature follows a similar pattern to vanilla convolution. However,
an amendment is introduced in the succeeding amalgamation step. The semantic guidance
convolution, as depicted in Figure 3, focuses on aggregating the center-oriented gradient of
local patches from complementary modalities. SGC generates the output value Y by taking
the feature map V and another modality’s guidance map, U, as input. Consequently, we
express the formula as follows:

Yc =
n−1

∑
i=0

Wi · S(Ui − Ucenter) · (Vi − Vcenter) (1)

where i enumerates the pixels in the current patch. The first term, W, represents the learn-
able kernel weights, which have the same size as U and V. The second term, S(Ui − Ucenter),
known as the semantic guidance term, quantifies the semantic distance between the central
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pixel and its surrounding counterparts at the same location in another modality. Specifi-
cally, S(Ui − Ucenter) = ∥Ui − Ucenter∥2. The last term (Vi − Vcenter), known as the central
difference term, evaluates the disparity between adjacent pixels at the pixel level. The
semantic guidance term (S) and central difference term (D) have a mutual influence on each
other, with S capable of acting as a guiding factor to enhance or suppress D, and conversely,
D can also have a similar effect on S. This dynamic interaction enables our network to
successfully extract complementary information and effectively handle challenges such as
noise or misalignments.
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Figure 3. Semantic guidance convolution.

In semantic segmentation tasks, assimilating information from both the intensity and
gradient levels holds critical value. Therefore, by combining vanilla convolution with
semantic guidance convolution, we augment the capability to capture diverse and informa-
tive features, leading to improved robustness and accuracy in semantic segmentation. As a
result, the semantic guidance convolution can be represented as

Yc =θ ·
n−1

∑
i=0

Wi · S(Ui − Ucenter) · (Vi − Vcenter)︸ ︷︷ ︸
semantic guidance term

+ (1 − θ) ·
n−1

∑
i=0

Wi · Vi︸ ︷︷ ︸
vanilla term

(2)

In this context, θ ∈ [0, 1] serves as a hyperparameter to govern the trade-off between the
gradient term and intensity term. The ablation of θ will be demonstrated in Section 5.5.

3.2.2. Semantic Guidance Module

As previously discussed, SGC concentrates on drawing out complementary informa-
tion from different modalities. In order to further augment the cross-modal interactions,
we introduce an efficient yet simple module called the semantic guidance module (SGM),
which builds upon our proposed SGC approach.

As shown in Figure 2c, our SGM utilizes a branching framework that accommodates
two inputs,

Fsgm = SGM
(

Frgb, Fx
)

(3)

where Frgb ∈ RC×H×W is the RGB features, and Fx ∈ RC×H×W is the guidance feature from
another modality. The process can be formulated as
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F̂x = Conv1×1(Fx) (4)

Fsgc = BN-Relu
(

SGC
(

Frgb, F̂x
))

(5)

w = Sigmoid(Conv1×1(Fsgc)) (6)

Fsgm = w · Fsgc (7)

In Equation (5), by utilizing a 1 × 1 convolution, the feature Fx is reduced to one-eighth (by
default) of its original size along the channel dimension. Afterward, the bi-modal inputs
are fed into the proposed SGC, which is then followed by batch normalization (BN) [63]
and the ReLU [64] activation function. Finally, a Sigmoid function is applied to compute
the attention weight after recovering the channel with a 1 × 1 convolution.

4. Experiments
4.1. Datasets

In order to validate our proposed SGFN (semantic guidance fusion network), we
conducted experiments on three datasets relating to RGB-Depth semantic segmentation,
as well as datasets involving combinations of the RGB-Thermal, RGB-Polarization, RGB-
Event, and RGB-LiDAR modalities.

NYU Depth V2 [15] is an indoor RGB-D dataset with a total of 1449 images categorized
into 40 classes, displayed at a resolution of 640 × 480 pixels. The dataset is divided into a
training set of 795 images and a testing set of 654 images.

SUN-RGBD [65] is an indoor RGB-D dataset containing 10,335 images classified into
37 categories. It’s split into 5285/5050 for training/testing. We cropped and resized the
image to 480 × 480.

