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Abstract: Federated learning (FL) is an emerging distributed learning technique through which
models can be trained using the data collected by user devices in resource-constrained situations
while protecting user privacy. However, FL has three main limitations: First, the parameter server (PS),
which aggregates the local models that are trained using local user data, is typically far from users.
The large distance may burden the path links between the PS and local nodes, thereby increasing the
consumption of the network and computing resources. Second, user device resources are limited,
but this aspect is not considered in the training of the local model and transmission of the model
parameters. Third, the PS-side links tend to become highly loaded as the number of participating
clients increases. The links become congested owing to the large size of model parameters. In this
study, we propose a resource-efficient FL scheme. We follow the Pareto optimality concept with the
biased client selection to limit client participation, thereby ensuring efficient resource consumption
and rapid model convergence. In addition, we propose a hierarchical structure with location-based
clustering for device-to-device communication using k-means clustering. Simulation results show
that with prate at 0.75, the proposed scheme effectively reduced transmitted and received network
traffic by 75.89% and 78.77%, respectively, compared to the FedAvg method. It also achieves faster
model convergence compared to other FL mechanisms, such as FedAvg and D2D-FedAvg.

Keywords: federated learning; Pareto optimality; mobile communication

1. Introduction

The accelerated development of big data has resulted in the increasing application of
artificial intelligence (AI) technologies. The International Data Corporation has predicted
that the amount of data generated through Internet of things (IoT) devices will reach
79.4 ZB in 2025 [1], exceeding the capacities of IoT and mobile devices worldwide [2]. Most
of the data generated by a device are processed locally or in a remote cloud server. However,
this process involves three main problems pertaining to the constraints associated with real
environments and remote cloud servers [3]:

1. Network Congestion: network congestion on a remote cloud server occurs when
numerous user devices simultaneously send data to the server.

2. Privacy Leak: private user experience data may be leaked due to malicious network
attacks during transmission.

3. Resource Constraints: the capacity of network resources (e.g., wireless channel sub-
carriers and bandwidth) and user devices (e.g., computing performances and battery
life) is limited.
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Mobile edge computing (MEC) has emerged as a solution to these problems because
it can process and store the big data generated by devices. MEC divides traffic and
computational processes from a remote cloud server to an edge server, thereby reducing
the distance between the server and clients. Specifically, instead of directly sending all the
data to a remote cloud server for processing and storage, MEC analyzes, processes, and
stores data at an edge server. MEC can reduce the latency and real-time processing time for
high-bandwidth applications and even eliminate certain resource constraints associated
with client devices. In addition, as the big data generated by devices can be used by various
AI applications (e.g., autonomous driving, medical tests, and recommendation systems),
machine learning (ML) tasks constitute the major workload in MEC [4].

However, MEC cannot solve the privacy leak problem because the personal data
obtained from user devices are stored or processed on an edge server. Furthermore, the
network congestion issue is not resolved because large amounts of data are transmitted for
ML tasks. In this context, federated learning (FL) has attracted attention as a distributed
learning method to perform training over large amounts of generated data and update
models on local nodes (e.g., mobile devices). In this manner, FL can alleviate network
congestion, prevent privacy leaks, and reduce resource consumption for computation and
communication [5]. Furthermore, the integration of FL with MEC will be a pivotal step
towards achieving ubiquitous intelligence in 6G networks. This combination will enable
more efficient utilization of the vast amounts of data generated by devices through MEC [6].
Notably, in FL, the size of model parameters updated by training local devices, which
may be billions in number, can reach tens of megabytes [7]. Consequently, a bottleneck
may occur during the aggregation of model parameters in a parameter server (PS). These
bottlenecks may be exacerbated by conventional FL frameworks as they are based on direct
communication between clients and a PS. Consequently, it is difficult to achieve model
convergence because of the error in transmitting model parameters. This aspect adversely
affects the model scalability, and thus, more communication rounds and local training are
required to optimize the model [8].

Device-to-device (D2D) communication is a localized version of peer-to-peer com-
munication that enables direct access among local devices without base stations or access
points. This framework effectively reduces communication resource consumption and
network delay through the use of short-distance wireless communication and increases
the coverage of systems [9]. D2D communication can overcome the above-mentioned
problems because it has a hierarchical structure in the FL architecture and can decrease
the communication distance between mobile devices and a PS, thereby optimizing the
consumption of communication resources.

