
Citation: Shellaiah, M.; Sun, K.W.;

Thirumalaivasan, N.; Bhushan, M.;

Murugan, A. Sensing Utilities of

Cesium Lead Halide Perovskites and

Composites: A Comprehensive

Review. Sensors 2024, 24, 2504.

https://doi.org/10.3390/s24082504

Academic Editor: Franz L. Dickert

Received: 15 March 2024

Revised: 10 April 2024

Accepted: 12 April 2024

Published: 13 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Sensing Utilities of Cesium Lead Halide Perovskites and
Composites: A Comprehensive Review
Muthaiah Shellaiah 1 , Kien Wen Sun 2,* , Natesan Thirumalaivasan 3, Mayank Bhushan 1

and Arumugam Murugan 4

1 Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India;
muthaiahs.sdc@saveetha.com (M.S.); mayankbhushan.sdc@saveetha.com (M.B.)

2 Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
3 Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and

Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
natesant.sdc@saveetha.com

4 Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109,
India; amu@nerist.ac.in

* Correspondence: kwsun@nycu.edu.tw

Abstract: Recently, the utilization of metal halide perovskites in sensing and their application in
environmental studies have reached a new height. Among the different metal halide perovskites,
cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great
interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3

nanostructures and composites possess great structural stability, luminescence, and electrical proper-
ties for developing distinct optical and photonic devices. When exposed to light, heat, and water,
CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have
been reported as probes in the detection of diverse analytes, such as metal ions, anions, important
chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing
studies of metal halide perovskites covering all metallic and organic–inorganic perovskites have
already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of
CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using
these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and
composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides,
fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature,
radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design
requirements, advantages, limitations, and future directions for this material.

Keywords: cesium lead halides; analyte detection; environmental monitoring; cellular imaging;
fluorescent quantification; chemical sensors; real analysis; pesticides; herbicides; photodetection

1. Introduction

To protect the ecosystem, the detection, quantification, and removal of environmental
contaminants play a vital role [1–3]. Thus, the synthesis and fabrication of novel nanomate-
rials and nanocomposites are important in developing various analytical methods [4–8].
Metal halide perovskites (including all inorganic and organic–inorganic perovskites) and
their composites, in particular, have been demonstrated as unique probes in diverse analyte
quantitation [9,10]. However, most halide perovskites suffer from chemical/structural
instability caused by exposure to moisture, oxygen, and high temperature [9–11]. To re-
solve the instability problem, the development of all inorganic perovskites was proposed to
make them sustainable under harsh conditions [12]. Furthermore, the use of all inorganic
halide perovskites (such as inorganic metal oxides, lead-free metal halides, and cesium

Sensors 2024, 24, 2504. https://doi.org/10.3390/s24082504 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2748-1735
https://orcid.org/0000-0002-2995-0283
https://orcid.org/0000-0002-1056-1835
https://orcid.org/0000-0002-8342-2553
https://doi.org/10.3390/s24082504
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082504?type=check_update&version=2


Sensors 2024, 24, 2504 2 of 53

lead halides) in analyte detection displayed exceptional performance in real-time appli-
cations [13]. Among all inorganic perovskites, cesium lead halides (CsPbX3; X = Cl, Br
and I) and composites have been widely demonstrated in photovoltaic applications and
in the detection/quantification of metal ions, anions, chemicals, explosives, bioanalytes,
pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases,
humidity, temperature, and radiation [14–19].

The distinct sensor responses of CsPbX3 can be attributed to its excellent electro-optical
properties, which benefit the development of numerous semiconducting and sensing utili-
ties [18,19]. For instance, CsPbX3 displays high chemical stability at higher temperatures
(at >350 ◦C) and exhibits bright emission with high PLQY reaching >90% (PLQY= photolu-
minescence quantum yield) [20]. The bandgap of CsPbX3 (lies between 1.7 and 3 eV) can
be adjusted across the visible spectrum by tuning the X-site ion and composition ratios
to attain red-to-blue emission [21–23]. Depending on the temperature and the size of
halide (X) ions, CsPbX3 could possess different crystal phases, such as cubic (Pm-3m, α),
tetragonal (P4/mbm, β), and orthorhombic (Pnam γ and Pnma δ (noted as non-perovskite)
phases [24,25]. Likewise, the surface morphology and potentials may vary when absorbing
diverse analytes (moisture, gaseous species, environmental contaminants, bioanalytes,
etc.) [26–28]. Variations in photoluminescence/absorption, phase transformation, and
changes in the surface morphology and charge potentials of CsPbX3 can be considered as
sensor responses [29–33] when detecting analytes. These sensors can be further enhanced
by combining perovskites with suitable/proper nanomaterials [34–43].

The electro-optical properties and sensor responses of CsPbX3 and composites may
vary depending on their distinct nanostructures. For example, CsPbX3-based sensor
probes/composites in QD structures with various sizes may possess diverse bandgaps
and display red-to-blue wide optical properties [34], which facilitates the design of dual-
mode sensors. Subsequently, CsPbX3 nanocrystals (NCs) also display unique magnetic
and optoelectronic properties. The facile synthesis of NCs allows them to be adopted in
distinct applications, such as solar cells and in vitro/in vivo applications [35]. Due to their
structural features, such as hardness, diffusivity, density, enhanced ductility/toughness,
elasticity, and conductivity/thermal properties, CsPbX3 NCs can be effectively applied
in energy-related studies. For example, Hu et al. defined the use of CsPbBr3 NCs as
single-photon emitters [36]. Metal nanoclusters (MNCs) showed exceptional physicochem-
ical properties, such as surface modifiability, surface-to-volume ratio, number of atoms,
biocompatibility, photothermal stability, etc. [37]. Therefore, conjugating with CsPbX3 may
enhance the performance of the target-specific sensors. Because the reduced dimensionality
of nanowires (NWs) can significantly improve electric/heat transport compared with bulk
wires, they have great potential as temperature and chemoresistive sensors [38,39]. For
instance, Zhai and co-workers reported the solvothermal synthesis of CsPbX3 (X = Cl,
Br) NWs and demonstrated them in photodetector applications [40]. Regarding two-
dimensional materials, nanosheets (NSs) have been demonstrated as effective sensors due
to their exceptional physical, chemical, optical, mechanical, electronic, and magnetic prop-
erties [41]. Lv et al. demonstrated the generalized colloidal synthesis of two-dimensional
cesium lead halide perovskite nanosheets in photodetector applications [42]. Furthermore,
nanoparticles with high surface-to-volume ratios were employed in multiple sensors, which
can be operated at distinct solvent environments and elevated temperatures [43]. Based on
the above reasons, CsPbX3 probes/composites derived from QDs, NCs, MNCs, NWs, NSs,
and NPs require detailed review.