Cityscapes [3] is a benchmark for outdoor datasets featuring urban street scenes; it is
divided into training/validation/testing sets of 2975/500/1525 samples, respectively. It
comprises fine annotations for 19 different classes. We took an input at the resolution of
1024 × 512.

RGB-T MFNet [7]. The MFNet dataset comprises 1569 RGB-thermal pairs captured
from urban street scenes, with a resolution of 640 × 480 and eight classes. Among these,
820 pairs were captured during the daytime, and the remaining were captured at night.

RGB-P ZJU [16] is an RGB-P dataset collected from college street scenes, which
comprises a total of 394 images, with 344/50 pairs for training/evaluation. Each image pair
in the dataset is annotated for eight distinct semantic classes. Each image was cropped and
resized to 612 × 512.

DELIVER [17] consists of Depth, LiDAR, Event, and RGB data, each with a size
of 1024 × 1024. It comprises a total of 7885 samples, including sensor faults such as
LiDAR-Jitter and Event Low-resolution. It is divided into training (3983), validation (2005),
and testing (1897) sets, with 25 classes. Our study focuses on exploring the combinations of
the RGB-Event and RGB-LiDAR modalities.

4.2. Implementation Details

We used the parallel Mix-Transformer-B2 (MiT-B2) [21] architecture pre-trained on the
ImageNet [66] dataset as the backbone and UPernet-decoder [67] for our model. We trained
our models on Pytorch 1.8.1 with four 3090 GPUs. We chose the AdamW optimizer [68]
with epsilon 10−8, and weight decay 10−2. The initial learning rate (LR) was set as 6 × 10−5

with a poly strategy. We warmed up the first 10 epochs with 0.1× the original LR. We used
the cross-entropy loss function. Throughout the training, we performed data augmentation
by random flipping and random scaling. For NYU Depth V2 and SUN RGB-D, we used
multiscale flip testing for a fair comparison. Like most of the previous works [15,65,69], we
applied two common metrics, pixel accuracy (Pixel Acc.) and mean intersection over union
(mIoU), to evaluate our model.
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5. Experiment Results and Analyses

In this section, we present extensive experiment results on six multimodal benchmarks
to verify the efficacy of our proposed SGFN for multimodal semantic segmentation. The re-
sults are compared with state-of-the-art methods, as shown in the following subsections.

5.1. Results of the RGB-Depth Datasets

NYU Depth V2: The results of the NYU Depth V2 dataset with 40 categories are
shown in Table 1. It is evident that the exceptional performance of our approach surpasses
previous methods in terms of the scores. Specifically, our proposed method (utilizing
MiT-B2) already achieves remarkable results with a mIoU of 53.4%. In building upon this
success, our SGFN models based on MiT-B4 and B5 demonstrate significant enhancements,
significantly elevating the mIoU to 56.9% and 57.6%, respectively. These outstanding
improvements highlight the effectiveness and superiority of our approach in cross-modal
semantic segmentation.

Table 1. Results of NYU Depth V2. “*” denotes the multi-scale test.

Method mIoU (%) Acc (%)

3DGNN [70] 43.1 -
ACNet [14] 48.3 -

PADNet [71] 50.2 62.3
PAP [72] 50.4 62.5

Swin-RGBD [73] 50.9 64.2
TransD [74] 55.5 69.4
SGNet [75] 51.1 76.8

ShapeConv [9] 51.3 76.4
SA-Gate [11] 52.4 77.9

CMX (MiT-B2) * [52] 54.4 79.9
CMX (MiT-B5) * [52] 56.9 80.1

SGFN (Mit-B2) * 53.4 78.5
SGFN (Mit-B5) * 57.6 80.5

SUN-RGBD: As shown in Table 2, our method achieves the best scores in two eval-
uation metric when compared with previous works. Precisely, our models leveraging
MiT-B2 and B5 achieve impressive mIoU scores of 50.4% and 52.8%, respectively. These
results serve as strong evidence of the remarkable effectiveness of our proposed method
and underscore the superiority of our approach in multimodal semantic segmentation.

