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Abstract: ECG classification or heartbeat classification is an extremely valuable tool in cardiology.
Deep learning-based techniques for the analysis of ECG signals assist human experts in the timely
diagnosis of cardiac diseases and help save precious lives. This research aims at digitizing a dataset
of images of ECG records into time series signals and then applying deep learning (DL) techniques
on the digitized dataset. State-of-the-art DL techniques are proposed for the classification of the ECG
signals into different cardiac classes. Multiple DL models, including a convolutional neural network
(CNN), a long short-term memory (LSTM) network, and a self-supervised learning (SSL)-based
model using autoencoders are explored and compared in this study. The models are trained on the
dataset generated from ECG plots of patients from various healthcare institutes in Pakistan. First,
the ECG images are digitized, segmenting the lead II heartbeats, and then the digitized signals are
passed to the proposed deep learning models for classification. Among the different DL models used
in this study, the proposed CNN model achieves the highest accuracy of ∼92%. The proposed model
is highly accurate and provides fast inference for real-time and direct monitoring of ECG signals that
are captured from the electrodes (sensors) placed on different parts of the body. Using the digitized
form of ECG signals instead of images for the classification of cardiac arrhythmia allows cardiologists
to utilize DL models directly on ECG signals from an ECG machine for the real-time and accurate
monitoring of ECGs.

Keywords: ECG classification; deep learning; digitization; arrhythmia; self-supervised learning

1. Introduction

Heart diseases, also known as cardiovascular diseases (CVDs), are the most common
and leading causes of mortality worldwide. In the year 2019, approximately 18 million
deaths were attributed to CVDs, which was 32% or nearly one-third of total deaths glob-
ally [1]. Diagnosing heart disease in its early stages can save a large number of precious
lives. Advancements in technology, especially artificial intelligence (AI), have revolution-
ized every domain of life, including healthcare, where it is assisting human experts in
diagnosis, treatment, and medical care [2]. In heart disease diagnostics or cardiology, elec-
trocardiograms (ECGs) play a pivotal role in providing necessary information about heart
conditions. The manual analysis of ECGs is not only time-consuming but also requires a
high level of human expertise that only comes after years of experience. Thus, an accurate
mechanism for the automated analysis of ECGs is crucial for improving and expanding
quality healthcare services for patients with CVDs.
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An ECG is the main source of information about the heartbeat rhythm that helps med-
ical experts or cardiologists quickly screen patients for heart diseases. An ECG represents
the electrical activity of the heart in the form of a waveform graph recorded through elec-
trodes placed on different parts of the body (arms, chest, and legs). A specific combination
of these electrodes is known as a lead. The simplest lead is determined by two electrodes, in
which one electrode acts as a positive and the other one as a negative, but in general, two or
three electrodes in combination form a lead. The most common standard is a 12-lead ECG,
which is recorded using 10 electrodes. The placement of various electrodes on the body for
a 12-lead ECG is shown in Figure 1, and the output of a 12-lead ECG of a healthy person is
shown in Figure 2 on graph paper. A heartbeat, also called a cardiac cycle, has different
components in an ECG plot [3], as shown in Figure 3. In a complete heartbeat, the P wave
represents the contraction of the heart, or atrial depolarization; the QRS complex represents
ventricular depolarization; and the T wave shows the relaxation phase, or ventricular
repolarization. The heartbeat’s structures provide valuable information about the heart’s
condition and functioning, assisting healthcare providers in diagnosing various cardiac
conditions, such as arrhythmias and cardiac diseases [4–6].

Figure 1. Placement of electrodes on the body for a 12-lead ECG [7].
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Figure 2. A 12-lead ECG record of a normal person showing heartbeats from a combination of
different electrodes [8].

Figure 3. A normal ECG heartbeat showing different waves and segments [9].

ECG classification is an important task in cardiology and biomedical research [10]. It
involves classifying an ECG or the heartbeats into different heart conditions based on the
structure of the heartbeats from one or multiple leads. The most simple classification task
performed on an ECG is to classify its output into binary classes, i.e., normal vs. abnor-
mal [11]. However, there are multiple arrhythmia conditions and heart diseases that need
to be individually identified for accurate diagnosis [3]. ECG classification plays a significant
role in arrhythmia detection, assessing the risk of heart diseases, and analyzing fitness
and performance in sports [12]. However, the main focus in this work is on arrhythmia
detection and the classification of heartbeats in different cardiac conditions. Many datasets
of ECG data have been created for research and development purposes, and these have
helped in exploring various machine learning (ML) models for ECG classification.

Machine learning (ML) has shown significant contributions in healthcare and medi-
cal diagnostics, such as in cancer detection methods that use image segmentation of CT
scans, MRIs, and X-rays [2]. Similarly, in the classification of cardiac abnormalities, ML
has shown promising results [3,13,14]. Early applications of machine learning for ECG
classification employed various traditional machine learning techniques, including support
vector machines (SVM) [15,16] and k-nearest neighbors (kNN) [17]. As the field of AI has
developed, more advanced deep learning-based techniques, such as convolutional neural
networks (CNNs) [3], long short-term memory (LSTM) networks [18], and transformer
neural networks [19,20] have been explored for the analysis of ECG signals. The classifica-
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tion of ECG data has many important applications, including but not limited to diagnosis
in the absence of a cardiologist, automatic verification of ECG reports, and helping medics
in teaching [21].

