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Abstract: Polylactic acid (PLA) is one of the most widely used materials for fused deposition modeling
(FDM) 3D printing. It is a biodegradable thermoplastic polyester, derived from natural resources such
as corn starch or sugarcane, with low environmental impact and good mechanical properties. One
important feature of PLA is that its properties can be modulated by the inclusion of nanofillers. In this
work, we investigate the influence of SiC and ZnO doping of PLA on the triboelectric performance
of PLA-based tribogenerators. Our results show that the triboelectric signal in ZnO-doped PLA
composites increases as the concentration of ZnO in PLA increases, with an enhancement in the output
power of 741% when the ZnO concentration in PLA is 3 wt%. SiC-doped PLA behaves in a different
manner. Initially the triboelectric signal increases, reaching a peak value with enhanced output
power by 284% compared to undoped PLA, when the concentration of SiC in PLA is 1.5 wt%. As the
concentration increases to 3 wt%, the triboelectric signal reduces significantly and is comparable to
or less than that of the undoped PLA. Our results are consistent with recent data for PVDF doped
with silicon carbide nanoparticles and are attributed to the reduction in the contact area between the
triboelectric surfaces.

Keywords: tribogenerators; energy harvesting; polylactic acid; zinc oxide; silicon carbide; 3D printing

1. Introduction

Triboelectric energy harvesting has emerged as a very important alternative for the
conversion of the abundant mechanical energy that surrounds us to electrical energy for
powering electronic devices and systems. Following the introduction of the triboelectric
nanogenerator (TENG) by the group led by Zhong Lin Wang [1], there has been a rapid
increase at the number of published works on triboelectric harvesting using a variety of ma-
terials and technologies [2–6]. This is because triboelectrification and electrostatic induction,
which underlie the operation of TENGs, can occur for almost all material combinations, the
challenge being to identify the material pairs that will maximize the triboelectric signal.
With the establishment of 3D printing technologies [7,8] as low-cost manufacturing pro-
cesses able to produce a variety of structures with minimal material waste and reduced
manufacturing time, it is not surprising that 3D printing-based triboelectric devices have
been developed for self-powered electronics [9].

Polylactic acid (PLA) is one of the natural thermoplastic materials that has been
utilized for the fabrication of triboelectric devices. PLA is a recyclable, biocompatible and
biodegradable polyester that is produced from renewable resources and has been widely
used in the food industry as well as for medical and electronic applications.

Qiao et al. [10] investigated fused deposition modeling (FDM) for the fabrication of
triboelectric energy harvesters. Several positive and negative polymers were evaluated as
friction layers, including polylactic acid (PLA), nylon (PA), etc., to achieve a satisfactory
output power and a high energy conversion efficiency. A fully biodegradable triboelectric
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nanogenerator based on a gelatin film and an electrospun PLA nanofiber membrane has
been presented by Pan et al. [11]. By optimizing the material properties, they achieved an
output voltage up to 500 V, a short circuit current density of 10.6 mA/m2, and a maximum
power density greater than 5 W/m2.

One of the techniques used to improve the performance of the triboelectric nanogener-
ators is dielectric layer doping [12]. This can be achieved by the introduction of dopants
with a high dielectric constant in the dielectric layer to increase the capacitance/dielectric
constant of the composite material without altering its physical properties. Zhang et al. [13]
demonstrated an endogenous TENG based on a PLA composite fiber film using MXene as
the matrix and filler, respectively. They showed that the open-circuit voltage, short-circuit
current, and charge are increased when PLA–MXene contacts were introduced between
the fibers, reaching the highest values of 16 V, 1.2 mA, and 7 nC, respectively, in the
case of 1 wt% MXene/PLA (1 wt% PMX). Shi et al. [14] doped PLA with poly(ethylene
glycol) monomethyl ether (mPEG) for fiber fabrication using the electrospinning tech-
nique. They showed that the incorporation of mPEG enhanced the electron-donating ability
and charge transfer efficiency in PLA while the PLA/mPEG-based TENGs achieved an
open-circuit voltage of 342.8 V, a short-circuit current of 38.5 µA, and a maximum power
density of 116.21 W m−2. Li et al. [15] utilized a rotating, freestanding mode TENG, where
the rotor was made of polylactide (PLA) material to evaluate a power regulation circuit
(PRC) suitable for TENGs, which is composed of a valley-filling circuit and a switching
step-down circuit.

In this work, we exploit dielectric layer doping to enhance the triboelectric output
of 3D-printed tribogenerators. Various concentrations of SiC and ZnO inclusions are
incorporated in PLA-based tribogenerators and their influence on the performance of
TENGs is evaluated.