Table 2. Results of SUN RGB-D. “*” denotes the multi-scale test.

Method mIoU (%) Acc (%)

3DGNN [70] 45.9 -
ACNet [14] 48.1 -
SGNet [75] 48.6 82.0

ShapeConv [9] 48.6 82.2
NANet [76] 48.8 82.3
PDCNet [6] 49.2 -
CANet [77] 49.3 60.5
TransD [74] 51.9 64.1

SA-Gate [11] 49.4 82.5
CMX (MiT-B2) * [52] 49.7 82.8
CMX (MiT-B5) * [52] 52.4 83.8

SGFN (Mit-B2) * 50.8 83.0
SGFN (Mit-B5) * 53.1 84.1

Cityscapes: In order to examine its applicability to outdoor environments, we evalu-
ated the performance of SGFN on the Cityscapes dataset. The findings, displayed in detail
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in Table 3, provide a comparative study between our models and the cutting-edge RGB and
RGB-D methods. Remarkably, our RGB-D approach demonstrates a notable enhancement
of 0.9% in mIoU over the MiT-B2 (RGB) model. Furthermore, our method leveraging MiT-
B4 achieves a leading score of 83.1%, outperforming all other RGB-D techniques available
in the field.

Table 3. Results of Cityscapes.

Method Modal Backbone mIoU (%)

SwiftNet [78] RGB ResNet-18 70.4
ESANet [19] RGB ResNet-50 79.2
DANet [32] RGB ResNet-101 81.5

SegFormer [21] RGB MiT-B2 81.0
SegFormer [21] RGB MiT-B4 82.3

RFNet [79] RGB-D ResNet-18 72.5
PADNet [71] RGB-D ResNet-50 76.1
ESANet [19] RGB-D ResNet-50 80.0
SA-Gate [11] RGB-D ResNet-50 80.7
SA-Gate [11] RGB-D ResNet-101 81.7

CMX [52] RGB-D MiT-B2 81.6
CMX [52] RGB-D MiT-B4 82.6

SGFN RGB-D MiT-B2 81.6
SGFN RGB-D MiT-B4 83.0

5.2. Results of the RGB-Thermal Dataset

In Table 4, the results of a set of experiments on the MFNet dataset to evaluate the
generalization capability of our model can be seen. Our SGFN model, utilizing MiT-B4,
achieves state-of-the-art performance, surpassing CMX [52] by 0.2% in mIoU. Our methods
based on MiT-B2 already surpass RGB-only models as well as RGB-T methods such as
FEANet [61], ABMDRNet [12], and GMNet [43], achieving a mIoU of over 59%. Models
designed for RGB-D segmentation, such as ACNet [14] and SA-Gate [11], are not applicable
to RGB-T scenarios, as they only interact in the channel dimension while neglecting the
crucial pixel-wise information. It is evident that our SGFN achieves remarkable success in
extracting multimodal information effectively.

Table 4. Per-class comparison on the MFNet dataset for RGB-Thermal semantic segmentation.

Method Modal Unlabeled Car Person Bike Curve Car Stop Guardrail Color Cone Bump mIoU

DANet [32] RGB 96.3 71.3 48.1 51.8 30.2 18.2 0.7 30.3 18.8 41.3
SegNet [75] RGB 96.7 65.3 55.7 51.1 38.4 10.0 0.0 12.0 51.5 42.3
UNet [23] RGB 96.9 66.2 60.5 46.2 41.6 17.9 1.8 30.6 44.2 45.1

PSPNet [24] RGB 96.8 74.8 61.3 50.2 38.4 15.8 0.0 33.2 44.4 46.1
ERFNet [80] RGB 96.7 67.1 56.2 34.3 30.6 9.4 0.0 0.1 30.5 36.1

DUC [81] RGB 97.7 82.5 69.4 58.9 40.1 20.9 3.4 42.1 40.9 50.7
HRNet [82] RGB 98.0 86.9 67.3 59.2 35.3 23.1 1.7 46.6 47.3 51.7

SegFormer-B2 [21] RGB 97.9 87.4 62.8 63.2 31.7 25.6 9.8 50.9 49.6 53.2
SegFormer-B4 [21] RGB 98.0 88.9 64.0 62.8 38.1 25.9 6.9 50.8 57.7 54.8