The preliminary version of this study was presented as a conference paper [10]. We
proposed an FL framework with a hierarchical structure, in which the model parameters
of local nodes in a cluster are aggregated to a leader client (LC), and the LCs send the
aggregated model parameters to a PS. Considering the potential of D2D communication,
we developed an FL mechanism to exploit the benefits of resource consumption and
short-distance communication delay. Clusters among nodes were generated via k-means
clustering. In the clusters formed by k-means clustering, clients communicate with each
other within a predefined threshold distance for D2D communications, and only a subset
of these clients participate in FL. In this paper, We used the Pareto principle to show
that the participation of a small number of clients according to a biased criterion can
improve model convergence and alleviate the bottleneck in aggregating model parameters.
Enhancing the preliminary version, in this study, Pareto optimality is newly employed to
ensure reasonable client selection by exploiting the client resource states and training losses.
Moreover, we have added credibility through additional experiments in this paper. The
main contributions of this study can be summarized as follows:

• We propose an FL mechanism with a hierarchical D2D structure by clustering clients
on the basis of the location and communication range of each client. This mechanism
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can effectively reduce the wireless communication traffic generated when the FL
model is updated for each client.

• We propose a biased client-selection method for a clustered structure by using Pareto
optimality. This client-selection method employs high training loss values to accelerate
model convergence and reduce resource consumption.

2. Related Work

FL is an alternative distributed ML method. FL differs from conventional distributed
ML in that it involves an extremely large number of clients with heterogeneous and un-
balanced local data distributions. A key task of FL is the generation of learning models
using the data collected from clients. These data are stored in local devices, which can help
prevent privacy leaks and avoid model divergence due to insufficient data and failure to
participate owing to a lack of resources (e.g., wireless channel subcarriers, bandwidth, com-
puting performance, and battery life). The convergence of a learning model and resource
consumption in FL exhibit a trade-off relationship. Thus, many researchers have attempted
to improve the efficiency of FL by simultaneously optimizing its performance aspects.

Federated averaging (FedAvg) [11], which is the most conventional FL mechanism,
adjusts the batch size and epochs of federated stochastic gradient descent to average the
gradient descent generated from a learning process, thereby significantly reducing the
overall number of communication rounds by iterating more local updates on a client
device. FedAsync [12] is an asynchronous FL mechanism for updating global models, in
which the mixing weight is adaptively set as a function of staleness. Notably, in [11,12],
experiments were conducted on non-iid data, i.e., data that are not independently and
identically distributed. However, a theoretical guarantee could not be realized in a convex
optimization setting. In [13], convergence guarantee for FedAvg was ensured without the
impractical assumptions that the data are iid and all clients are available.

A large number of participating clients in FL may lead to server-side congestion
and bottlenecks in aggregating client model parameters. Additionally, a large number of
participating clients can affect the model convergence for non-iid data [13]. By appropriately
selecting the participating clients, the above-mentioned problems can be solved, and
model convergence can be improved. Unlike FedAvg, in which clients are randomly
selected, certain researchers [14] considered clients with high loss values and proved that
biased client selection is directly related to model convergence. The FedCS FL protocol
was developed [15] for selecting clients within a deadline to manage the resources of
heterogeneous clients. This method employed biased client selection; however, it did
not ensure the convergence of models for non-iid and heterogeneous data. Furthermore,
stragglers may be present in a mobile communication or IoT environment, which cannot
participate in FL because the network connection is not persistent or a client device has
shut down. The presence of stragglers may hinder model convergence. Therefore, the
FLANP FL framework was proposed [16] to alleviate the effect of stragglers by adaptively
selecting clients in different communication rounds according to their computation speeds.