2. Materials and Methods
2.1. Materials

PLA pellets (Luminy LX175), used as the matrix for the composite ma-terial, were
obtained from Total Corbion (Gorinchem, The Netherlands). SiC powder (#1200 mesh, about
8.3 µm grain size) was supplied by Struers (Copenhagen, Denmark). ZnO powder (≤100 nm
in particle size) was provided by Sigma-Aldrich (Merck KGaA, Darmstadt, Germany).

2.2. Preparation of Filament and Samples

The preparation of the SiC-doped PLA composites has been reported in [16]. In brief,
after drying at 100 ◦C for 24 h, the PLA pellets were mixed with SiC powder at 75 ◦C
with the addition of acetone. The final mixture was dried again at 100 ◦C for 24 h and
stored in a desiccator until extrusion. Five composites’ concentrations were prepared with
concentrations ranging from 1 wt% to 3 wt%. Using a single-screw extruder (Felfil Evo,
Felfil, Turin, Italy) a continuous composite filament, 1.75 mm in diameter, was produced
for each concentration. Pure PLA filament was also produced with identical conditions.
Finally, three ZnO-doped PLA composites were prepared with a similar method, with
concentrations ranging from 1 wt% to 3 wt%.

2.3. Tribogenerators

The triboelectric nanogenerators used in this study operate according to the contact-
separation mode. Circular samples with a diameter of 32 mm were 3D printed using a
CREALITY CR20 Pro 3D printer (Creality 3D Technology Co., Ltd., Shenzhen, China) and
the aforementioned doped PLA filaments. The specimens that were used in this study were
fabricated with the produced filaments. A grinder/polisher (STRUERS DAP-7, Struers,
Copenhagen, Denmark) was used to polish the 3D printed samples using a SiC polishing
paper with mesh size #1000 until they reached a thickness of about 390 µm. A constant
water supply was used to eliminate any remaining particles. Following that, the samples
were cleaned with absolute alcohol and dried.
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As a reference triboelectric surface, a 75 µm-thick Kapton® layer (DuPont™, Kingston,
ON, Canada) was cut from a large sheet to a dimension of 2 × 2 cm2. All triboelectric
surfaces were mounted on hexagonal PCB sample carriers using double-sided aluminum
conductive tape, completing a triboelectric pair, shown in Figure 1. The PCB carrier
boards contain a contact pad on the backside providing the electrical contact for the
triboelectric surfaces.
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Figure 1. PCB carrier for mounting the fabricated materials, and the Kapton films used as the
reference surface, for the triboelectric characterization.

In addition, circular capacitors were fabricated in order to estimate the change in the
dielectric constant as a function of ZnO doping concentration. Circular samples of 32 mm
were 3D printed using the abovementioned prepared filaments. The measured thickness for
all samples is given in Table 1. Following printing, the samples were polished and 200 nm
Al was deposited on both sides using a shadow mask to form a circular plate capacitor of
25 mm in diameter.

Table 1. Thickness measurements of the circular samples used for the capacitors.

Sample Thickness (µm) δThickness (µm)

0% ZnO 380 10.0
1% ZnO 385 10.0
2% ZnO 420 10.0
3% ZnO 415 10.0

2.4. Characterization of PLA and Doped PLA

Morphological and elemental characterization of the fabricated composites was per-
formed using scanning electron microscopy (SEM, FEI Quanta Inspect, Thermo Fisher
Scientific Inc, Waltham, MA, USA) and energy dispersive X-ray spectroscopy (EDX, 10 keV).
The topography and surface roughness of the fabricated samples doped with SiC and
ZnO after polishing were analyzed via white light interferometry (WLI) using a 3D optical
profilometer (Profil3D®, Filmetrics, San Diego, CA, USA).

Capacitance measurements were performed using an HP 4284A LCR meter (Hewlett-
Packard, Palo Alto, CA, USA). Measurements were performed for frequencies ranging
from 1 kHz to 1 MHz and for biases ranging from 0 V to ±2 V. From the capacitance
measurements, the dielectric constant was extracted using the following equation:

Cx =
εo·εx·A

d
(1)

where Cx is the measured capacitance, εo = 8.854 × 10−12 CV−1 m−1 is the dielectric
permittivity of vacuum, εx is the composite material dielectric constant, A is the capacitor
area, and d is the material thickness.
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2.5. Characterization of Tribogenerators