In this work, ECG recordings from a dataset collected from various healthcare units
in Pakistan are utilized for the classification of different arrhythmias and cardiac diseases.
The dataset, known as the CPEIC cardiac dataset [22], contains images of ECG records,
which, in this work, are converted to numerical form using an open-source digitization
tool [23] by segmenting the Lead II heartbeats. The details of the digitization tool, known
as ecg_digitize, are discussed in Section 3.2. The digitized signals are then pre-processed and
fed to the deep learning model for the classification of four cardiac classes. Deep learning
models are capable of learning complex patterns in data. Since ECG signals contain
intricate patterns, deep learning is helpful in learning these patterns with state-of-the-art
performance. Similarly, deep learning models generalize well on different patients’ data,
thus providing accurate predictions on new records. Novel deep learning architectures are
developed, which include a proposed CNN, an LSTM, and an SSL-based method using
autoencoders. Training the models on digitized signals allows them to be used directly on
the ECG signals that are generated from the ECG machine using electrodes/sensors so that
direct monitoring of the ECG can be conducted. Thus, the work presented contributes to an
important application of deep learning on sensors. The main contributions of this work are:

• The use of a digitized time series data format of the CPEIC cardiac dataset, which
hitherto has not been used in its digitized form for ECG classification.

• The fast inference and classification of ECG in real time using only data from heartbeats
from lead II.

• The proposed models can be deployed on an ECG machine for the near-real-time
monitoring and analysis of the ECG signals.

• The proposed CNN model achieves competitive results on the CPEIC dataset with a
high accuracy of ∼92% on four classes.

The paper is organized as follows. Section 2 summarizes the latest techniques in the
literature for ECG classification tasks. Section 3 explains the proposed methodology, along
with the datasets and pre-processing in detail. The results are discussed in Section 4, and
the paper is concluded with future recommendations in Section 5.

2. Related Work

Many machine learning and deep learning techniques have been reported in the litera-
ture for classifying ECG data or heartbeats into different cardiac arrhythmia classes. The ma-
chine learning methods include a decision tree classifier, random forest, and k-nearest
neighbors. The deep learning methods can be classified into convolutional neural net-
works, sequence models, attention mechanisms, zero-shot learning, and self-supervised
learning methods.

2.1. Machine Learning Approaches

In the traditional machine learning approach, the decision tree classifier is used in
many research works. An optimized decision tree classification model was proposed by
Kumari et al. [24] to classify six different classes of heartbeats, where one class was normal
and the other five classes represented some arrhythmia. After pre-processing the data, the
researchers extracted 17 morphological and 7 temporal features to feed to the classification
model. An optimized decision tree classifier with an adaptive boosting mechanism was
then used for classification. The decision tree was optimized to handle imprecise, uncertain,
and incomplete data. The authors reported the best accuracy of 98.77% and a 93.85% F1
score on the MIT-BIH arrhythmia dataset with six selected classes.

Bhattacharyya et al. [25] proposed an ensemble of a support vector machine (SVM)
and random forest for heartbeat classification, which were combined using a weighted
majority algorithm. Five classes from the MIT-BIH arrhythmia dataset were used in
this study, including one normal class and four abnormal classes. A time series feature
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extraction library (TSFEL) [26] was used to extract 61 features from the data. Feature
selection techniques were employed as well, such as feature scaling, the removal of low-
variance and highly correlated features, and recursive feature elimination. The synthetic
minority oversampling technique (SMOTE) [27] was used for oversampling to handle class
imbalances. The proposed model demonstrated an accuracy of 98.21% and an F1 score of
96.4% on the five classes from the MIT-BIH arrhythmia dataset, which were normal (N),
ventricular ectopic beat (VEB), supra-ventricular ectopic beat (SVEB), unclassifiable beat
(Q), and fusion of a ventricular and normal beat (F).

Zou et al. [28] proposed a novel method for feature extraction for improved heartbeat
classification. A feature called segment label was learned from a convolutional neural
network, which was then combined with other traditional features and input to a random
forest classifier. The model was trained on the MIT-BIH arrhythmia dataset for classifying
three classes of heartbeats; N, VEB, and SVEB. For these three classes, this approach
achieved an accuracy of 96% and an F1 score of 88.3%. This study showed the contribution
of segment label in accurately classifying heartbeats, particularly in cases where rhythm
information serves as essential contextual information.

Ahmed et al. [29] proposed an ensemble of different machine learning models, in-
cluding a kNN, decision tree, artificial neural network (ANN), support vector machine
(SVM), and LSTM. The hard voting method was used for ensembling. Class imbalance
was also handled using class weights, which assigned greater emphasis to the minority
class by assigning higher weights while allocating lower weights to the majority class. The
performance of the ensemble was measured on two datasets: the Physikalisch Technische
Bundesanstalt (PTB) Diagnostic ECG dataset and the MIT-BIH arrhythmia dataset, with
two and five classes, respectively. The proposed approach demonstrated accuracies of
98.06% and 97.664% on the MIT-BIH and PTB datasets, respectively.

A summary of different machine learning approaches is shown in Table 1.

Table 1. Summary of machine learning approaches for the classification of ECG data.

Article Year Methodology Dataset Classes Accuracy F1 Score

[24] 2022
Optimized decision tree
classifier with an adaptive
boosting mechanism

MIT-BIH 6 98.77 93.85

[25] 2021 Ensemble of SVM and
random forest MIT-BIH 5 98.21 96.4

[28] 2022 Random forest on
features from CNN MIT-BIH 3 96 88.3

[29] 2020 Ensemble of kNN, DT,
ANN, SVM, and LSTM

MIT-BIH 5 98.06 -

PTB 2 97.66 96.99

2.2. Deep Learning Approaches

Deep learning approaches perform an end-to-end classification of ECGs. This is
in contrast to traditional machine learning approaches, where feature extraction must
be carried out before training the model [30]. Cutting-edge deep learning techniques
for ECG classification are discussed below to gain insight into the ongoing research and
development in the field.

CNNs are among the most important and widely used deep learning models. CNN-
based models contain many layers that transform their inputs into valuable representations
with convolution filters. They are particularly effective in capturing local patterns and
spatial dependencies within the data [31]. CNNs have the capacity for hierarchical repre-
sentation learning, capturing complex patterns from the input data [32]. CNNs have been
recently used in the classification of ECG signals [31], giving improved performance.