FL mechanisms with various structures have been proposed. In the hierarchical FL
(HFL) mechanism proposed in [17–19], a client and server communicated through an
intermediate medium rather than a direct communication structure. In [19], the hierarchical
edge federated learning (HED-FL) model enhances traditional FL with a multi-layered
edge node architecture for energy-efficient learning. Two heuristic methods were also
introduced to assess the effects of static and dynamic round execution across these layers.
Moreover, a hierarchical cluster-based structure was developed [17], which divided clients
into several clusters based on resource constraints. A leader node (LN) was elected, which
was similar to an intermediate server. Only the LN directly communicated with a PS. Thus,
the bottleneck that may have occurred in the PS was eliminated, and the consumption of
communication resources was reduced. Similarly, an edge server was deployed between a
PS and the clients [18]. The edge association problem was solved using an evolutionary
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game between the clients and the edge server. The communication resource allocation
problem between the edge server and PS was solved using a Stackelberg differential game.

D2D and peer-to-peer (P2P) communication has been introduced to reduce the commu-
nication overhead for the efficient transmission of model parameters. Certain researchers [20]
examined a social attribute that was used for k-means clustering in D2D communication.
A software-defined networking controller was used for clustering by calculating the social
attributes between devices, rather than clustering with an unspecified majority. Other
researchers proposed algorithms for D2D communication with resource allocation [21],
which could efficiently manage resources and interference. Zhang et al. [22] proposed
a D2D-assisted hierarchical FL scheme to reduce the communication overhead in D2D
environments. Semi-decentralized federated edge learning (SD-FEEL) [23] proposes a
structure that aggregates clients’ model parameters and exchanges model parameters with
neighboring edge servers, followed by broadcasting the updated models. Two timescale
hybrid FL (TT-HF) [24] extends the FL architecture through aperiodic local and global
model consensus procedures based on D2D communications, proposing a new model of
gradient diversity and an adaptive control algorithm. In another framework [25], clients
communicated with one another without a server for aggregating model parameters in FL.
Moreover, topology construction was conducted through deep reinforcement learning for
P2P FL [26].

The novelty of our framework lies in the following aspects: In [22,24,25], they propose
FL utilizing D2D communication, and [23] forms clusters for aggregating clients’ model
parameters, similar to our work. However, we have introduced the k-means clustering
technique for the formation of D2D communication networks. This approach enables the
selection of leader clients located in optimal positions without exceeding the communica-
tion distance threshold. By collecting and transmitting model parameters within clusters, it
offers an ideal solution to alleviate server-side bottleneck issues. In [27], Min-Max Pareto
optimization was used to manage the trade-off relationship between the algorithmic fair-
ness and performance inconsistency for each client. FedMGDA+ [28], which is similar to
the framework proposed in [27], realizes the multi-objective optimization of robustness,
fairness, and accuracy through the Pareto stationary solution. In contrast, we consider that
the model performance is proportional to the client’s resource consumption. Therefore,
we solve the target problem by using the Pareto optimality and considering the trade-off
relationship between the model convergence and resource consumption. In this manner,
the proposed method is different from those described in [27,28]: A comparative analysis
of FL methods, including FedPO, is encapsulated in Table 1, which delineates the distinct
communication method, hierarchical architecture, and client selection strategies employed
by each technique.

Table 1. Summary of FL technique characteristics.

Method Communication Method Hierarchical Architecture Client Selection

FedAvg [11] central
FedAsync [12] central
POWER-OF-CHOICE Strategy [14] central ✓
FedCS [15] central ✓
HFL [17–19] ✓
D2D-assisted hierarchical FL [22] D2D ✓
SD-FEEL [23] Edge Server
TT-HF [24] D2D
P2P FL [26] P2P
FedPO D2D ✓ ✓

3. Preliminaries
3.1. A Brief Overview on Federated Learning

FL performs ML from a federation of clients. The clients train a model using their data
and update the training model using gradient descent. After training, the updated model
parameters are sent to a PS. The PS updates a global model by aggregating the model
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parameters trained by each client and calculating the weighted averages according to the
number of data samples of each client. The model is defined as the loss function generated
by model parameter vector w as fi(xi, yi, w), where i denotes the input data, xi is a feature,
and yi is a label. Considering the FL framework with K clients, we define Dk as the local
data sample for client k. Then, the loss function for each client on the local dataset can be
expressed as in Equation (1), where Nk is the size of Dk (Nk = |Dk|).