To investigate the output performance of PLA-based TENGs, three types of measure-
ments were performed: (a) time-dependent output voltage (transient), (b) open circuit
voltage (Voc), and (c) short circuit current (Isc). For the transient measurements, an Infini-
iVision DSO7104A oscilloscope (Agilent Technologies, Santa Clara, CA, USA) was used.
Current measurements were performed with a Stanford Research Systems SR570 (Stanford
Research Systems, Sunnyvale, CA, USA) low-noise current preamplifier. For the estimation
of the power as a function of an external load, as well as the open circuit voltage, the
methodology developed by Jayasvasti et al. [17] was applied. Those researchers have
demonstrated that by adding a 1 MΩ resistance in parallel with the oscilloscope probe
(input resistance 10 MΩ) during the measurements of a TENG, more precise results can be
obtained for the extraction of the power output compared to the typical approach where
the TENG voltage is measured directly across the load. For the periodic motion of the
triboelectric surfaces, the in-house system shown in Figure 2 was used. A servo motor
(PD4-CB59M024035-E-01 DC, Nanotec Electronic GmbH & Co. KG, Feldkirchen, Germany)
was used, in conjunction with a ballscrew, to establish a linear motion between the two
triboelectric surfaces, with one of them being stationary and the other moving. The veloc-
ity and acceleration of the motion were controlled by a computer and were maintained
constant for all experiments.
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Figure 2. The in-house experimental setup used for the triboelectric characterization of the produced
pure PLA, SiC-doped PLA, and ZnO-doped PLA samples at contact-separation mode.

3. Results and Discussion
3.1. Structural Characterization

Figure 3a is an SEM micrograph of the undoped PLA samples along a fractured surface,
while Figure 3b is an SEM micrograph for the 3% ZnO-doped PLA samples. By comparing
the two photographs, we can identify the ZnO nanoparticles as white dots in Figure 3b,
while no such distribution is seen in Figure 3a. The distribution of the ZnO nanoparticles
appears to be uniform. The presence of ZnO nanoparticles was also confirmed by EDX
analysis of the samples. Figure 3c is an EDX spectrum for the undoped PLA, while Figure 3d
shows the spectrum for 3 wt% ZnO-doped PLA. In Figure 3d, the L and K emission peaks
of Zn at 1.011 keV and 8.61 keV are clearly identified, which are not observed in Figure 3c,
verifying the existence of ZnO nanoparticles in the doped samples. The emission peaks
at 1.66 eV and 2.14 eV correspond to the thin gold layer that was deposited on the PLA
sample prior to SEM imaging, in order to avoid surface charging phenomena. The analysis
(SEM, EDX) of the SiC-doped PLA is presented in detail in reference [16].
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Figure 3. SEM micrograph of (a) undoped PLA and (b) 3 wt% ZnO-doped PLA (the yellow circles
indicate the presence of the ZnO nanoparticles) and EDX spectrum for (c) undoped PLA and (d) 3 wt%
ZnO-doped PLA.

3.2. Electrical Characterization—Estimation of Dielectric Constant

Figure 4 shows the capacitance as a function of the frequency at zero bias for the
ZnO-doped samples. We notice that the capacitance is almost constant for all frequencies,
with small variations that can be attributed to Al/PLA interface charges. The variation in
the capacitance values can be attributed to variations in capacitor thickness (Table 1) as
well as the dielectric constant.

Taking the measured thickness values (Table 1) and the capacitance values at 10 KHz
into account, we can calculate, by using Equation (1), the dielectric constant as a function
of ZnO doping. The results are shown in Figure 5. We notice that the dielectric constant
of the ZnO-doped PLA increases monotonically from 3.3 for undoped PLA to 3.9 for
3%ZnO-doped PLA. Such behavior has been reported in the literature when materials of
various shapes are immersed in a matrix [18] if the dielectric constant of the inclusions is
higher compared to the host matrix. This applies to our case, since the dielectric constant
of ZnO nanoparticles is about 10 [19], much higher compared to the dielectric constant
of PLA, which ranges from 2.5 to 3.11 [20,21]. In the same figure, we have also included
measurements for the SiC-doped samples from our previous work [16], where a similar
increase in the dielectric constant of SiC-doped PLA can be observed.
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3.3. SiC-Based Tribogenerators

Figure 6a shows the triboelectric signal as a function of time for the various TENGs
doped with SiC. We notice that initially the triboelectric signal increases from 11.3 V for
undoped PLA to 14.4 V for PLA doped with 1.5 wt% SiC. However, as the SiC concentration
increases to 3 wt%, the triboelectric signal is reduced to 10.5 V, which is comparable to
the value obtained for the undoped PLA. Similar results can be extracted from Figure 6b
where the dependence of the generated power is shown as a function of the external load.
We notice that the maximum power obtained for the 1.5 wt% SiC-doped PLA is 26 µW
(6.5 µW/cm2, considering that the surface area of the samples is 4 cm2), which presents a
2.5 times increase compared to all other samples.