The exceptional optical properties, unique structural/crystalline features, and elec-
tronic structures of CsPbX3 (X = Cl, Br, and I) are considered important material properties
for electrochemical, thermal, and chemoresistive sensing studies. To date, numerous op-
tical sensors made of CsPbX3 (X = Cl, Br, and I) and composites have been thoroughly
investigated with exceptional applicability [9–15]. This can be attributed to their distinct
and high PLQY in red-to-blue luminescence. However, there have been reports on the
electrochemical, thermal, and chemoresistive sensing performance of CsPbX3 (X = Cl, Br,
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and I) and composites [9–15] that require further clarification for future research. Heavy
metal ions and anions are well-known environmental contaminants that are involved in
cellular processes, and, at high concentrations, they may become harmful to living beings
as well [44–46]. Chemicals and explosives also contaminate the environment; thus, their
detection methods are available in many reports [47–49]. Toxic gases and VOCs are noted
as vital industrial contaminants; thus, their quantitation has been explored by numerous
researchers [50,51]. Exposure to radiation, temperature, and high humidity may harm
living tissues and beings, and therefore researchers have developed sensors for photo,
radiation, and photodetection [52–54]. Bioanalytes, drugs, fungicides, and pesticides play
crucial roles in food cycles and sustain the living environment; thus, numerous reports are
available for their identification [55–58]. Based on the aforementioned important issues,
many researchers have adopted CsPbX3 (X = Cl, Br, and I) and composites for the opti-
cal, electrochemical, chemoresistive, and thermal detection of analytes. The progress and
challenges in developing these sensors are reviewed in this article.

Numerous sensors are reported that involve the use of CsPbX3 and composites toward
the detection of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungi-
cides, cellular imaging, VOCs, toxic gases, humidity, temperature, X-rays, and photons
(light). Many reviews covering halide perovskite-based sensors, including hybrid halide
perovskites and all inorganic halide perovskites, are available [9,10,59–64]. However, most
reviews do not provide much detail in sensor studies of CsPbX3-based composites and
the underlying sensor mechanisms. Therefore, the focus of this article is to review the
sensing utilities of CsPbX3 and composites toward diverse analytes (see Figure 1) and
provide valuable information on the synthetic pathways, design requirements, advantages,
limitations, and future directions.
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Figure 1. Schematic representation of CsPbX3 (X = Cl, Br, and I) and composite-based sensors used in
metal ion and anion sensors, bioanalyte and drug monitoring, pesticide detection, cell imaging, etc.

2. Role of Structural Stability and Optoelectronic Properties in Sensors

CsPbX3 crystals following the stoichiometry ABX3 have an undistorted cubic structure
composed of Pb2+ surrounded octahedrally by ‘X’ anions (X = Cl, Br, and I) and a larger Cs+

cation with a 12-fold cuboctahedral coordination [65]. CsPbX3 in a cubic crystal structure
can be stable only if the values of the Goldschmidt tolerance factor are between 0.9 and
1 [66]. The Goldschmidt tolerance factor of CsPbX3 is determined from t = (RA + RX)/

√
2

(RB + RX), where RA, RB, and RX are the ionic radii of Cs+, Pb2+, and halide (X) ions,
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respectively. When the values of the tolerance factor lie between 0.7 and 0.9, the CsPbX3
crystal may exist in distorted cubic structures with variations in symmetries/phases [65–67].
The structural distortion and instability of CsPbX3 may arise from external factors, such as
temperature, quantum size moisture, etc. [68,69]. For example, phase transitions among
cubic, monoclinic, tetragonal, or orthorhombic phases occur in the CsPbX3 crystal at a
temperature range between 300 and 600 K [70]. Similar to the variations in particle sizes and
compositions, the phase transformation in the CsPbX3 may also result in broad emission
covering the entire visible range (from blue to red), which can be utilized to develop
analyte sensors. For example, Protesescu et al. [71] demonstrated CsPbX3 NCs with tunable
bandgap energies by controlling the quantum size and colloidal compositions of NCs,
as shown in Figure 2. When exposed to moisture, humidity, gaseous environment, and
the doping of foreign materials, structural distortions via surface-mediated absorption,
oxidation, reduction, etc., could occur in CsPbX3, which can be regarded as sensor responses.
The stability of hybrid halide perovskites also follows a similar trend as CsPbX3-based
materials [9]. However, metal oxide perovskites show slightly better stability than that of
CsPbX3 and hybrid halide perovskites [9–12].
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bandgap energies covering the entire visible spectral region with narrow and bright emission; col-
loidal solutions in toluene under UV lamp (λ = 365 nm) is shown in the upper corner of the figure
(permission obtained from Ref. [71]).

Owing to its exceptional optoelectronic properties, CsPbX3 can be applied in analyte
quantification by monitoring its responses in photoluminescence, absorbance, conductivity,
temperature, etc. Moreover, CsPbX3 possesses bright blue-to-red emission, depending on
the halide (X) concentration, and displays high PLQY (can reach over 90%). Therefore,
CsPbX3 and composites can also be utilized in the quantification of halides [72]. CsPbX3
and composites can display unique absorbance and colorimetric responses in the pres-
ence/absence of specific analytes [73]. The density functional theory calculations conducted
by Y. Kang and co-workers [74] showed that different halide (X) ions in CsPbX3 can lead
to changes in intrinsic carrier mobility by a factor of 3 to 5, depending on the carrier con-
centration, which is between 1015 and 1018 cm−3. Their work also concluded that, in terms
of carrier mobility, the preferred carrier type (electron or hole) also depends on halide (X).
Kawano et al. investigated the halogen ion dependence on the low thermal conductivity
of cesium halide perovskites using first-principle phonon calculations [75]. E. G. Ripka
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and co-workers reported variations in surface-ligand binding potential due to the halide
ion exchange to afford diverse emissions and PLQY [76]. The changes in intrinsic carrier
mobility, thermal conductivity, and surface-ligand binding potential can be adopted in
designing various electrochemical, temperature, and colloidal sensors for the detection of
specific analytes. However, some of the reported sensors were attributed to a combination
of carrier mobility and surface-ligand binding. For instance, exposing CsPbX3 to gaseous
or VOC analytes resulted in variations in conductivity, but the underlying mechanism
was attributed to the efficacy of surface-ligand binding in the modification of oxidation or
reduction [77–79].