F(w) =
1

∑K
k=1 Nk

K

∑
k=1

∑
xi ,yi∈Dk

fi(xi, yi, w) (1)

Client k updates its gradient descent for each local learning during round T, where the
learning rate is η > 0. The local model parameter in round t is wt

k, defined in Equation (2).

g(wt
k) =

1
Nk

∑
xi ,yi∈Dk

∇ f (xi, yi, wt
k), wt

k = wt−1
k − η · g(wt−1

k ) (2)

PS aggregates wt
k for certain clients, and the weighted averages used to update the global

model are

wt+1
ps = wt

ps −
1

NK

K

∑
k=1

Nk · wt
k (3)

The goal is to find a model parameter that can converge for all clients and minimize the
loss function:

w∗ = argmin
w

(F(w)) (4)

3.2. Pareto Principle and Pareto Optimality

The Pareto principle, named after Italian economist Vilfredo Pareto, posits that 80% of
all outcomes result from 20% of the causes. Originally observed in the early 20th century to
describe the unequal distribution of wealth in Italy—where 20% of the population owned
80% of the land. In business, it is often used to focus on the most profitable products or the
most engaged customers;

In the context of FL, we leverage this principle to allow a smaller but more crucial
subset of clients to make significant contributions to the model’s convergence while also
alleviating some communication issues. This principle has shown us that not all clients
contribute equally, but it does not offer guidance on how to strike a balance between various
factors such as computational power, data quality, and contribution to model accuracy.

That is where the concept of Pareto optimality, which asserts that a society achieves
maximum satisfaction when no individual can be made better off without making another
individual worse off [29], comes into play. In contrast to the Pareto principle, which
highlights inequality in contributions, Pareto optimality provides a framework for making
trade-offs among competing objectives.

For instance, focusing solely on clients with high computational power could expedite
the model’s convergence but at the cost of underrepresenting clients with lower resources,
thereby creating a biased model. Pareto optimality seeks to mitigate this by identifying
a set of clients that provides the most balanced trade-off between model accuracy and
representational fairness.

3.2.1. Basic Definition

The concept of Pareto optimality in a multi-objective optimization context refers to a
state being considered Pareto optimal if no other feasible states exist that improve at least
one objective without worsening any of the other objectives. Mathematically, let A be a set
of n-dimensional vectors representing possible states. A vector a ∈ A is considered Pareto
optimal if there does not exist any vector b ∈ A that dominates a. Formally, the definition
is as follows:
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∄b ∈ A s.t. bi ≥ ai ∀i, and bi > ai for at least one i

3.2.2. Pareto Front

The Pareto front comprises all Pareto optimal points in the decision space, serving
as an essential reference for decision-makers in multi-objective optimization scenarios.
Mathematically, for a set A and objective functions f1, f2, . . . , fk, a point a belongs to the
Pareto front if:

∀b ∈ A,∄c ∈ A s.t. fi(c) ≥ fi(b) ∀i, and f j(c) > f j(b) for at least one j

Here, fi and f j are specific objectives among the k different objectives under considera-
tion. This ensures that each point on the Pareto front is not dominated by any other point
across all objectives [30].

4. FedPO: Federated Learning with Pareto Optimality
4.1. Problem Formulation

FedPO is an HFL method that uses biased client selection to identify the participating
clients by solving for the Pareto optimality using the training loss and resource state
of clients.

In FL, a trade-off relationship exists between the model convergence and resource
consumption. More local training or communication rounds for aggregation are required
to increase the convergence speed of the model, resulting in the consumption of large
amounts of network and computational resources. We use a method [14] that selects clients
with a high loss value to accelerate model convergence. Specifically, we select the client
with the optimal state of model convergence (high loss value) and resources, following
Pareto optimality. We assume a two-dimensional Euclidean space R2, ordered by a Pareto
cone R2

+, to solve a Pareto optimality point for resources and loss. In addition, we assume
that E is a locally convex space, and CE is a convex pointed cone that defines a partial order
(≥CE) in E [29].

Definition 1. We define A = {(α, β) ⊆ R2 : α ≥ 0, β ≥ 0 , where α and β are the resource state
and loss value for a client, respectively}.

1. We assume an elliptic function x2

a2 + y2

b2 = 1 to illustrate Pareto optimality.
2. Point c ∈ A is an ideal maximum point of A if (α, β) ≥ CE for every (α, β) ∈ A and closest

to the elliptic function.