Figure 7a shows the voltage output as a function of the external load. We notice that
the 1.5 wt% SiC-doped PLA exhibits the highest open circuit voltage reaching a value of
26 V. A similar result is obtained from Figure 7b, where the tribogenerator current is shown
as a function of the external load. We observe that the short circuit current (at zero external
load) for the 1.5 wt% SiC-doped PLA reaches 2 µA (500 nA/cm2), which is substantially
higher compared to all other SiC-doped samples.
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3.4. ZnO-Based Tribogenerators

Figure 8a shows the triboelectric signal as a function of time for the various ZnO-
doped PLA TENGs. We notice that the triboelectric signal increases as the concentration of
ZnO increases, reaching a value of 40 V when the concentration of ZnO is 3 wt%. Similar
results can be extracted from Figure 8b where the dependence of tribogenerator power is
shown as a function of the external load. We notice that the maximum power obtained
for the 3 wt% ZnO-doped PLA is 80 µW (20 µW/cm2), which is about eight times higher
compared to the undoped PLA.

Figure 9a shows the voltage output as a function of the external load. We notice
that the 3 wt% doped ZnO exhibits the highest open circuit voltage reaching a value of
50 V. Similar results can be obtained from Figure 9b, where the tribogenerator current is
shown as a function of the external load. We notice that the short circuit current for the
3 wt% ZnO-doped PLA reaches 2.2 µA (550 nA/cm2), which is higher compared to all
other samples.
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3.5. Analysis of the Results

To better understand the results, we refer to the theoretical analysis of Niu et al. [22].
Figure 10 shows a schematic of a tribogenerator composed of two dielectric surfaces and
the electrodes attached at the back side of the dielectrics. The TENG operates in the contact-
separation mode. When the two triboelectric surfaces are in contact, electric charges of
opposite polarities appear on the surfaces of the dielectrics, due to charge transfer between
the two materials. In our case, the surface of PLA is charged positively whereas the surface
of Kapton is charged negatively, due to the differences in the electronegativities of the
two materials.

The voltage that develops across the device is given by the V–Q–x relationship

V(t) = − Q
Sε0

[d0 + x(t)] +
σx(t)
ε0

(2)

where Q is the amount of charge at the metal contact, σ is the surface charge density on the
surface of the dielectrics, ε0 is the permittivity of vacuum, S is the contact area between the
triboelectric pair, and d0 is given by the equation
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d0 =
d1

εr1
+

d2

εr2
(3)

where d1, d2 and εr1, εr2 are the thicknesses and relative dielectric constants of the dielectric
layers 1 and 2, respectively. In our case, where Kapton® is used as the reference electrode
and composite PLA is used as the active electrode the values are d1 = 75 µm, εr1 = 3, and
d2 = 390 µm. The value for εr2 depends on the composite doping.
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Alternatively, Equation (1) can be written in the form

V(t) = − Q
CTENG

+ Voc (4)

where CTENG is the total capacitance of the TENG given by the Equation (4)

CTENG =
Sε0

[d0 + x(t)]
(5)

and Voc is the open circuit voltage as defined in Equation (5)

Voc =
σ·x(t)
εo

(6)

Figure 9 shows a comparison of the open circuit voltage Voc and the short circuit
current Isc of the TENGs with the various concentrations of SiC and ZnO. We see that as
the concentration of SiC and ZnO increases, Voc and Isc are enhanced in both cases. In fact,
for the SiC-doped PLA, Voc and Isc are increased by 42% and 48%, respectively, compared
to undoped PLA as the concentration increases to 1.5 wt%, while for ZnO-doped PLA
the increase is 44% and 69%, respectively, as the concentration increases to 2%. A similar
behavior is observed for the maximum power with the increase being 280% and 188%,
respectively.

Such a behavior can be attributed to the improvement of the capacitance/dielectric
constant of doped PLA due to the introduction of fillers (micro/nanoparticles) with higher
dielectric constants compared to the PLA [12,23]. It has been demonstrated that the in-
clusion of fillers within a dielectric can enhance the triboelectric signal. This is because
nanoparticles with higher dielectric constants compared to the host, when dispersed in
the matrix, will act as microcapacitors. Upon the presence of an electric field, charge
will accumulate at the interface of the particles, leading to interfacial polarization and an
enhancement of the surface charge density of the dielectric layer [12].
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Moreover, the presence of these particles will increase the dielectric properties of
the composite material, as we have shown in Section 3.2. This increase in the dielectric
constant significantly increased the density of the charges that can be accumulated on the
copolymer during physical contact [24]. From Figure 11a, and considering Equation (5), we
can conclude that the surface charge density for the 1.5 wt% SiC-doped samples and the 3
wt% ZnO-doped samples is increased compared to the undoped PLA, reaching a value of
2.65 µC/m2 and 4.86 µC/m2, respectively.
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Another point that we notice from Figure 11 is the difference in behavior between
the PLA-doped materials. We observe that for the ZnO-doped samples the triboelectric
signal continues to increase as the concentration increases to 3 wt%. In fact, the open circuit
voltage, short circuit current, and power output are increased by 265%, 177%, and 741%,
respectively, compared to the undoped PLA.