Recently, Qureshi et al. [3] proposed a deep learning approach using CNNs to classify
multiple classes of heartbeats and achieved robustness by incorporating dropout and early
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stopping. The issue of class imbalance was addressed through the utilization of SMOTE.
The model outperformed baseline models, achieving approximately 96% accuracy and very
fast inference of less than one second. The proposed method demonstrated generality by
classifying ten classes accurately.

A two-phase approach was proposed by Bruoth et al. [21] for ECG classification
on the PhysioNet 2021 challenge dataset. In phase 1, a base model was trained using
data from different sources. The 1D version of ResNet-50 was used as the base model.
In phase 2, the base model was fine-tuned on the challenge metrics and conditions. The
authors also modified the labels in this study into three labels and used a flow-mixup
layer to add random convex combinations to the input data. They used different lead
configurations, including 2 leads, 3 leads, 4 leads, 6 leads, and 12 leads, and applied various
techniques, such as data augmentation and wavelet transformation, to pre-process the ECG
signals. In the training phase, 10-fold cross-validation was used, and the best model was
selected based on the micro-F2 score obtained on the validation set. The final model was an
ensemble of 10 neural networks. During the training, the authors employed the AdamW
optimizer with a weight decay rate of 0.0005, utilizing a batch size of 128. The proposed
method was computationally efficient and achieved 52% on the challenge metric, which is
a generalized form of accuracy. The authors claimed that there is no advantage of using
data sampled at 500 Hz compared to 100 Hz and no benefit of extending the input size
beyond 3 s.

Ahmed et al. [33] proposed a 1D CNN for the classification of cardiac arrhythmias.
The proposed method incorporated noise in the MIT-BIH arrhythmia dataset for training
to make the model perform better on noise-attenuated signals. Lead II heartbeats were
extracted to train the model to classify them in 4 arrhythmic classes. The model achieved
outstanding results, with the authors reporting an accuracy of 99% on the test set. The
recall and specificity were 94% and 99%, respectively.

An ensemble approach was presented by Mahmud et al. [34] that utilized a 1D CNN
on ECG signals and a 2D CNN on ECG images using transfer learning. The predictions
were combined using an ensemble technique, providing commendable results. On the ECG
signals, the proposed approach achieved 94% accuracy, and on the ECG images, it achieved
93% accuracy on 5 classes. Data augmentation was employed on the images to improve
the results.

A famous sequence model is long short-term memory (LSTM), which is a type of
recurrent neural network (RNN) designed to handle patterns in sequential and time series
data. LSTM networks consist of memory cells that can store and retrieve information
over extended sequences, enabling them to retain important information for later use [35].
Karri et al. [36] proposed an LSTM network for ECG classification on the MIT-BIH arrhyth-
mia database. The features were extracted and hybridized to feed to the LSTM network for
classification. A method of detecting the QRS complex was devised using discrete wavelet
transform and delta sigma modulation. The proposed method showed an accuracy of
99.64% and an F1 score of 98.18% on five classes from the MIT-BIH dataset.

An LSTM-based ECG classification model was used on compressed features of ECG
signals by Yildirim et al. [37]. The ECG signals were passed through a convolutional
autoencoder to obtain a compressed representation of the data in order to reduce the
computation time during classification. The features extracted using the encoder part of
the autoencoder were then fed to the LSTM network for classification. The LSTM network
trained on the encoded features demonstrated high accuracy on five classes of the MIT-BIH
dataset. The accuracy and F1 score both were ∼99%.

Transformer networks extensively use the attention mechanism as a fundamental
component of their architecture. The attention mechanism in the transformer is called self-
attention or scaled dot-product attention [38]. A transformer neural network was developed
for the classification of 12-lead ECG signals in [20]. The model classified the ECG signals
from the PhysioNet-2020 challenge into 27 classes using 12-lead data. Hand-crafted features
using random forests were combined with a transformer network’s discriminative features.
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The model was trained using 10-fold nested cross-validation. The model performed best
on the challenge metric and achieved a score of 0.53 on the test data. The challenge metric
is a generalized form of accuracy. During pre-processing, ECG records were upsampled or
downsampled to obtain a fixed sampling rate of 500 Hz for consistency. A finite impulse
response bandpass filter with a bandwidth of 3–45 Hz was also applied to remove any
unwanted noise or artifacts from the ECG signal. Normalization was carried out to ensure
each record had zero mean and unit variance.

Yamaç et al. [39] developed a personalized arrhythmia detection system using one-
shot learning for wearable devices. The proposed method used null space analysis on the
normal heartbeats, which made it computationally efficient. It also used domain adaptation
using sparse representation to map existing users’ information onto new users, enabling the
classification of normal vs. abnormal heartbeats without the need for abnormal heartbeats
from new users. Combining the null space analysis and domain adaptation, the authors
proposed an ensemble classifier that yielded 98.2% accuracy and an F1 score of 92.8% on
the MIT-BIH dataset in normal vs. abnormal scenarios.

Phan et al. [14] proposed an SSL-based multi-modality method for ECG classification
that used self-distillation without labels. There were two tasks in this method: a pre-stream
task and a downstream task. In the pre-stream task, a 1D CNN for time series data and a
2D CNN for time–frequency spectral signals were used and trained on unlabeled data. In
the downstream task, the 1D and 2D CNNs were fine-tuned on labeled data. The features
of each CNN were fused using a proposed gated fusion mechanism. The proposed method
demonstrated an accuracy of 48.9% and an F1 score of 62.1 on the test set of the PhysioNet
2020 challenge dataset. A summary of all the deep learning-based models that are reviewed
in this study is presented in Table 2.

Table 2. Summary of deep learning approaches for the classification of ECG data.