In Definition 1, a is the highest resource state of the client in set R = {r1, ..., rk}, and
the resource states are modeled to have a Gaussian distribution according to [31]. b is the
server’s training loss value for the model parameters wt

ps, which are aggregated at time t. a
and b can be defined as follows:

a = max(rt
k) (5)

b = f (xi, yi, wt
ps) (6)

We consider the client at point c that satisfies Definition 1 as the optimal client for
participating in FL.

4.2. FedPO Framework

Figure 1 shows the proposed system model, which consists of clients, LCs, and the PS.
The clients are represented by set K = {1, . . . , k}, where k is the number of clients. A client
updates model parameter wk using the local data generated through user experience. The
set of locations for client K is represented by Location = {l1, . . . , lk}. The clusters generated
via k-means clustering are expressed as M = {M1, . . . , Mj}, where j is the number of
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generated clusters and Mi = {x| x ⊆ K}. Mi is mutually disjoint (∀Mi ∈ M, if i ̸=
j then Mi ∩ Mj = ∅). A centroid is a point located at the center of a cluster when j clusters
are generated, and each centroid in M can be represented by C = {c1, . . . , cj}. The groups of
LCs are expressed as LeaderClients = {lc1, . . . , lcj}. In a cluster, the client whose location is
the closest to the centroid is selected as an LC, which acts as an intermediate server for HFL
as certain clients are selected. Thus, LCs aggregate the updated model parameters of clients
and transmit them to the server. The PS updates the global model using the weighted
average of the aggregated model parameters, wLC, received from all LCs. The PS calculates
Pareto optimality to select the clients that will participate in the next round of training
for the LCs. In addition, in accordance with the Pareto principle, the proposed method
involves fewer clients compared with those in conventional FL, thereby ensuring model
convergence for heterogeneous data and the efficient transmission of model parameters.
The details of the proposed method are presented in the following text.

Figure 1. System model.

1. K-means clustering for D2D communication: Compared with short-distance wireless
communication [9], D2D communication effectively reduces resource consumption
and network delay. We use D2D communication for transmitting the model parame-
ters, training loss, and resource state of clients to the LCs for HFL. The PS builds an in-
tranetwork for D2D communication using k-means clustering, based on the locations
of clients. distortionj is the average communication distance between intraclients ac-
cording to the number of clusters j: Distortion = {distortion1, . . . , distortionj}, where
j does not exceed K/2 as the pairing for D2D communication. Additionally, we con-
sider that at least two clients exist in each cluster. Therefore, when the number of
clusters is j, the average Euclidean communication distance from lcj to the location of
each client k belonging to cluster Mj is expressed as follows:

distortionj =
1
j

j

∑
i=1

∑
k∈Mj

1
|Mi|

∥lk − ci∥2 (7)
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A threshold value is set for the communication distance. The average communication
distance from each client in the clusters does not exceed the threshold, and the optimal
j is the maximum value.

j = argmax
j

(|M|), s.t. distortionj ≤ threshold (8)

2. HFL: Similar to [17,22], we regard LCs as intermediate servers. In a cluster, the client
located closest to the centroid is selected as the LC to minimize the distance between
the LC and other clients in the cluster. The model parameters of the clients belonging
to each cluster are transmitted to the LCs. The LCs aggregate the model parameters
in round t and perform weighted averaging, as follows:

wt
Mj

=
1

NMj
∑

k∈Mj

wt
k Nk, NMj = ∑

k∈Mj

Nk (9)

Thereafter, each LC sends the averaged model parameters to the PS, which aggre-
gates these model parameters. At time t, the global model parameters in the PS are
wt

ps =
1

NM
∑

j
i=1 wt

Mi
NMi .

3. Biased client selection for Pareto principle and optimality: We use the Pareto principle
and optimality to ensure model convergence and to optimize the resource consump-
tion. Figure 2 shows the accuracy of biased and unbiased client-selection methods
in FL. On the MNIST and FashionMNIST datasets, biased client selection leads to
faster model convergence in the initial stage, and its accuracy is higher than that of
unbiased client selection. This result can be interpreted considering the Pareto princi-
ple: a small number of clients selected through biased client selection can produce
sufficient outcomes. Furthermore, we select clients in accordance with the Pareto
optimality function based on two criteria: loss value and resource state. Therefore,
according to the convergence analysis in [14], the loss value is adopted as the criterion
for using Pareto optimality for client selection. The other criterion is the state of
client resources because all clients have finite network and computational resources
in actual environments.