However, the SiC-doped PLA behaves in a different way. The triboelectric signal
reaches a maximum (at 1.5 wt% in our case) and then it is reduced as the concentration
is increased to 3 wt%. To better comprehend this behavior, we take the mechanisms that
influence the triboelectric signal into consideration. For the doped PLA samples, there are
two competing mechanisms that determine the triboelectric signal: (a) the doping with the
SiC ot ZnO particles, which lead to an increase in the triboelectric signal due to increased
dielectric constant/capacitance of the doped PLA samples, as we have analysed above; and
(b) an increase in surface roughness, which leads to a decrease in the triboelectric signal
due to the reduction in the active contact area between the two triboelectric surfaces. As
we have mentioned, during preparation the samples were polished with a SiC polishing
paper to reduce the surface roughness of the 3D printed surface. This results in a relatively
low value of surface roughness. From optical profiler measurements, we estimate the root
mean square height is less than 0.3 µm. However, as the concentration of SiC in the PLA
matrix to increases 3 wt%, the surface roughness increases by 33%, reaching a value of
0.41 µm. This results in a reduction in the surface contact area leading to a decrease in the
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triboelectric signal. In contrast, for the ZnO-doped PLA, optical profiler measurements
indicate that the incorporation of ZnO particles in the PLA does not influence the surface
roughness. This can be attributed to the smaller size of ZnO nanoparticles as well as the
fact that ZnO is much softer compared to the SiC grinding paper.

The reduction in the triboelectric signal due to the increased surface roughness is in
agreement with literature results. Kumar et al. [25] investigated the impact of random
multiscale surface roughness on the triboelectric signal of TENGs. These researchers
developed TENGs based on transparent mica in contact with polyvinyl siloxane (PVS)
with modulated surface roughness. With the aid of a novel in situ optical technique,
they were able to directly estimate the contact surface area as a function of the roughness.
They observed that, as the roughness increased, the triboelectric signal as well as the
output performance of the TENG did as well, due to the decrease in the real contact area.
Similar results were obtained from Wen et al. [26] who investigated, both theoretically and
experimentally, a conductor–dielectric contact separation TENG for sensing the roughness
of material surfaces. The reduction in the triboelectric signal for PVDF-doped SiC has also
been reported in the literature by Shafeek et al. [27]. Those researchers investigated the
influence of SiC nanoparticles on the triboelectric properties of a polyvinylidene fluoride
(PVDF)/silicon carbide (SiC) nanocomposite. They showed that the triboelectric signal
can be greatly enhanced compared to pristine PVDF as the concentration of SiC increased
up to 6%. However, for higher concentrations (9%) the device output tends to decrease.
They attributed this decrease to the agglomeration of SiC nanoparticles on the surface of
the PVDF films resulting in reduced contact area between the PVDF and the polyamide
that was used as a reference material.

4. Conclusions

In this work, we investigated the influence of SiC microparticles and ZnO nanoparticles
on the triboelectric performance of PLA-doped tribogenerators. In both cases, an improved
performance was observed due to the higher dielectric constant of the dopants compared to
the undoped PLA matrix. For the SiC microparticles, a maximum value for the open circuit
voltage, short circuit current, and maximum power output was observed for a doping
concentration of 1.5 wt%. This is due to the increased dielectric constant/capacitance of
the doped PLA samples, in agreement with the dielectric layer doping techniques. For
higher concentrations, the performance of the triboelectric generator deteriorated due to
an increase in surface roughness resulting in reduced surface contact area between the
triboelectric surfaces. For the ZnO-doped PLA, a continuous increase in the performance
was observed as the doping concentration increased. This different behavior is attributed
to the increased surface roughness of the SiC-doped PLA samples that results in a reduc-
tion in the active triboelectric surface area leading to a decreased triboelectric signal. In
contrast, such behavior is not observed for the ZnO-doped PLA samples, where the surface
roughness is not affected by ZnO doping.
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