3. CsPbX3 (X = Cl, Br, and I) and Composites toward Metal Ion Detection

Due to the importance of heavy metal ion detection in environmental protection, the
use of CsPbX3 (X = Cl, Br, and I) and composites in metal ion sensors have been widely re-
ported by many researchers, which are described in this section. Wu and co-workers demon-
strated the PL-based detection of Cu2+ in the presence of ytterbium acetate (Yb(OAc)3) by
engaging one-dimensional (1D)-CsPbCl3 NCs in the device [80]. The CsPbCl3 NCs were
synthesized using the hot-injection method and characterized by transmission electron
microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and
Fourier transform infrared spectroscopy (FTIR). Yb(OAc)3 induces morphology changes
from weakly emissive 1D CsPbCl3 NCs (PLQY = 2.1%) to highly luminescent 1D CsPbCl3
NWs (PLQY = 17.3%), which are low in defect density and high in conductivity. The PLQY
depends on the size of nanostructures (due to bandgap variations), which can be adjusted
with metal doping. The doping of Yb3+ in 1D-CsPbCl3 NWs resulted in a higher aspect ra-
tio, uniformity, and lower number of defects compared with undoped ones; thus, Yb-doped
1D-CsPbCl3 NWs showed high PLQYs. The enhanced defective and rough surface mor-
phologies of 1D-CsPbCl3 NCs effectively hindered light absorption and electron/charge
transport, thereby lowering the PLQY. In the presence of acetate ion (AcO−; present in
Yb(OAc)3), the steric hindrance was reduced by the copper-based counter-ion pair, which
enhanced the adsorption of Cu2+ on the surface of the CsPbCl3 NCs and resulted in PL
quenching. The linear regression of Cu2+ detection was observed between 0 and 1 µM
(µM = micromole (10−6 M)) with an LOD of 0.06 nM (nM = nanomole (10−9 M)). This work
is informative and reveals much detail on the role of Yb(OAc)3, underlying the dynamic
quenching mechanism, surface-mediated analyte interaction, and feasible information of
electron transfer/charge trap between CsPbCl3 and Cu2+. However, it lacks real-time
applications, which should be demonstrated before commercialization.

Sheng et al. reported the use of CsPbBr3 QDs in the quantification of Yb3+ and
Cu2+ [81]. CsPbBr3 QDs were synthesized using the hot-injection method, with a PLQY
of 63%, and showed enhancement in PL with Yb3+ and PL quenching with Cu2+, as seen
in Figure 3. The linear PL quenching range of Cu2+ is between 2 nM and 2 µM, with an
estimated LOD of 2 nM. This work is impressive in reporting Cu2+ detection in edible oils
but lacks detailed investigations on the underlying mechanisms. Liu et al. also described
the use of CsPbBr3 QDs (PLQY = 90%) toward the luminescent detection of Cu2+ [82].
CsPbBr3 QDs were synthesized via the hot-injection method and displayed PL quenching
between 0 and 100 nM, with an LOD of 0.1 nM. The detection of Cu2+ was carried out in
organic media hexane following a dynamic quenching mechanism. This is a follow-up work
of previous reports with additional validation on selectivity and time-resolved studies.

To avoid using organic media in sensor investigations, Kar and co-workers reported
that the use of poly(vinyl pyrrolidone), n-isopropylacrylamide-coated CsPbBr3 NCs (PVP-
NIPAM-CsPbBr3 NCs) for aqueous media facilitated the discrimination of Cu2+ [83]. Firstly,
SiO2-coated CsPbBr3 NCs and PVP-NIPAM-CsPbBr3 NCs were synthesized via ligand–
ligand-assisted reprecipitation (LARP) method to achieve a maximum PLQY of 93%. The
PVP-NIPAM-CsPbBr3 NCs showed improved stability and dispersity in water compared to
silica-coated NCs, with redshifted emission peaks around 513–515 nm. The NCs displayed
linear PL quenching between 0 and 412 µM, with a calculated LOD of 18.6 µM, as seen in
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Figure 4. This is an inspiring work that can be readily extended to biological studies. Li et al.
reported the use of green-fluorescent CsPbBr3 (CPB) QDs for Cu2+ quantification using
phase transfer [84]. A strong organic ligand (oleylamine, OAm) was added to selectively
transfer Cu2+ from water to cyclohexane, which led to fluorescent quenching. The PL
emission was quenched linearly between 1 µM and 10 mM. This is an innovative method
that enables Cu2+ detection via phase transfer with a short response time (1 min). However,
no real applications were reported in this work. Moreover, Song and co-workers developed
long-wavelength-pass filters consisting of CsPbBr3 and CsPb(Cl/Br)3 QDs using a Cu2+-
quenching strategy [85]. However, no clear real-time applications were demonstrated in
this work.
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Li et al. proposed the utilization of macroporous CsPbBr3-(SH)polyHIPE NCs for the
ultrasensitive detection of Cu2+ via PL quenching [86]. In this work, CsPbBr3 NCs were syn-
thesized via the hot-injection method, with a PLQY of ~98%. The as-synthesized NCs were
then composited with (SH)polyHIPE (generated from the monomers trimethylolpropane
triacrylate (TMPTA) and trimethylolpropane tris(3-mercaptopropionate) (TMPTMP)). The
linear regression of PL quenching was recorded between 10 fM and 10 mM, with an LOD
of 10 fM. Although this work is supported by density functional theory (DFT) calcula-
tions, it lacks real-time applications. Gao and co-workers developed a CsPbBr3 QD-based
fluorescence-enhanced microfluidic sensor for the in situ detection of Cu2+ in lubricating
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oil [87]. As displayed in Figure 5a, the polymethyl methacrylate opal photonic crystal
(PMMA OPC) film is a microfluidic sensor substrate, which displays high sensitivity and
low LOD with Cu2+. When coupling with OPCs, CsPbBr3 QDs synthesized through the
hot-injection method showed a 26-fold enhancement in PL intensity (at 496–526 nm un-
der 450 nm excitation). When adding Cu2+ in lubricating oil, the PL intensity of PMMA
OPC/CsPbBr3 QD composites was quenched with Cu2+ concentrations of 1 nM–10 mM
and an LOD of 0.4 nM, as shown in Figure 5b. The CsPbI3 QD/SiO2 IOPC (inverse opal
photonic crystal) composite was further explored for the on-site rapid detection of Cu2+ [88].
CsPbI3 QDs synthesized with a hot-injection method displayed PL emission at 693 nm
under 405 nm excitation. SiO2 IOPCs were introduced into the chip wells to couple with
the CsPbI3 QDs, which further enhanced the PL emission by 22 folds. After the addition
of Cu2+ in lubricating oil to the above composites, a linear PL quenching was observed in
the ranges of 0–20 nM and 20–50 nM, with an LOD of 0.34 nM. Both reports [87,88] show
distinct performance in terms of mechanical durability, operating temperatures (5 ◦C to
50 ◦C), reusability of chips, etc. Advancing in this research direction will require further
demonstrations of practical applications.
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Figure 4. Images of the PbN-4 NC solution under a UV lamp (a) before and after adding different
metal ions as marked in the figure. (b) Chart representing the comparison of the PL intensity of PbN-4
NCs that persisted after the addition of subsequent metal ions. (c) Emission spectra of PbN-4 NCs in
the presence of different concentrations of Cu2+ solutions as shown in the legends. (d) The linear
curve represents decreasing in the PL intensity of PbN-4 NCs after adding different concentrations of
Cu2+ solution (permission obtained from Ref. [83]).