(a) MNIST (b) FMNIST

Figure 2. Example of client selection with model accuracy when different methods are applied
in LR learning on (a) MNIST and (b) FashionMNIST in a distributed setting with 20 clients and a
participation rate (prate) of 0.25.

4.3. Algorithm

The process flow of FedPO is presented as Algorithm 1. In the case of FedAvg,
the model parameters must be directly sent to all clients. In contrast, in the proposed
method, the model parameters are sent only to the LCs by adopting HFL. In Algorithm 1,
j, M, and wt

Mj
are the number of clusters, set of clusters, and group model parameters
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of Mj in the t-th round, respectively. The LocationBasedClusterting() procedure in line 3
of Algorithm 1 is presented as Algorithm 2. We build clusters for D2D communication
according to client locations using k-means clustering. Algorithm 2 is used to identify the
optimal number of clusters and adjust the limit on the communication distance to prevent
resource wastage in D2D communication. As the proposed structure is HFL (lines 4 and
5 in Algorithm 1), the model parameters of the PS are transmitted to clients through lcj.
In addition, lcj transmits the model parameters received by the PS to clients at a low cost
using D2D communication [9]. The SelectClient() procedure in line 8 in Algorithm 1 selects
participating clients (i.e., SelectedClients) for FL, which consist of subset K presented in
Algorithm 3. The PS selects the clients that are closest to the elliptic function through Pareto
optimality or whose loss value is larger than that of the PS. The number of participating
clients is adjusted by applying prate to each cluster. However, in Algorithm 3, client k must
be selected if its loss is larger than that of the global model.

Algorithm 1: Federated Learning with Pareto Optimality
Input: participation rate prate, random location set of clients location, threshold for the

distance between nodes threshold, client set K
1: Initialize model w0

ps
2: for Communication round t = 1, 2, . . . , T do
3: PS performs LocationBasedClustering(K)
4: PS sends global model wt

ps to LC
5: lcj sends wt

ps to each client belonging to cluster Mj via D2D communication
6: At this point, wt

ps = wt
M

7: Each client belonging to cluster Mj trains wt
Mj

and updates it using its local data

8: PS performs SelectClient(rt
k, f (xi, yi, wt

k), prate)
9: SelectedClients send wt

k to lcj
10: lcj aggregates SelectedClients’

wt
Mj

= 1
NMj

∑k∈Mj
wt

k Nk via D2D communication

11: PS aggregates and updates model
wt+1

ps = 1
NM

∑
j
i=1 wt

Mi
NMi

12: end for

Algorithm 2: LocationBasedClustering
Input: Client set K

1: Clients are clustered based on their location using k-means clustering
2: Set of cluster M is generated
3: distortionj =

1
j ∑

j
i=1 ∑k∈Mj

1
|Mi |

∥lk − ci∥2

4: if distortionj ≤ threshold then
5: j = argmaxj(|M|)
6: end if
7: Client closest to the centroid of cluster Mj is selected as lcj

Algorithm 3: SelectClient

Input: Resource state rt
k, f (xi, yi, wt

k), participation fraction prate
1: Clients belonging to Mj send loss value f (xi, yi, wt

k) and resource state rt
k to lcj

2: PS selects clients following Pareto optimality with Definition 1
3: if f (xi, yi, wt

k) ≥ f (xi, yi, wt
ps) then

4: lcj receives model parameters from a fraction of clients within |K| * prate based on
the high loss value

5: end if
Output: SelectedClients
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5. Performance Evaluation
5.1. Simulation Settings