MFNet [7] RGB-T 96.9 65.9 58.9 42.9 29.9 9.9 0.0 25.2 27.7 39.7
SA-Gate [11] RGB-T 96.8 73.8 59.2 51.3 38.4 19.3 0.0 24.5 48.8 45.8
ACNet [14] RGB-T 96.7 79.4 64.7 52.7 32.9 28.4 0.8 16.9 44.4 46.3
RTFNet [44] RGB-T 98.5 87.4 70.3 62.7 45.3 29.8 0.0 29.1 55.7 53.2
AFNet [83] RGB-T 98.0 86.0 67.4 62.0 43.0 28.9 4.6 44.9 56.6 54.6

ABMDRNet [12] RGB-T 98.6 84.8 69.6 60.3 45.1 33.1 5.1 47.4 50.0 54.8
FEANet [61] RGB-T 98.3 87.8 71.1 61.1 46.5 22.1 6.6 55.3 48.9 55.3
GMNet [43] RGB-T 97.5 86.5 73.1 61.7 44.0 42.3 14.5 48.7 47.4 57.3

CMX (MiT-B2) [52] RGB-T 98.3 89.4 74.8 64.7 47.3 30.1 8.1 52.4 59.4 58.2
CMX (MiT-B4) [52] RGB-T 98.3 90.1 75.2 64.5 50.2 35.3 8.5 54.2 60.6 59.7

SGFN (MiT-B2) RGB-T 98.3 89.4 76.0 66.1 49.3 32.7 10.9 52.4 56.1 59.0
SGFN (MiT-B4) RGB-T 98.4 90.9 76.7 66.1 49.2 35.7 7.5 55.1 59.1 59.9
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As shown in Table 5, we conducted separate experiments for both daytime and
nighttime conditions. In the daytime scenario, our method achieves a comparable mIoU of
52.5% compared to CMX [52]. However, in nighttime conditions, despite the noise caused
by poor light, our model surpasses all other RGB-T methods, achieving an impressive
mIoU that exceeds 60.0%.

Table 5. Experiments on the nighttime and daytime images of the MFNet dataset.

Method Modal Daytime mIoU (%) Nighttime mIoU (%)

SegFormer-B2 [21] RGB 48.6 49.2
SegFormer-B4 [21] RGB 49.4 52.4

GMNet [43] RGB-T 49.0 57.7
MFNet [7] RGB-T 36.1 36.8

RTFNet [44] RGB-T 45.8 54.8
ABMDRNet [12] RGB-T 46.7 55.5

CMX (MiT-B2) [52] RGB-T 51.3 57.8
CMX (MiT-B4) [52] RGB-T 52.5 59.4

SGFN (MiT-B2) RGB-T 52.0 58.7
SGFN (MiT-B4) RGB-T 52.5 60.0

5.3. Results of the RGB-Polarization Dataset

In order to demonstrate the generality of our method, we conducted further evalua-
tions on the ZJU-RGB-P dataset [16]. By leveraging trichromatic representations, which
have proven to be more informative than monochromatic representations [16,84], we in-
troduced the trichromatic degree of linear polarization (DoLP) as supplementary data.
In Table 6, our approach utilizing MiT-B2 already surpasses all other RGB-P models,
achieving a mIoU of 92.8% and outperforming the previous leading model CMX by 0.2%.
Furthermore, our top-performing model with MiT-B4 attains a leading score of 93.1%,
validating the generalizability of our SGFN approach on RGB-P data.

Table 6. Results of the ZJU dataset for RGB-Polarization segmentation.