Zhang and co-workers proposed the utilization of organic cross-linker hexamethylene
diisocyanate (HDI)-reinforced small-sized CsPbBr3@SiO2-E NPs (size ≤ 50 nm) toward
the fluorescent sequential detection of Cu2+ and S2− [89]. CsPbBr3 NCs (size = 6.8 nm;
emission at 515 nm) were first synthesized using a hot-injection technique and then con-
jugated via a three-step synthetic path to afford CsPbBr3@SiO2-E NPs (emission peak at
508 nm; PLQY = 90%), where ‘E’ stands for enhanced performance. The linear PL quench-
ing/recovery of CsPbBr3@SiO2-E NPs with Cu2+ and S2− were observed in ranges of
0–5 µM and 5–10 µM (for Cu2+) and 0–120 µM (for S2−), with corresponding LODs of
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0.16 µM (for Cu2+) and 8.8 µM (for S2−). This work requires further support with real-time
investigations. The CsPbBr3 QDs (PLQY = 88%) were encapsulated in polymethyl methacry-
late (PMMA) fiber membrane (d ≈ 400 nm) to afford CPBQD/PMMA FM for detecting
trypsin, Cu2+, and pH [90]. The CPBQD/PMMA FM and cyclam interacted effectively to
capture Cu2+, with a linear range of 1 fM–1 M (fM = femtomole (10−15 M)) and an LOD of
1 fM. Moreover, fluorescence resonance energy transfer (FRET) between CPBQD and Cu2+

plays a vital role, resulting in PL quenching. Trypsin detection by CPBQD/PMMA FM
via PL quenching was attained in the presence of peptide CF6 (Cys–Pro–Arg–Gly–R6G).
Similarly, CPBQD/PMMA FM and R6G were combined to display pH-mediated fluores-
cent quenching. This is a unique work with exceptional sensor investigations. However,
it can be improved further by supporting additional real-time applications. Ahmed et al.
proposed a two-step surfactant-free procedure for producing a CsPbBr3 QD-embedded
zinc(II) imidazole-4,5-dicarboxylate metal–organic framework (MOF) for the luminescent
detection of Cu2+ [91]. The PL emission of CsPbBr3@MOF composites at 519 nm (under
360 nm excitation; PLQY = 39.2%) was quenched linearly between 100 and 600 nM, with an
estimated LOD of 63 nM. PL quenching occurred through dynamic quenching and electron
transfer with a Stern–Volmer quenching constant (KSV) of 1.55 × 105 M−1. Although this
report is an impressive work, it lacks real-sample investigation.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 54 
 

 

 

Figure 5. (a) The workstation setup for the detection system of microfluidic sensor. (b) The sche-

matic of the formation of PMMA OPCs/c composites and Cu2+ detection (permission obtained from 

Ref. [87]). 

Zhang and co-workers proposed the utilization of organic cross-linker hexameth-

ylene diisocyanate (HDI)-reinforced small-sized CsPbBr3@SiO2-E NPs (size ≤ 50 nm) to-

ward the fluorescent sequential detection of Cu2+ and S2− [89]. CsPbBr3 NCs (size = 6.8 nm; 

emission at 515 nm) were first synthesized using a hot-injection technique and then con-

jugated via a three-step synthetic path to afford CsPbBr3@SiO2-E NPs (emission peak at 

508 nm; PLQY = 90%), where ‘E’ stands for enhanced performance. The linear PL quench-

ing/recovery of CsPbBr3@SiO2-E NPs with Cu2+ and S2− were observed in ranges of 0–5 µM 

and 5–10 µM (for Cu2+) and 0–120 µM (for S2−), with corresponding LODs of 0.16 µM (for 

Cu2+) and 8.8 µM (for S2−). This work requires further support with real-time investiga-

tions. The CsPbBr3 QDs (PLQY = 88%) were encapsulated in polymethyl methacrylate 

(PMMA) fiber membrane (d ≈ 400 nm) to afford CPBQD/PMMA FM for detecting trypsin, 

Cu2+, and pH [90]. The CPBQD/PMMA FM and cyclam interacted effectively to capture 

Cu2+, with a linear range of 1 fM–1 M (fM = femtomole (10−15 M)) and an LOD of 1 fM. 

Moreover, fluorescence resonance energy transfer (FRET) between CPBQD and Cu2+ plays 

a vital role, resulting in PL quenching. Trypsin detection by CPBQD/PMMA FM via PL 

quenching was attained in the presence of peptide CF6 (Cys–Pro–Arg–Gly–R6G). Simi-

larly, CPBQD/PMMA FM and R6G were combined to display pH-mediated fluorescent 

quenching. This is a unique work with exceptional sensor investigations. However, it can 

be improved further by supporting additional real-time applications. Ahmed et al. pro-

posed a two-step surfactant-free procedure for producing a CsPbBr3 QD-embedded 

zinc(II) imidazole-4,5-dicarboxylate metal–organic framework (MOF) for the luminescent 

Figure 5. (a) The workstation setup for the detection system of microfluidic sensor. (b) The schematic
of the formation of PMMA OPCs/c composites and Cu2+ detection (permission obtained from
Ref. [87]).

Wang et al. reported the use of a liquid–liquid extraction technique for the visual
detection of Hg2+ in aqueous media [92]. In their study, the luminescent CsPbBr3 NCs
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(PL emission at 520 nm under 380 nm excitation) were synthesized using the hot-injection
method to engage in the liquid–liquid-extraction-based visual detection of Hg2+. When
adding Hg2+ dissolved in water into CsPbBr3 NCs in carbon tetrachloride (CCl4), the
colorimetric PL emission quenching at 520 nm via liquid–liquid extraction was observed,
as displayed in Figure 6. The linear regression of Hg2+ was recorded between 50 nM and
10 µM, with an estimated LOD of 35.65 nM. This work requires further investigations into
the underlying mechanism and real-time applications.
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Jiang et al. proposed a two-step precipitation method to synthesize emissive CsPbBr3
crystals (PL emission at 525 nm under 395 nm excitation) toward Hg2+ detection [93]. When
detecting Hg2+, both CsPbBr3 NCs and Hg2+ were co-precipitated in aqueous solution.
The CsPbBr3 precursor was firstly dissolved in an aqueous solution containing Hg2+