Environment. To test the model convergence, we simulate FL using PyTorch and
measure the networking overhead using an off-the-shelf network simulation tool named
OPNET. We assume a D2D communication network in an area of 2000 × 2000 m. Addi-
tionally, we assume that the base station (i.e., PS) is located at the centroid of the network.
According to Algorithm 2, all clients in the cluster are located within a one-hop communi-
cation distance that does not exceed the threshold. The feasible communication distance
(i.e., threshold) between clients is referred to from [22,32]. We select FedAvg [11], the most
conventional method in FL, which involves aggregating the average of model parameters
after multiple local trainings, and D2D-FedAvg [22], the system most similar to ours with
features including D2D communication and a hierarchical structure, as our comparison
targets. Moreover, we use the simulation parameters specified in [22] to compare the
network overhead with those of FedAvg, D2D-FedAvg, and FedPO as detailed in Table 2.
For the experiments, resources are defined to consist of the computational and communi-
cation resources of a client. The distribution of client resources is modeled as a Gaussian
distribution, as mentioned previously. We assume that one resource unit is consumed
considering the distance over which a client communicates with the PS and the basic
resources consumed during the communication and computational processes [11,12].

Table 2. Parameters for D2D network simulation.

Parameter Value

Number of clients 100
Max. transmit power of the client, Pmax|dB 23 dBm

Noise power level −174 dBm/Hz
Transmit power of the parameter server 43 dBm

Maximum distance between LC and clients 200 m
threshold

Model and Datasets. The learning model is tested using logistic regression (LR)
and long short-term memory (LSTM), with the training data derived from MNIST and
FashionMNIST datasets. Figure 3 shows the configuration using MNIST data, with different
classes (typically, four classes) of clients with local data introduced to reflect the non-iid
situation in the experiments. Disproportionate amounts of data are assumed to be held by
clients, characteristic of non-iid situations.

Figure 3. Class per 20 clients and unbalances in MNIST.
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5.2. Simulation Results

Resource Efficiency. The proportion of traffic transmitted and received by the server-
side of the trained model is shown in Figure 4a,b, respectively. The number of participating
clients is |K| = 100, iterations are performed for T = 1000 rounds, and the traffic values
of FedAvg, D2D-FedAvg, and FedPO are compared. Figure 4a shows that for FedAvg,
the transmission traffic is similar for all prate values, because the model parameters are
transmitted to all clients in every round. Furthermore, in the case of D2D-FedAvg, as the
number of participating clients in FL increases according to prate, residual clients that
cannot participate in the grouping process for D2D communication and thus communicate
directly with the PS emerge, leading to slightly higher amounts of transmission traffic
compared with those of FedPO. This phenomenon occurs because FedPO has a fixed
amount of server-side transmission due to the use of location-based k-means clustering
for the clients. The same result can be observed in Figure 4b, which represents the amount
of traffic received. In the case of FedAvg, the number of clients sending data to the PS
increases as prate increases. In contrast, both D2D-FedAvg and FedPO have an intermediate
transmitter (e.g., MUE and LC) in the communication process, resulting in less traffic
received by the server. This configuration can partially alleviate the potential bottleneck
and delay problems, depending on the amount of data received by the PS. The exact ratios
corresponding to Figure 4 are listed in Table 3. In terms of the transmitted traffic from the
server, the results in Table 3 show that D2D-FedAvg and FedPO have lower overhead than
FedAvg, which transmits the parameters to all clients. D2D-FedAvg shows a slight increase
in overhead with increasing participation rate, with values of 23.57%, 28.05%, and 37.99%.
In contrast, FedPO maintains similar levels of overhead for all participation rates, with
values of 23.73%, 23.67%, and 24.11%. In terms of the received traffic from the server, both
D2D-FedAvg and FedPO exhibit similar overhead as that of FedAvg with a participation
rate of 0.75. These results indicate the superiority of D2D-FedAvg and FedPO.

(a)

(b)

Figure 4. Server-side traffic for different values of prates. (a) Server-side transmitted traffic for
different values of prates. (b) Server-side received traffic for different values of prates.
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Table 3. Server-side traffic ratios of D2D-FedAvg, FedPO, and FedAvg.