Article Year Methodology Dataset Classes Accuracy F1 Score

[3] 2022 CNNs with dropout and early stopping MIT-BIH 10 95.7 -

[21] 2021 1D version of ResNet-50 PhysioNet
2021 23 52.0 -

[40] 2022 VGG-16 on images format of MIT-BIH MIT-BIH 3 89 89

[41] 2021 SSD-MobileNet v2 used on 12-lead ECG
images CPEIC 4 98 96.1

[42] 2022 Modified version of LeNet-5 CPEIC 4 98.38 99

[43] 2022 MobileNet v2 and VGG-16 CPEIC 4 95 95

[36] 2023 LSTM network MIT-BIH 5 99.64 98.18

[37] 2019 LSTM network MIT-BIH 5 99 99

[20] 2020 Transformer neural network PhysioNet
2020 27 53 -

[39] 2022 One-shot learning with domain
adaptation for wearable devices MIT-BIH 2 98.2 92.8

[14] 2022 SSL-based multi-modality method PhysioNet
2020 25 48.9 62.1

[33] 2023 1D CNN MIT-BIH 4 99 93

[34] 2023 Transfer learning and ensemble approach
on 1D and 2D CNNs MIT-BIH 5 94 92

Our main focus in this study is to train machine learning and deep learning models on
a digitized form of the CPEIC cardiac dataset. All of the existing approaches implemented
on this dataset use models directly on images, which hinders the use of techniques that are
applied to time series data, such as MIT-BIH. Secondly, there are some important cardiac
arrhythmia classes in the CPEIC cardiac dataset, but the dataset is available only in image
format, so converting it to a time series format gives us a numeric dataset with those cardiac
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disease classes. In the following section, the proposed approach is discussed in detail for
classifying cardiac diseases on the digitized form of the CPEIC cardiac dataset using both
machine learning and deep learning techniques.

3. Proposed Methodology

The accurate and timely classification of abnormalities in the heart and arrhythmias is
a crucial first step in cardiac healthcare. To accurately classify these abnormalities using
machine learning is a challenging task and becomes even more challenging when the
dataset size is small [44]. In this work, multiple architectures using novel deep learning
techniques are proposed for the classification of cardiac diseases on the basis of heartbeat
data extracted from ECG records. The overall pipeline of the proposed methodology is
shown in Figure 4. This section discusses in detail the major building blocks of the pipeline,
which include:

• The datasets used for ECG classification;
• The digitization tool used to digitize the ECG images;
• The pre-processing method used to transform the data into a standardized form;
• The architecture and the models used to obtain accurate results on the CPEIC cardiac

dataset;
• Lastly, the classes that the models are trained to classify.

ECG Images
Dataset

Digitized Data

Pre-processed Data

Machine Learning and Deep
Learning Models

Trained Model

Digitization  of segmented heartbeats

Data Pre-processing

Training

Train-test Split

Model Validation

Figure 4. Overall pipeline of the ECG classification workflow.
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3.1. Datasets
3.1.1. MIT-BIH Arrhythmia Database

The MIT-BIH arrhythmia database [45] is a benchmark dataset in ECG classification
that was released in 1980 by a collaboration of the laboratories at the Massachusetts Institute
of Technology (MIT) and the Beth Israel Hospital (BIH) in Boston. The dataset was collected
from 47 subjects. The dataset comprises 48 ECG recordings, each spanning half an hour.
The recordings were obtained at a sampling rate of 360 Hz, capturing data with 11-bit
resolution within a range of 10 mV. There are 19 beat annotations that represent different
classes of heartbeats. The labels and descriptions of these heartbeat types are shown in
Table 3.

In this work, the MIT-BIH dataset is used only to augment the CPEIC cardiac dataset
in the SSL-based approach. Lead II heartbeats from the MIT-BIH dataset are used without
labels to train the pre-stream task in our SSL-based approach. The details are discussed in
Section 3.5.3.

Table 3. Beat annotations in the MIT-BIH arrhythmia database.

Label Description

N Normal beat
R Right bundle branch block beat
L Left bundle branch block beat
B Bundle branch block beat (unspecified)
a Aberrated atrial premature beat
A Atrial premature beat
J Nodal (junctional) premature beat
V Premature ventricular contraction
S Supraventricular premature or ectopic beat (atrial or nodal)
r R-on-T premature ventricular contraction
e Atrial escape beat
F Fusion of ventricular and normal beats
j Nodal (junctional) escape beat
E Ventricular escape beat
n Supraventricular escape beat (atrial or nodal)
/ Paced beat
Q Unclassifiable beat
f Fusion of paced and normal beats
? Beat not classified during learning

3.1.2. ECG Image Dataset of Cardiac Patients

This dataset [22] contains ECG images collected from various healthcare institutes
in Pakistan under the supervision of the Chaudhry Pervaiz Elahi Institute of Cardiology
(CPEIC), Multan. The ECG images are 12-lead ECG records, which are recorded at a
sampling rate of 500 Hz. Each ECG record belongs to a different patient, which helps to
increase the deep learning models’ generalization. The dataset is divided into four different
classes, of which one is the normal class and the other three are related to cardiac diseases.
The dataset is open-source and publicly available (https://data.mendeley.com/datasets/
gwbz3fsgp8/2, accessed on 1 August 2023). A summary of the dataset is listed in Table 4.

Table 4. ECG image dataset of cardiac patients (CPEIC cardiac dataset).

Label Description No. of Images

N Normal person 284
MI Myocardial infarction patient 239

AHB Patient with abnormal heartbeat 233
PMI Patient with a previous history of MI 172

https://data.mendeley.com/datasets/gwbz3fsgp8/2
https://data.mendeley.com/datasets/gwbz3fsgp8/2
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In this work, instead of directly using images for classification, ECG images were
first converted to numerical time-series format using an open-source digitization tool. The
reason for using digitized data instead of images and the details of the digitization process
are discussed in the following section.