Method Modal mIoU (%)

SwiftNet [78] RGB 80.3
SegFormer-B2 [21] RGB 89.6

NLFNet [84] RGB-P 84.4
EAFNet [16] RGB-P 85.7

CMX (SegFormer-B2) [52] RGB-AoLP 92.0
CMX (SegFormer-B4) [52] RGB-AoLP 92.6
CMX (SegFormer-B2) [52] RGB-DoLP 92.2
CMX (SegFormer-B4) [52] RGB-DoLP 92.5

SGFN (SegFormer-B2) RGB-DoLP 92.8
SGFN (SegFormer-B4) RGB-DoLP 93.2

5.4. Results of the DELIVER Dataset

In Table 7, we compare our SGFN with recent models on the DELIVER dataset to study
the generalizability of our approach in RGB-Event and RGB-LiDAR. Overall, SGFN, with
MiT-B2, obtains state-of-the-art status for fusing RGB data and Event data, reaching the
same mIoU (57.48) as CMNeXt. Additionally, our model performs comparably to CMNeXt
in the fusion of RGB and LiDAR data. These results show that our SGM plays a positive
role in fusing dense-sparse data.

5.5. Ablation Study

In order to gain a deeper understanding of how the various components of our
architecture contribute to the segmentation task, we conducted a comprehensive set of
ablation studies. For a fair comparison, we took MiT-B2 as the backbone to evaluate the
performance of our model on the NYU Depth V2 dataset.
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Table 7. Results of the DELIVER datasets for RGB-Event and RGB-LiDAR semantic segmentation.

Method Modal Backbone mIoU (%)

HRFuser [85] RGB HRFormer-T 47.95
SegFormer [21] RGB MiT-B2 57.20

HRFuser [85] RGB-Event HRFormer-T 42.22
CMX [52] RGB-Event MiT-B2 56.52

CMNeXt [17] RGB-Event MiT-B2 57.48
SGFN RGB-Event MiT-B2 57.48

HRFuser [85] RGB-LiDAR HRFormer-T 43.13
CMX [52] RGB-LiDAR MiT-B2 56.37

CMNeXt [17] RGB-LiDAR MiT-B2 58.04
SGFN RGB-LiDAR MiT-B2 57.70

Ablation of the SGFN architecture. As shown in Table 8, we performed ablation
experiments on our SGFN architecture. If we remove the SGM module, the complementary
modalities are simply combined with average fusion. The results show a decrease in mIoU
by 1.5% compared to the baseline. This decline highlights the critical role of our SGM
in facilitating effective cross-modal fusion. Similarly, when removing the FRM module,
the modalities are extracted independently, without any interaction or influence on each
other during the process. This leads to a decline in the value by 2.2%, indicating the
importance of the FRM module in enabling robust cross-modal interactions between the
RGB feature and the supplementary feature.

Table 8. Albation on the SGFN architecture.

Structure mIoU (%)

SGFN (MiT-B2) 53.4
-without SGM 51.6 (−1.8)
-without FRM 50.6 (−2.8)
-with CDC instead of SGC 51.4 (−2.0)
-with vanilla instead of SGC 52.3 (−1.1)
-with SDC instead of SGC 52.6 (−0.8)

Comparing SGC with other Convolutions: In order to evaluate the effectiveness of
semantic guidance convolution (SGC) in cross-modal fusion, we conducted experiments
by replacing the SGC in SGM with two alternative convolutions: vanilla convolution [86]
and CDC. The results, as shown in Table 8, demonstrate that SGC outperforms vanilla
convolution by a margin of 1.0%. Interestingly, the CDC achieves a much lower score,
which may be attributed to its design for edge detection rather than semantic segmentation
tasks. These findings emphasize the irreplaceable role of our SGC in achieving accurate
multimodal semantic segmentation.

Impact of θ in SGC: As mentioned in Section 3.2.1, the parameter θ controls the
influence of the gradient-level details and intensity-level details in SGC. We systematically
varied θ as a hyperparameter in the range of 0 to 1 to investigate the impact of the semantic
guidance term on the overall performance of SGC. Notably, in Figure 4, when θ exceeds
0.3, SGC consistently outperforms vanilla convolution (θ = 0), indicating the superior
performance of SGC in capturing both gradient-level and intensity-level details. Since
the highest performance is observed when θ is set to 0.5, we set θ = 0.5 as the default
configuration for all experiments.