(0–1000 nM) and then dropped onto a hydrophilic polydimethylsiloxane (PDMS) substrate
with a microwell array. When the substrate was heated at 25 ◦C for 3 min, co-precipitation
occurred, which resulted in PL quenching via Hg2+ doping into the CsPbBr3 lattice. The
linear regression of Hg2+ was observed between 5 and 100 nM, with an estimated LOD of
0.1 nM. This work demonstrated an innovative technique and provided detailed studies on
interference, pH effect, and underlying mechanisms toward Hg2+ detection. However, the
cost-effectiveness and real-time applications of this method require more work. Through
ligand engineering and silica encapsulation, a stable fluorescent CsPbBr3-mPEG@SiO2
composite (PL emission at 520 nm under 330 nm excitation; PLQY = 67.5%) was synthesized
and adopted in the sequential detection of Hg2+ and glutathione (GSH) in aqueous solution
via PL quenching and recovery, respectively [94]. Shu and co-workers demonstrated that
the existence of 73% of the PL emission of NCs could last over 30 days in aqueous media.
The PL quenching and recovery responses were attributed to the electron transfer process
between NCs and Hg2+ and the effective interaction between Hg2+ and GSH. The linear PL
responses of Hg2+ and GSH were observed in the ranges of 1–50 nM and 1–10 µM, with
LODs of 0.08 nM and 0.19 µM, respectively. This work was successfully applied in tab and
serum sample analysis; therefore, it can be regarded as a remarkable work in Hg2+ and
GSH detection.

Guo et al. developed a nucleation growth method for producing CsPbBr3 NCs (PL
emission at 518 nm under >360 nm excitation; PLQY > 89%) at a large scale and adopted
as-synthesized NCs for detecting Zn2+ [95]. The PL emission of CsPbBr3 NCs was quenched
linearly between 0 and 40 µM in the presence of Zn2+. The PL quenching was not due to
the replacement of Pb2+ in the CsPbBr3 matrix but was caused by the Zn–oleic complex
formation. The surface defects created led to the self-assembly of CsPbBr3 nanocubes
into nanorods, thereby resulting in PL quenching. George and co-workers reported the
use of alpha-amino butyric acid (A-ABA)-capped CsPbBr3 QDs (M PQDs) for developing
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Co2+ sensors [96]. The M PQDs were synthesized using the hot-injection method, which
displayed PL emission at 489 nm. The PL emission of the M PQDs was quenched in
Co2+ concentrations of 0–100 nM, with an LOD of 0.8 µM. This report uncovered that PL
quenching was due to FRET-facilitated dynamic quenching and the inner filter effect (IFE).
This is the only report on IFE-based PQD sensors using metal ions, but it lacks information
in real-time applications. Halali et al. reported uranyl (UO2

2+) ion detection using green
emissive CsPbBr3 PQDs (synthesized using the hot-injection method) [97]. When adding
UO2

2+, the PL emission at 518 nm was quenched linearly in UO2
2+ concentrations of

0–3.3 µM, with a calculated LOD of 83.33 nM. Extensive mechanistic studies revealed that
the PL quenching was due to the electrostatic interaction and adsorption of UO2

2+ over the
surface of QDs. To support this work, further research on the interference and application
studies is necessary.

Polyvinylpyrrolidone (PVP) polymer shell-grown silica-coated Zn-doped CsPbBr3
NCs (polymer-coated Zn-doped CsPbBr3/SiO2 core/shell NCs (PVP-0 NCs, PVP-2.5 NCs,
PVP-5 NCs, PVP-7.5 NCs, and PVP-10 NCs)) were synthesized with the hot-injection
method for detecting In3+ in water [98]. The double-coating method enhanced the wa-
ter stability, dispersibility, and emission properties of the NCs. Among the various PVP
shell-grown silica-coated Zn-doped CsPbBr3 NCs, PVP-5 NCs (PLQY = 88%) were more
stable at higher temperatures and showed stronger luminescence and greater selectivity
to In3+. When adding In3+, the PL emission of the PVP-5 NCs at 511 nm was quenched in
In3+ concentrations of 0–104 µM, with an estimated LOD of 11 µM. The PL quenching was
associated with the replacement of Pb2+ by In3+. This report is noteworthy but lacks evi-
dence for the proposed mechanism and real-time applications. Pandey et al. employed the
CsPbBr3−Ti3C2Tx MXene QD/QD heterojunction for the PL-based detection of Cd2+ [99].
CsPbBr3 QDs were synthesized using the hot-injection method and then were composited
with Ti3C2Tx MXene in toluene. The PL emission of CsPbBr3−Ti3C2Tx MXene QDs at
505 nm (under 410 nm excitation) was quenched via charge transfer when adding Cd2+.
The linear PL quenching of the QD composite was observed in Cd2+ concentrations of
99–590 µM with no information on the value of LOD. This work also demonstrated an
on−off−on PL probe for cadmium ion detection, but more investigations are necessary
to justify the underlying quenching (static/dynamic) mechanisms. Hsieh and co-workers
proposed the use of (3-aminopropyl) triethoxysilane (APTES)0coated CsPbBr3–CsPb2Br5
QDs toward the PL-based detection of Fe3+, as illustrated in Figure 7 [100]. Through the
ligand-assisted reprecipitation method, APTES-coated CsPbBr3–CsPb2Br5 QDs were syn-
thesized. The PL emission of the QDs at 520 nm was quenched rapidly (response time = 8 s
at 40 ◦C) in the presence of Fe3+. The linear PL responses of QDs to Fe3+ were observed in
Fe3+ concentrations of 10 µM–10 mM with an LOD of 10 µM. This is a well-organized work
with excellent results in response time and temperature, but it lacks supportive data on
mechanistic investigations. Table 1 summarizes the synthetic route, PLQY, linear range,
detection limit, and application of CsPbX3 (X = Cl, Br, and I) and composites for metal
ion detection.