3.2. Digitization

ECG images can be used as they are for training a classification model [40–42], but
these models cannot be used directly on ECG machines for real-time monitoring and
prediction. The temporal correlation of ECG signals is also lost in image-based models,
and these models require a larger number of parameters to train, thus increasing their
computational complexity. Therefore, the ECG images were converted to numerical/time
series signals by leveraging open-source ECG digitization tools. Table 5 compares the
benefits and limitations of using ECG images and time series signals for ECG classification.

For the digitization of the ECG images from the CPEIC cardiac dataset, an open-source
tool, ecg_digitize (https://github.com/Tereshchenkolab/ecg-digitize, accessed on 1 August
2023), was used [23]. On the backend, ecg_digitize employs image processing techniques
to extract signals from images. It first detects and extracts the grid from the ECG image,
and then the ECG signal is detected and extracted. In this tool, one can select the region
that is required to be digitized. For this study, only heartbeats from lead II were selected
by selecting one heartbeat from each image, as the heartbeats are consistent. The digitized
signals were saved as CSV files. The reason for using this tool was because of its high
correlation of 0.977 and accurate mapping of signals from images. Since the region is
selected manually, it performs better than other open-source tools that produce undesirable
noise and wrong signals while working end-to-end [46]. For every image, one CSV file was
saved for the digitized heartbeat of lead II, and this yielded 928 CSV files at the end of the
digitization process.

Table 5. Pros and cons of image-based vs. time series ECG classification.

Data Format Pros Cons

Images

• Image-based techniques can
be used

• Transfer learning of large-scale
image classification models can
be used

• Image-based data augmentation

• Some fine-grained temporal
information may be lost

• Large data size
• Computationally more complex

Time Series

• Temporal information
• Direct and real-time monitoring
• Signal processing techniques

can be applied
• Smaller data size

• Limited use of image-based
techniques

• Risk of high variance or
overfitting

The user interface of ecg_digitze is shown in Figure 5. The digitizing of ECG images
using the ecg_digitize tool involved the following steps:

1. In the first step, the image was opened in the digitization app, and lead II was selected
from the option “leads” from the top left of the panel. Next, the bounding box was
placed on the lead II heartbeat. A complete heartbeat spanned 0.25 s before the R-peak
to 0.4 s after the R-peak [3]. The size of the bounding box could be adjusted based on
the start and end of the heartbeat.

2. The second step comprised the selection of the time scale and voltage scale of the ECG
plot. The image could be adjusted if the ECG plot was rotated or tilted.

3. The processed data were shown in a small window, and the digitized data were then
saved in the CSV file format.

https://github.com/Tereshchenkolab/ecg-digitize
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(a)

(b)

(c)

Figure 5. ECG digitization using ecg_digitize. (a) Select the lead II heartbeat for digitization. (b) Adjust
the image if tilted. Set the time and voltage, then process. (c) Export the digitized ECG heartbeat in a
CSV file.
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Figure 6 shows a few examples of original ECG signals and recreated signals from
digitized heartbeat data from lead II. It is obvious that digitized data can reproduce original
heartbeats with high fidelity.

Figure 6. Original images (black lines) and the corresponding digitized signals (blue lines).

3.3. Pre-Processing

Pre-processing is a crucial step in the ECG classification workflow. The signals may
be of different sampling rates, can have different amplitudes, and may contain noise. The
digitization step produced 928 records in the CSV file format, and these digitized ECG
signals were pre-processed to make the data consistent, concise, and suitable for training
the proposed models. The following pre-processing steps were performed on the CPEIC
cardiac dataset.

3.3.1. Interpolation

The digitized values were of different lengths because of the different shapes of
heartbeats and minor differences in the sizes of the selected regions. To make all the
digitized signals of the same length feature vector, linear interpolation was applied.

y = y1 +
(x − x1) · (y2 − y1)

x2 − x1
(1)

Following the same feature length of the segmented heartbeats as in [3], the digitized
heartbeat signals were interpolated to make their length 234. This made each digitized
heartbeat of the same length feature vector.

3.3.2. Noise Removal

In some of the digitized signals, there were noise or jittering at some points. This could
be due to blurry images or some noisy pixels. A Savitzky–Golay smoothing filter [47] was
applied to make the signals smoother. There are many other methods for data smoothing,
such as Gaussian smoothing and exponential smoothing, but the Savitzky–Golay filter
performs local polynomial regression on the data, allowing it to capture more complex
trends and patterns. It also preserves the shape of the signal better than other smoothing op-
erations, especially when the data contain sharp edges or sudden changes. Figure 7 shows
the comparison of a digitized heartbeat before and after applying the smoothing filter.

3.3.3. Normalization/Standardization

The amplitude of the digitized ECG heartbeats can be on a random scale. Therefore,
it was necessary to scale the heartbeats on a standard scale so that the model learns the
features correctly. For this purpose, we could normalize the beats between 0 and 1 or apply
standard scaling. The formula for 0–1 normalization is given below:

xnormalized =
x − xmin

xmax − xmin
(2)
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where xmin is the minimum value and xmax is the maximum value. Standard scaling was
used in this paper, so the amplitudes of the heartbeats were centered around the mean and
distributed over the standard deviation of the data samples.

Figure 7. ECG heartbeat before and after smoothing.

xscaled =
x − µ

σ
(3)

where µ is the mean and σ is the standard deviation of the data.

3.3.4. Data Augmentation/Oversampling

Since one heartbeat was extracted per image, we only had 928 samples in the data.
This number was too small to train an accurate and generalized deep learning model.
Moreover, there were fewer data samples for some classes than others, which could hamper
model accuracy. The issue of class imbalance was addressed by employing SMOTE, which
increases the samples of the minority classes using synthetic oversampling. This increased
the number of samples in the minority class so that each class had an equal number
of samples.