Schemes Prate Transmitted (%) Received (%)

FedAvg 0.25 100 28.12
0.50 - 70.65
0.75 - 100

D2D-FedAvg 0.25 23.57 20.94
0.50 28.05 21.63
0.75 37.99 22.37

FedPO 0.25 23.73 21.09
0.50 23.67 21.23
0.75 24.11 21.27

In FL, the clients play a crucial role in the learning process as they consume both
computational and communication resources. Computational resources are consumed
during model training using local data, whereas communication resources are used for
model parameter communication. The amounts of resources consumed and remaining
for each client after each round represent important criteria for client participation and
selection in the next round. To analyze the effect of different FL methods on the resource
states of the clients, Figure 5 shows the sum of the remaining resources of clients in
each round. We compare FedPO with FedAvg as both D2D-FedAvg and FedAvg have
similar algorithms and resource consumption levels. FedPO outperforms FedAvg in
terms of the resource conservation of clients. This phenomenon occurs owing to the
Pareto optimality-based client selection method used in FedPO, which takes into account
the client’s available resources and loss during training. Consequently, FedPO selects
those clients who will participate in FL without compromising their resources and model
convergence and increases the remaining resources of the clients.

Figure 5. Sum of remaining resources of clients at each round.

Model Performance. Figures 6 and 7 show the model accuracies of FedAvg, D2D-
FedAvg, and FedPO, where the LR and LSTM learning models are trained using the MNIST
dataset with prate = 0.25, 0.50, and 0.75. We set a small number of clients (|K| = 20) to
clearly demonstrate that biased client selection is superior to unbiased client selection.
Figure 6 shows the results of the first 100 rounds out of 1000 rounds to demonstrate the
initial convergence with the LR training model. When prate = 0.25, the accuracy of the
initial training differs by that T = 100 by 14%. For the remaining values of prate, similar
model accuracy is obtained as the number of participating clients increases. Figure 7 shows
the accuracy of the LSTM training model for T = 1000 rounds on the MNIST dataset. Unlike
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that for the LR, the effectiveness of FedPO is considerably higher than those of FedAvg
and D2D-FedAvg when prate = 0.25 and 0.50. The results for FashionMNIST are shown in
Figure 8. Additionally, the results show that FedPO achieves higher accuracy with fewer
participating clients, particularly excelling in the case of LSTM models, similar to the results
with MNIST.

(a)

(b)

(c)

Figure 6. Model accuracy on MNIST for different values of prate with LR training model. (a) prate = 0.25.
(b) prate = 0.50. (c) prate = 0.75.
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(a)

(b)

(c)

Figure 7. Model accuracy on MNIST for different values of prate with LSTM training model.
(a) prate = 0.25. (b) prate = 0.50. (c) prate = 0.75.

(a) prate = 0.25 (b) prate = 0.50

Figure 8. Cont.
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(c) prate = 0.75 (d) prate = 0.25

(e) prate = 0.50 (f) prate = 0.75

Figure 8. Model accuracy on FMNIST for different values of prate and learning models. (a–c) LR and
(d–f) LSTM.

6. Conclusions and Future Work

This paper proposes a new FL scheme named FedPO that uses k-means clustering for
D2D communication and utilizes Pareto optimality to select participating clients based on
their resource state and loss. The effectiveness of the proposed scheme is experimentally
evaluated through experiments in comparison with two methods: FedAvg, the conventional
centralized method, and D2D-FedAvg, a modified version for D2D communications.

Thus, FedPO is a promising approach for addressing bottlenecks, reducing server-
side traffic, and saving client resources. Additionally, this method achieves faster model
convergence in the initial rounds compared with the other methods.

In future work, additional experiments should be performed to evaluate the effect
of environmental factors, such as communication instability and disconnection, on the
FL performance. Furthermore, although we use Pareto optimality to select clients based
on their loss and resource state, a wider range of considerations, such as battery life,
connectivity, and computational capabilities of devices in real-world settings, may be
considered for client selection. In addition, when selecting the threshold in k-means
clustering, factors that may affect model convergence may be considered in addition to
communication aspects.

Future research directions for FedPO implementation can be summarized as follows:

• Considering the effect of environmental factors on the FL performance: future work
can be aimed at examining the effects of factors such as communication instability,
network disconnection, and device heterogeneity on the FL performance.

• Optimizing the clustering approach: when selecting the threshold for k-means cluster-
ing, other factors affecting the model convergence, such as the data distribution and
number of clusters, can be considered.
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• Evaluating the performance of the proposed approach in real-world scenarios: The
experiments in this study are conducted in simulated environments. In future work,
the performance of the proposed approach can be evaluated in real-world settings to
assess its practicality and effectiveness.
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