Table 1. The synthetic route, PLQY, linear range, detection limit, and application of CsPbX3 (X = Cl,
Br, and I) and composites toward metal ion detection.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

CsPbCl3 NCs
and CsPbCl3

NWs

Hot-injection
method; 2.1% and

17.3%
Cu2+ PL quenching 0–1 µM 0.06 nM NA [80]

CSPbBr3 QDs Hot-injection
method; 63% Cu2+ PL quenching 2 nM–2 µM 2 nM Edible oils [81]
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Table 1. Cont.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

CSPbBr3 QDs Hot-injection
method; 90% Cu2+ PL quenching 0–100 nM 0.1 nM NA [82]

Silica-coated
CsPbCl3 NCs

ligand-assisted
reprecipitation

(LARP) method;
93%

Cu2+ PL quenching 0–412 µM 18.6 µM
Natural
water

systems
[83]

CsPbBr3 QDs Hot-injection
method; NA Cu2+ PL quenching 1 µM–10 mM NA NA [84]

CsPbBr3-(SH)
polyHIPE
composite

Hot-injection
method; ~98% Cu2+ PL quenching 10 fM–10 mM 10 fM NA [86]

PMMA
OPCs/CsPbBr3
QD composites

Hot-injection
method; NA Cu2+

PL quench-
ing/Microfluidic

detection
1 nM–10 mM 0.4 nM Lubricating

oils [87]

CsPbI3 QD/S
iO2 IOPCs

Hot-injection
method; NA Cu2+

PL quench-
ing/Microfluidic

detection

0–20 nM and
20–50 nM 0.34 nM Lubricating

oils [88]

CsPbBr3@SiO2-E
NPs

Hot injection
followed by 3-step

synthetic
modification; 90%

Cu2+/S2−
PL

quenching/PL
Recovery

0–5 µM and
5–10 µM (for

Cu2+) and
0–120 µM
(for S2−)

0.16 µM (for
Cu2+) and
8.8 µM (for

S2−)

NA [89]

CsPbBr3
QD/PMMA fiber

membranes

Hot injec-
tion/Electrospinning

method; 88%
Cu2+ PL quenching 1 fM–1 M 1 fM NA [90]

CsPbBr3@MOF
QDs

two step surfactant
free procedure;

39.2%
Cu2+ PL quenching 100–600 nM 63 nM NA [91]

CsPbBr3 NCs Hot-injection
method; NA Hg2+ PL quenching 50 nM–10 µM 35.65 nM NA [92]

CsPbBr3 Crystals
two-step

precipitation
method; NA

Hg2+ PL quenching 5–100 nM 0.1 nM NA [93]

CsPbBr3-
mPEG@SiO2

NCs

Ligand
engineering and

silica
encapsulation
method; 67.5%

Hg2+/GSH
PL

quenching/PL
Recovery

0.1–50 nM
(for Hg2+)

and 1–10 µM
(for GSH)

0.08 nM (for
Hg2+) and

0.19 µM (for
GSH)

Tap water
and Serum

analysis
[94]

CsPbBr3 NCs Nucleation growth
synthesis; >89% Zn2+ PL quenching 0–40 µM NA NA [95]

alpha-amino
butyric acid

(A-ABA)-capped
CsPbBr3 QDs (M

PQDs)

Hot-injection
method; NA Co2+ PL quenching 0–100 nM 0.8 µM NA [96]

CsPbBr3 QDs Hot-injection
method; NA UO2

2+ PL quenching 0–3.3 µM 83.33 nM NA [97]



Sensors 2024, 24, 2504 12 of 53

Table 1. Cont.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

PVP shell-grown
silica-coated

Zn-doped
CsPbBr3 NCs

Hot-injection
method; 88% In3+ PL quenching 0–104 µM 11 µM NA [98]

CsPbBr3−Ti3C2Tx
MXene QD/QD
heterojunction

Hot-injection
method; NA Cd2+ PL quenching 99–590 µM 99 µM NA [99]

APTES-coated
CsPbBr3–

CsPb2Br5 QDs

ligand-assisted
reprecipitation
method; NA

Fe3+ PL quenching 10 µM–
10 mM 10 µM NA [100]

NA = not available; µM = micromole (10−6 M); nM = nanomole (10−9 M); fM = femtomole (10−15 M).
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Figure 7. (a) Emission spectra and (b) normalized emission intensity of AP-PQD in the presence
of different Fe3+ concentrations. (c) Photographs of AP-PQD dispersed in ethanol containing Fe3+

under ambient light and 365 nm UV light. (d) Intensity ratio of AP-PQD in the presence of different
Fe3+ concentrations (permission obtained from Ref. [100]).
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Critical Comments on CsPbX3 (X = Cl, Br, and I)-Based Metal Ion Detection

Based on the existing results, it is noted that as-synthesized CsPbX3 QDs, NCs, and
NWs display high specific selectivity to Cu2+ through feasible energy transfer between
the probes and Cu2+ [80–82]. Furthermore, it was clarified that Yb3+ doping enhanced the
selectivity by reducing the surface defect [80,81], thereby suggesting the effectiveness of
surface forces in sensors. Another critical issue in the use of CsPbX3 (X = Cl, Br, and I)
probes for metal ion detection, which requires more attention, is their stability in aquatic
environments. To solve the stability issues, using polymer and ligand capping/coating
on CsPbX3 has been proposed [83,84,86,89,90], which may enhance the PLQY by avoiding
surface exposure to environmental forces existing in water and air. However, whether
this approach can be effective in exposure to Cu2+ in an aquatic environment remains an
open question. The development of a pass filter consisting of CsPbBr3 and CsPb(Cl/Br)3
QDs was demonstrated for Cu2+ detection via PL quenching responses [85]. However,
the development of such pass filters has not met commercial standards. It is a premature
proposal and requires additional work. CsPbBr3 QD/CsPbI3 QDs were explored using
the microfluidic technique, which facilitated the detection of Cu2+ [87,88]. However, the
fabrication processes of such devices are rather complicated and require a well-equipped
clean room environment, thereby restricting their advancement in most developing coun-
tries. Also, it is essential to determine whether this microfluidic method is effective in all
environmental samples. The use of CsPbBr3 crystals, NCs, and QDs was also reported in
the PL “turn-off” detection of Hg2+ and UO2

2+ [92–94,97]. Many of the available reports
on CsPbX3 (X = Cl, Br, and I)-based metal ion sensors confirmed their selectivity to Cu2+;
however, the underlying mechanisms of detecting Hg2+ and UO2

2+ by CsPbBr3 crystals,
NCs, and QDs are still unclear. Likewise, the composites of CsPbX3 (X = Cl, Br, and I) with
other emerging nanomaterials, such as MOFs, Mxene, APTES, etc., have been proved to be
effective in discriminating diverse heavy metal ions [91,94–96,98–100]. However, most of
those reports did not address the feasible surface-facilitated detection mechanisms, which
restricted the development of analytical devices. These results also raise the question of the
reliability of CsPbX3 (X = Cl, Br, and I)-based Cu2+ sensors. The reason behind the selective
sensing of Cu2+ must be clarified by investigating the Pb2+ replacement mechanism, as
well as the magnetic property (ferro-/ferri-electronic) changes. The crystalline and lattice
features of the probes/compositions in the presence/absence of analytes are not considered
from mechanistic aspects, which should be taken into account in future sensor designs. If
the crystalline/lattice parameters of CsPbX3 (X = Cl, Br, and I)-based probes are taken into
account, it is highly feasible to design chemoresistive and electrochemical sensors for heavy
metal quantification in real samples.