In the present work, we utilized SMOTE to increase all training data instead of only
the minority class. Since the CPEIC cardiac dataset has one normal class and the other three
classes belong to abnormal classes, we divided the data into binary classes. Making the
data binary increased the samples in the abnormal class because it contained the data of
all three abnormal classes. This made the normal class a minority, so SMOTE was applied
to balance the dataset by synthetically oversampling the normal class examples. Then,
separating the abnormal class into its individual classes turned the normal class into a
majority class, and the individual abnormal classes became a minority. Applying SMOTE
again to oversample the minority classes resulted in a larger dataset. This dataset was then
used for training our deep-learning models. Since data augmentation was applied on the
training set only, the test set did not have any synthetic data. The test set contained samples
from the original dataset separate from the training set; therefore, the data augmentation
process did not affect the model’s generalization.

In the following subsections, we evaluate popular machine learning models on the
CPEIC cardiac dataset and then discuss the proposed deep learning models.

3.4. Machine Learning Methods

Numerous machine learning models were used for training on the CPEIC cardiac
dataset, including the random forest classifier [48], k-nearest neighbors (kNN) classifier [49],
and decision tree classifier [50]. To train all these models, Python’s library scikit − learn
was used, which provides ready-to-use models that only require their hyper-parameters to
be set.
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The decision tree method is a famous machine learning technique for classification.
It works by splitting the feature space based on some splitting criteria recursively until a
stopping criterion is met. In this work, to train the decision tree classifier, the Gini index
was used as the criteria for splitting. The accuracy and F1 score achieved on the CPEIC
cardiac dataset using this method were 67.3% and 67.7%, respectively.

Random forest is an ensemble machine learning technique consisting of numerous
decision trees. The individual predictions of the decision trees are aggregated or combined
using an ensemble algorithm to obtain the final prediction. The individual decision trees
are trained on a random subset of the data. For the random forest classifier, the hyper-
parameters were set as follows: the number of trees was equal to 100, the maximum
depth was also set to 100, and the splitting criteria used was the Gini index. The random
forest classifier achieved an accuracy of 80.9% and an F1 score of 80.8% on the CPEIC
cardiac dataset.

The k-nearest neighbor or kNN classifier works by assigning an input data point a
class label based on the label of k data points in the neighborhood of the query point. The
label is assigned based on the majority class. The choice of k depends on the dataset and
can be optimized by validation. Three nearest neighbors were used in this method for
classification on the CPEIC cardiac dataset. Using 2 neighbors or more than 3 resulted in
poor accuracy. Using the three nearest neighbors, the accuracy and F1 score were 79.3%
and 79.5%, respectively.

3.5. Proposed Deep Learning Methods

Various deep learning architectures were implemented and experimented on the
CPEIC cardiac dataset. In signal processing, the convolution operation is used for feature
extraction and the analysis of signals [51]. Since the ECG heartbeat signals are highly
correlated in the time axis, applying convolution filters captures temporal correlations and
extracts meaningful features for classification. Here, 1D convolutions are used in all of our
proposed DL methods, as elaborated in the following subsections.

3.5.1. Convolutional Neural Network (CNN)

The proposed CNN contained a stack of 1D convolutional layers and fully connected
(FC) layers at the end. The overall architecture is shown in Figure 8. The input to the
model was a 234-dimensional vector that was passed through a 1D convolutional layer
with Leaky ReLU as an activation function, whose slope coefficient α was 0.001. Leaky
ReLU is expressed mathematically as:

f (x) =

{
x, if x ≥ 0
αx, if x < 0

(4)

To avoid overfitting and make the model more generalizable, batch normalization
layers were used after the convolutional layers. To reduce the vector’s spatial dimension,
one-dimensional max-pooling layers were used. A skip connection was applied as well, in-
spired by ResNet [52]. For this purpose, the features from the two convolutional layers were
concatenated. Following the flattening of the output from the convolutional layers to obtain
a one-dimensional feature vector, a fully connected layer was added, and subsequently, a
softmax layer was added with four heads for the classification of cardiac diseases.

For training, adam [53] was used as an optimizer function with a learning rate of 0.0001.
Adam merges the advantages of AdaGrad and RMSProp, enabling it to dynamically adapt
the learning rate for individual parameters by considering the estimated first and second
moments of the gradients. It is also computationally efficient and requires little memory.
Sparse categorical cross-entropy loss was used to monitor the learning of our network. The
proposed CNN was trained using a batch size of 16 for 100 epochs.
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Figure 8. Proposed CNN architecture.

3.5.2. Long Short-Term Memory (LSTM) Network

Long short-term memory (LSTM) networks [54] are usually used for sequential data
or data that have a dependency in the time domain. For example, in natural language
processing (NLP), LSTM networks are used for text generation [55], translation [56], etc.
In time series data, such as stock prices and weather prediction, LSTMs can be used for
analysis and forecasting [57,58]. Similarly, LSTMs are highly effective for the detection of
anomalies in time series data [59]. ECG data are also time-series data, so an LSTM network
was trained to predict cardiac diseases based on heartbeats.

In the proposed LSTM network, the 234-dimensional input was passed to two LSTM
layers, with each layer containing 32 units. The activation function in each LSTM unit was
tanh. After the LSTM layers, two fully connected or dense layers were added, with 256
and 512 units, respectively. Leaky ReLU with a slope coefficient of 0.001 was used as an
activation function in the FC layers. The output layer at the end contained four nodes with
a softmax activation function for classification. To train the network, the Adam optimizer
was used with a learning rate of 0.001, and the loss function used was sparse categorical
cross-entropy. The LSTM network was trained for 100 epochs with a batch size of 16. The
proposed LSTM network is shown in Figure 9.

3.5.3. Self-Supervised Learning Technique

Self-supervised learning techniques learn representations from data without requiring
labels. These techniques are helpful when we have a large amount of unlabeled data in
addition to few labeled data [60]. Since the CPEIC cardiac dataset is small compared to
other benchmark datasets, such as the MIT-BIH dataset, using an SSL technique to extract
features from the MIT-BIH dataset without labels can help meaningful features be learned,
which can then be used in the classification model with labels on our smaller dataset. The
self-supervised technique contained two tasks: a pre-stream task and a downstream task.
The SSL model was trained on data without labels in the pre-stream task so that it learned
representations from the data. Once the features were extracted from the pre-stream task,
a classifier was trained with labels on the learned features. The overall flow of our SSL
method is shown in Figure 10.