Impact of Kercel Size in SGC: In order to evaluate the impact of kernel size and
dilation rate, we conducted an ablation study. As shown in Table 9, increasing the size
of the kernel in SGC did not result in any improvement. This suggests that enlarging the
receptive fields may not be necessary for our SGC, as it primarily focuses on capturing
bi-modal interactions in the local region. Additionally, we observe negative effects when
increasing the dilation rate, which potentially results in the loss of local details.
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Figure 4. Impact of θ on SGC.

Table 9. Impact of the kernel size of the SGC operator.

Kernel Size Dilation Rate Pixel Acc. (%) mIoU (%)

3 × 3 1 78.5 53.4
3 × 3 3 78.2 53.1
3 × 3 5 77.9 52.7
5 × 5 1 78.4 53.3
7 × 7 1 78.2 52.9

5.6. Qualitative Analysis

Visualization of Prediction Results: Figure 5 displays the visual outcomes of our
cross-modal segmentation, indicating the proficiency of our method across various modali-
ties. Specifically, for RGB-D results, the SGM successfully discerns depth details and rightly
segments the bed. Conversely, the baseline, which relies exclusively on RGB images, mis-
classifies the bed as a sofa, thereby demonstrating the enhanced accuracy of our approach.
In the context of RGB-T segmentation, the baseline model struggles under low illumination
conditions, leading to erroneous segmentations. In contrast, our network overcomes this
challenge by effectively correcting the errors and achieving clearer distinctions between
objects and persons. Moreover, the integration of polarization cues in RGB-P segmentation
enables the more precise segmentation of car and glass areas, further enhancing the overall
performance of our method. Notably, our SGM exhibits robust generalization capabilities
in dynamic scenes, effectively accommodating moving objects and improving segmenta-
tion accuracy. By leveraging the advantages of LiDAR points, our network successfully
segments the complete structure of the bridge, whereas the baseline misclassifies it as part
of the sky. These qualitative analyses collectively demonstrate the strong generalization
ability of our approach across multiple modalities.

Visualization of Feature Maps: In order to demonstrate the efficacy of our semantic
guidance module (SGM), we visualized the feature maps extracted from the first layer of the
backbone. By comparing the feature maps before and after applying SGM, as depicted in
Figure 6, we can clearly see the remarkable ability of our semantic guidance fusion network
(SGFN) to accentuate edge details and effectively suppress noise for both RGB-D and RGB-
T tasks. In RGB-D tasks, depth features provide crucial geometric information that can
complement RGB features, enhancing edge performance. For RGB-T tasks, thermal images
become more important, especially in nighttime scenarios where RGB images may struggle
due to inadequate lighting conditions. The effective utilization of these complementary
modalities demonstrates the efficacy of our SGM.
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RGB X Ours Baseline Ground Truth
Figure 5. Visualization of qualitative comparison of RGB-only and our SGFN, arranged from top
to bottom, showcasing the results for the RGB-Depth, RGB-Thermal, RGB-Polarization (AoLP),
RGB-Event, and RGB-LiDAR semantic segmentation tasks.

T
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RGB

HHA

RGB
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Figure 6. Visualization of the feature maps before and after the application of the SGM.

6. Conclusions

In this study, we introduce a novel approach for universal cross-modal semantic
segmentation called semantic guidance fusion network (SGFN). Our method leverages
a vision transformer architecture to extract meaningful features from diverse modalities.
We put forward a cross-modal Semantic Guidance Feature Fusion Module (SG-FFM) for
comprehensive interactions between diverse modalities. SG-FFM utilizes a novel operator-
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level operation to augment the RGB feature in boundary awareness so as to enhance
the performance of multimodal fusion. Specifically, we calculate the semantic distance
of the supplementary information to guide the pixel-wise relevance derived from RGB
information. The extensive experiments conducted on six benchmark datasets, including
RGB-Depth, RGB-Thermal, RGB-Polarization, RGB-Event, and RGB-LiDAR combinations,
demonstrate the superior performance of our proposed SGFN compared to existing state-
of-the-art methods for cross-modal semantic segmentation.

In the future, our goal is to tackle the challenge of cross-modal fusion beyond the
current scope by adapting the SGFN framework to accommodate the integration of three
or more distinct sensor data types.
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