4. Anion Detection by CsPbX3 (X = Cl, Br, and I) and Composites

Similar to metal ion quantification, the discrimination of anions was also demonstrated
by perovskite nanomaterials, as described in this section. Jan et al. reported the synthesis of
the CsPbBr3 nanoplatelets (PLQY = 83.7%) via the hot-injection method, which displayed PL
emission at above 475 nm under 350 nm excitation [101]. The PL peak was blueshifted when
the CsPbBr3 nanoplatelets were exposed to Cl− (from a HCl source). The sensor response
showed a linear range from 0.2 to 0.4 nM, with an LOD of 28 pM. The observed response
was attributed to the anion exchange mechanism. Moreover, CsPbBr3 nanoplatelets are
also able to effectively detect the arsenate in the presence of hypochlorous acid (HOCl).
The following reaction process (1) shows that As3+ is oxidized to produce Cl−:

AsO3
3− + OCl− → AsO4

3− + Cl− (1)

A blueshifting phenomenon in PL emission from the reaction induced by Cl− species
occurred via anion exchange, which showed a linear regression of 6.4–58 nM, with an
LOD of 1 nM. This is an innovative work with dual-species recognition; however, it does
not provide enough real-time applications. Thereafter, Huang et al. proposed the use of
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CsPbBr3 QDs for Cl− detection in water [102]. The CsPbBr3 QDs, with PL emission at
513 nm and a calculated PLQY value of 87%, were synthesized using the hot-injection
method. When exposed to Cl−, the PL emission peak at 513 nm was blueshifted to 483 nm
due to the anion exchange reaction with Br−. The shifting of the PL peak occurred in
Cl− concentrations of 10–200 µM, with an estimated LOD of 4 µM. This report was well
supported by real-time water analysis; therefore, it can be regarded as a unique work. Shu
and co-workers developed highly stable CsPbBr3 NCs via amphiphilic polymer ligand-
assisted synthesis [103]. Amphiphilic polymer octylamine-modified polyacrylic acid (OPA)
was used as the capping agent to produce stable NCs, with PL emission at 520 nm and
>40% PLQY. As displayed in Figure 8, the PL peak at 520 nm is blueshifted to 441 nm due
to the anion exchange reaction in Cl− concentrations of 1–80 mM, with an LOD of 0.34 mM.
This report demonstrated Cl− detection in sweat samples; thus, it is an innovative work.
However, further research work is required for commercialization.
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Figure 8. (A) Fluorescence spectra and corresponding fluorescence photographs of the CsPbBr3/OPA
+ OAm NCs in the presence of different concentrations of chloride ions from 0 to 150 mM in an
aqueous solution under 365 nm UV excitation. (B) The fitting curve of ∆λ plotted as a function of
Cl− concentration; inset: the corresponding calibration curve of ∆λ and Cl− concentration from
1 to 80 mM. (C) Wavelength shift of different substances for the selectivity investigation of Cl−

sensing. (D) Fluorescence spectra of actual samples and samples after being spiked with different
concentrations of Cl−; inset: the corresponding fluorescence photos of the samples (permission
obtained from Ref. [103]).

Shortly after, Li et al. adopted CsPbBr3 NCs for the luminescent colorimetric sensing of
Cl− in n-hexane via a halide exchange reaction [104]. The CsPbBr3 NCs were synthesized
using the hot-injection method, in which a rapid halide exchange reaction occurred at
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pH = 1. The green emissive peak of the CsPbBr3 NCs at 514 nm was blueshifted to a 452 nm
peak (blue emission) in Cl− concentrations of 10–130 mM, with an estimated LOD of 3 mM.
This work was applied in Cl− detection in sweat samples; hence, it is quite innovative.
However, the values of the LOD must be further improved by combining other techniques.
By taking advantage of the anion exchangeability of CsPbBr3 NCs, Dutt and co-workers
proposed the construction of a glass plate-/paper-strip-based test kit for discriminating
Cl− [105]. The PL emission peak of the kit at 509 nm was slowly blueshifted to 478 nm
because of the anion exchange reaction. The linear regression of Cl− was observed between
100 µM and 10 mM with an LOD of 100 µM. This work requires more supportive evidence
for possible commercialization.

Recently, Zhang and co-workers developed β-cyclodextrin (β-CD)-stabilized, arginine
(Arg)-added CsPbBr3 NCs (ACD-PNCs; PLQY = 82%) via ligand-assisted synthesis and
utilized them in discriminating Cl− and I− through a ligand exchange mechanism [106].
β-CD capping, together with the addition of Arg, helped to stabilize the PNCs. The
green emission of ACD-PNCs was blue/redshifted from 508 nm to 424 nm (blue emission)
and 511 nm to 637 nm (red emission), respectively, in the presence of Cl− and I−. The
linear regression of Cl− and I− detection was observed in the ranges of 0.04–0.8 mM and
0.04–1.16 mM, with calculated LODs of 3.2 µM and 9 µM, respectively. This is a unique
work that provides a comparative study with earlier reports. However, perspectives on
further work are not mentioned. As discussed in many studies related to anion exchange
reactions, CsPBBr3 can act as exceptional probes toward the quantification of Cl−/HCl,
I−, and F− [107,108]. An alcohol-dispersed CsPbBr3@SiO2 PNCC nanocomposite was
proposed for discriminating Cl− in an aqueous phase [109]. The green emissive peak at
506 nm was blueshifted to 447 nm through the homogeneous halide exchange between
CsPbBr3@SiO2 PNCCs and Cl−. The recovery studies of Cl− in sea sand samples (with a
linear range of 0–3%) attested to the reliability of this work, with an LOD of 0.05 mg/g.
Moreover, the anion exchange between CsPbBr3@SiO2 PNCCs and Cl− occurred in the
absence of magnetic stirring or pH regulation, which was a novel observation.

Fu et al. proposed the use of the NH2-functionalized CsPbBr3 NCs for detecting
I− [110]. These NH2-functionalized NCs were synthesized in ethanol by using 3-aminopro-
pyltriethoxysilane (APTES) as ligands. In contrast to the traditional halide exchange-based
I− sensors of CsPbBr3, the luminescence of the NH2-PNCs in ethanol/water at 510 nm was
quenched, as shown in Figure 9a. Linear regression is observed in I− concentrations of
4–28 µM, with an LOD of 1 µM, as seen in Figure 9b. I− showed higher selectivity among
all other interferences, but this report lacks supporting evidence on the PL quenching
response of the unshifted peak.