• Pre-Stream Task

For the pre-stream task, an autoencoder [61,62] was used. An autoencoder is a self-
supervised technique that learns efficient representations by training a neural network for
the reconstruction of the original input from a compressed representation. An encoder and
a decoder are the two components of an autoencoder.
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Figure 9. LSTM network.

Encoder

The encoder takes the input and learns a compressed feature using a series of layers.
The dimensions of the layers decrease at each step. The final layer of the encoder is called
the bottleneck, which captures the important features of the data [63].

The proposed encoder consisted of two dense layers; the first layer had 468 neurons,
and the second had 234 neurons. Subsequent to each layer, a batch normalization layer was
incorporated. The activation function employed after each layer was Leaky ReLU, except
for the bottleneck layer, where it was linear. The bottleneck consisted of half of the neurons
present in the input dimension, i.e., 117, as our input size was 234.

Decoder

The learned representations from the bottleneck layer were used by the decoder to
reconstruct the original input. The decoder also used a series of layers, but it was the
mirror of the encoder layers in reverse. The final layer of the decoder needed to learn the
representations that should match the input layer. Therefore, a reconstruction loss such as
the mean squared error was used at the output layer [62,63].

The decoder of the proposed autoencoder was again made up of two levels with
234 neurons and 468 neurons, respectively. After each layer, a batch normalization layer
was added, and Leaky ReLU was used as the activation function. The output layer had
234 neurons since we tried to reconstruct the input. Linear activation was used in the
output layer.

Training

The autoencoder was trained on a combination of the MIT-BIH arrhythmia and CPEIC
cardiac datasets without labels. Both datasets were concatenated to create an augmented
dataset. These data were then divided into training and test sets. The model was trained
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for 10 epochs with the Adam optimizer. After training, we saved the trained encoder to
extract the learned features for use in the next step.

Figure 10. The self-supervised learning method.

• Down-stream task or fine-tuning

After training the autoencoder on the augmented dataset, a novel model was created
for the classification of the encoded features. This model can be referred to as a ‘classifier’.
The structure of the classifier is shown in Figure 10 in the down-stream task. It contained
an FC layer with 128 neurons with ReLU activations. Then, attention layers were added,
i.e., squeeze and excitation layers. The attention layer’s output and the previous dense
layers were concatenated and passed through another dense layer with 128 neurons. After
flattening, the final output layer with softmax activation was added with 4 neurons for
classification with the CPEIC dataset.

Training

First, encoded features were extracted from the saved encoder from the pre-stream
task. The encoded features were then passed as input to the classifier. The classifier was
trained for 75 epochs with a batch size of 16. The Adam optimizer with a learning rate of
0.001 was used for training, and categorical cross-entropy loss was used to monitor the
classifier’s learning.

4. Results and Discussion

The classification results of the machine learning and deep learning models are pre-
sented in this section. First, the performance metrics on which the models are evaluated
are briefly discussed, and then the results obtained on the digitized CPEIC cardiac dataset
are presented.

4.1. Performance Metrics

There are various quantitative measures to evaluate the performance of a classification
model, including accuracy, precision, recall, specificity, and the F1 score. Accuracy is the
most common standard for measuring the performance of ECG classification models. The
F1 score is also commonly employed to evaluate classification models because it provides a
balanced measure of precision and recall.

4.1.1. Accuracy

Accuracy is a metric that is commonly used to evaluate classification models; it
measures the correctly predicted or classified instances from the total samples. We can
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calculate accuracy in terms of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Alternatively,

Accuracy =
No. of Correct Predictions

Total no. of Predictions
(6)

4.1.2. F1-Score

The F1 score, also referred to as f-score or f-measure, is another commonly used
evaluation metric for classification tasks. The F1 score combines precision and recall and
provides a balanced measure of a model’s accuracy using the harmonic mean of precision
and recall. In terms of precision and recall, the F1 score is calculated as:

F1-Score = 2 ∗ Precision × Recall
Precision + Recall

(7)

where

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(8)

The recall is also known as sensitivity or the true-positive rate (TPR). The F1 score
provides a good evaluation particularly when there is a class imbalance or when precision
and recall both are important.

4.1.3. Area under the Precision–Recall Curve (PR-AUC)

The PR-AUC is a valuable metric used to evaluate the performance of classification
models, especially in scenarios where a class imbalance exists [64]. The PR-AUC shows
the area under the curve of precision plotted against recall. It assesses a model’s ability
to differentiate between classes by considering both precision and recall. A higher PR-
AUC value indicates better model performance. The proposed CNN is evaluated against
PR-AUC for both the multiclass and binary class scenarios.

4.2. Classification Results on the CPEIC Cardiac Dataset
4.2.1. Machine Learning Models

This section shows the results of the machine learning models used for the classification
of cardiac diseases using the digitized form of the CPEIC cardiac dataset. The accuracy
of the decision tree classifier was 67.3%, and its F1 score was 67.7%. Among the machine
learning models, this model achieved the lowest accuracy. Since the decision tree method
is a single-tree structure, it was unable to capture the relationships in the ECG sequence.
The random forest classifier obtained an accuracy of 80.9% and an F1 score of 80.4%. Its
accuracy is better than the decision tree classifier’s because it used an ensemble of decision
trees, thus capturing complex features of the data. The kNN classifier achieved an accuracy
of 79.3% and an F1 score of 79.4%, which is better than the decision tree classifier. The
possible reason for kNN performing better than the decision tree classifier is that the data
contained distinctive features that helped the kNN methodology classify it easily and
accurately. The results are tabulated in Table 6.

4.2.2. Proposed Deep Learning Models

Two types of experiments were performed using the proposed CNN on the CPEIC
cardiac dataset: binary classification and multiclass classification. In the binary classification
case, two scenarios were experimented with. First, the multi-class classification task was
converted into a binary classification task by assigning all abnormal classes a single label,
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A, referred to in this scenario as “N vs. A”. The proposed CNN model was trained on N vs.
A and achieved ∼89% accuracy. The F1 score achieved in this task was 89.3%. In the second
scenario, the CNN was trained on the N and MI classes only; we refer to this scenario as
“N vs. MI”. The accuracy and the F1 score of the proposed CNN on N vs. MI were both
94.2% and the PR-AUC was ∼0.94.

Table 6. Classification performance of machine learning models on four cardiac classes in the CPEIC
cardiac dataset.

Model
Performance Metrics (%)

Accuracy F1 Score

Decision tree 67.3 67.7

Random forest 80.9 * 80.4 *

kNN 79.3 79.4
* Best result in machine learning models.

In the multiclass classification of cardiac diseases with all four classes, state-of-the-art
results were achieved using the proposed CNN. The achieved accuracy using the proposed
CNN was 91.8%, and the F1 score was also 91.8%. The PR-AUC in this case was ∼0.91. The
per-class accuracies of each of the four cardiac classes are also shown in Table 7.

Table 7. Per-class accuracy of cardiac diseases using CNN.

Class Accuracy (%)

N 94.6
MI 90.7

PMI 88.9
AHB 90.7

The geometric mean (G-mean) was computed for the CNN in the N vs. Mi and
multiclass scenarios to check the model’s generalization ability. It provides a balanced view
of model performance by considering both sensitivity (recall) and specificity. The G-mean
for the N vs. MI case was ∼0.93, and for the multiclass case, it was ∼0.90.

LSTMs are recurrent neural networks that capture long-term dependencies in sequen-
tial data. Hence, LSTM layers were used for our ECG classification tasks, but these failed to
yield promising results. The probable reason for this outcome is that our data consisted
of individual heartbeats, so the sequences are small and the temporal dependencies are
relatively simple. LSTMs usually work better on longer sequential data by capturing long-
term dependencies in the data. Consequently, the LSTM network did not prove to be the
best model for cardiac disease classification using individual ECG heartbeats. The accuracy
and F1 scores of the LSTM network on the CPEIC dataset were found to be around 80%.

The proposed SSL-based technique, which used an autoencoder on unlabeled data
to extract learned features and then fine-tuning a classifier on labeled data, has shown
poor results on the CPEIC cardiac dataset. After training the classifier for 75 epochs in the
downstream task, it achieved an accuracy of 76.0% and an F1 score of 75.5%. The accuracy
was low because the model was complex, and hence, it was overfitting on this dataset.

The results of the proposed deep learning techniques are summarized in Table 8.
Among the proposed deep learning models, the CNN’s performance on the digitized

dataset is clearly better compared to the other models. The introduction of skip connections
in the CNN allowed features from previous layers to be re-used, and batch normalization re-
duced overfitting, improving the model’s performance. Although the LSTM and SSL-based
models are more complex, they could not perform well on the dataset. This shows that
applying a complex model does not necessarily provide good results. The performance of
the model is dependent on the data, as well as the problem.
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4.2.3. Inference Time Using the Proposed CNN

The inference time needed to predict cardiac diseases using the digitized ECG heart-
beats was very brief. The time needed for the prediction of a single example using the
proposed CNN model was observed. It accurately predicted the class in ∼0.1 s on Google
Colab’s Intel Xeon CPU with 2 vCPUs and 13GB of RAM, which is perfectly suitable for
the real-time monitoring of ECG data by directly deploying the model on an ECG machine.

Table 8. ECG classification results of the proposed deep learning methods on the CPEIC car-
diac dataset.

Model Classification Task Classes Accuracy (%) F1-Score (%) PR-AUC

CNN
Binary (N vs. A) 2 89.2 89.3 -

Binary (N vs. MI) 2 94.2 * 94.2 * ∼0.94

Multiclass 4 91.8 † 91.8 † ∼0.91

LSTM Multiclass 4 78.6 78.4 -

SSL Multiclass 4 76.0 75.5 -

* Best results in binary case. † Best results in multiclass case.

5. Conclusions and Future Directions

In this work, an efficient and accurate model is developed for the detection of cardiac
diseases using digitized ECG signals from images. First, ECG images of cardiac diseases
are digitized using an open-source digitization tool to obtain a numerical time-series
format. Different deep learning models are proposed and trained on the CPEIC cardiac
dataset, including a CNN, an LSTM, and an SSL-based model using autoencoders. Among
the proposed models, the CNN performs best, giving an accuracy of ∼91.8% and a fast
inference time of one-tenth of a second, making our model suitable for the direct and
real-time monitoring and classification of ECG signals on an ECG machine. Summarizing
the main contributions of this research, the time-series format of the CPEIC cardiac dataset
is employed, deep learning models are proposed for the efficient and real-time prediction
of cardiac diseases, and the proposed CNN model can be deployed on an ECG machine for
direct monitoring with high accuracy.

The dataset used in this study for the classification of different cardiac diseases is
small. Creating a generalizable and accurate classification model requires a large amount of
data, along with different configurations of the network. For future work, the dataset can
be increased by collecting more data, as well as exploring data augmentation techniques
for time series data. Additionally, one can explore using all the heartbeats from the
image to obtain more data instead of digitizing only one heartbeat from lead II. In the
self-supervised technique, a dense autoencoder is employed, where only dense layers
are used in the network. To extend our current work, convolutional autoencoders using
convolutional layers can be explored to compare the performance of the autoencoders.
Moreover, experiments can be performed on the SSL-based model using different sizes of
the bottleneck in the encoder part of the autoencoder.
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