Park and co-workers fabricated a CsPbBr3 QD/cellulose composite as an early diagno-
sis sensor for Cl− and I− [111]. The CsPbBr3 QD/cellulose composite was synthesized via
a hot-injection method to form monodispersed CsPbBr3 QDs with high selectivity to Cl−

and I−. The detection of Cl− and I− in aqueous media was confirmed by observing a color
change from green to blue and from green to red, respectively. The color change occurred
within 5 s because of the halide exchange reaction. The linear responses of the CsPbBr3
QD/cellulose composite to Cl− and I− were recorded at 0.1 mM–1 M, with calculated LODs
of 2.56 mM (for Cl−) and 4.11 mM (for I−), respectively. In terms of real-time applications,
this work can be regarded as a unique report on medical device fabrication. The halogen
ion exchange reaction of CsPbBr3 and composites brings an additional advantage of the
effective discrimination of edible oils. Zhang et al. demonstrated the discrimination of edi-
ble oils by using octadecylammonium iodide (ODAI) and ZnI2 as anion exchangers [112].
This colorimetric sensing strategy can be applied in detecting edible oil mixtures with 100%
accuracy, but further research is required for commercialization. Wang et al. described
the employment of tetraphenylporphyrin (TPPS)-modified CsPbBr3 NCs (CsPbBr3/TPPS
nanocomposite) for the quantification of sulfide (S2−) [113]. The CsPbBr3/TPPS nanocom-
posite possessed good water stability and dual-emission properties. As shown in Figure 10,
the CsPbBr3/TPPS nanocomposite displays strong green emission at 520 nm and moderate
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red emission from the TPPS at 650 nm. When adding S2−, the PL emission at 520 nm was
quenched linearly in S2− concentrations of 0.2–15 nM, with an LOD of 0.05 nM. This was
attributed to the destruction of CsPbBr3 NCs via the formation of more stable PbS. This
work also reported the real-time water recovery study (>95%), which showed a relative
standard deviation of <3%, thereby opening a new direction for future research. Table 2
summarizes the synthetic route, PLQY, linear range, LOD, and application of CsPbX3
(X = Cl, Br, and I) and composites toward the detection of anionic species.
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Table 2. The synthetic route, PLQY, linear range, detection limit, and application of CsPbX3 (X = Cl,
Br, and I) and composites toward the detection of anionic species.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

CsPbBr3
nanoplatelets

Hot-injection
method; 83.7%

Cl− and
As3+ PL peak shift

0.2–0.4 nM
and

6.4–58 nM

28 pM and
1 nM NA [101]

CsPbBr3 QDs Hot-injection
method; 87% Cl− PL peak shift 10–200 µM 4 µM Real-time water

analysis [102]
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Table 2. Cont.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

CsPbBr3 NCs Ligand-assisted
synthesis; >40% Cl− PL peak shift 1–80 mM 0.34 mM Human sweat

sample analysis [103]

CsPbBr3 NCs Hot-injection
method; NA Cl− PL peak shift 10–130 mM 3 mM Human sweat

sample analysis [104]

CsPbBr3 NCs Hot-injection
method; NA Cl− PL peak shift 100 µM–10

mM 100 µM Glass/Paper-
strip analysis [105]

β-cyclodextrin
stabilized,

Arginine added
CsPbBr3 NCs
(ACD-PNCs)

Ligand-assisted
synthesis; 82%

Cl− and
I− PL peak shift

0.04–0.8 mM
and

0.04–1.16 mM

3.2 µM and
9 µM

Human saliva,
sweat, and
test-strip
analysis

[106]

CsPbBr3@SiO2
NCs

Room-
temperature

synthesis; NA
Cl− PL peak shift 0–3% 0.05 mg/g Sand Analysis [109]

NH2-functionalized
CsPbBr3 NCs

Hot-injection
method; NA Cl− PL

Quenching 4–28 µM 1 µM NA [110]

CsPbBr3
QD/Cellulose

composite

Hot-injection
method; NA

Cl− and
I− PL peak shift 0.1 mM–1 M

2.56 mM
(For Cl−)
and 4.11

mM (For I−)

Real-time water
analysis [111]

Tetraphenylporphy-
rin tetrasulfonic

acid
(TPPS)-modified

CsPbBr3 NCs

Hot-injection
method followed
by compositing;

NA

S2− PL
Quenching 0.2–15 nM 0.05 nM Real-time water

analysis [113]

NA = not available; µM = micromole (10−6 M); nM = nanomole (10−9 M); mM = millimole (10−3 M);
mg = milligram; g = gram.

Critical View on CsPbX3 (X = Cl, Br, and I)-Based Anion Sensors

CsPbX3 (X = Cl, Br, and I)-based probes/composites have been reported for discrimi-
nating Cl−, Br−, and I− to display red/blueshifted PL emissive peaks via anion exchange,
as noted in Table 2 [101–112]. According to these sensing studies, the presence of anions
in the aquatic environment may also lead to a rapid anion exchange due to the disturbed
structural parameters. These issues should be addressed with in-depth investigations.
Surface stabilization by using suitable capping agents may change lattice features, re-
sulting in an enhanced PLQY; thus, the proposed anion-sensing performance by CsPbX3
(X = Cl, Br, and I)-based probes/composites is not yet confirmed and requires further
research. The real question is how can the anion-sensing performance be confirmed if the
sensing medium itself could affect the stability of the proposed CsPbX3 (X = Cl, Br, and
I)-based probes/composites. The reaction-based sensing of S2− using tetraphenylporphyrin
tetrasulfonic acid (TPPS)-modified CsPbBr3 NCs was also observed [113], which showed
dependence on composition concentrations. Therefore, the optimization of composition
concentrations is regarded as a high-priority task and requires detailed investigations. Due
to the instability issues of CsPbX3 (X = Cl, Br, and I)-based probes, anion discrimination to
distinct competing matrices in real water samples becomes more urgent.

5. CsPbX3 (X = Cl, Br, and I) and Composites for the Recognition of Chemicals
and Explosives

Similar to the quantification of metal ions and anions, CsPbX3 (X = Cl, Br, and I) and
composites have been widely applied in the discrimination of chemicals and explosives.
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Yin and co-workers reported the use of CsPbBr3 NCs (synthesized with the hot-injection
method; PL at 510–520 nm) in the quantification of iodomethane (CH3I) via the halide
exchange reaction in the presence of oleylamine (OLA) [114]. The presence of OLA induced
the nucleophilic substitution of CH3I to release iodide species. As illustrated in Figure 11,
the iodide exchange occurs rapidly within <5 s, resulting in a redshift of PL (nearly 150 nm;
original PL at 660–670 nm). The selectivity of CsPbBr3 NCs toward CH3I was high with
this portable approach. The linear range of CH3I detection is between 0.7 and 70 µM with
an LOD of 0.2 ± 0.07 µM. Based on the results, this work can be regarded as innovative.
Shortly after, Feng et al. described the use of yttrium single-atom-doped cesium lead
bromide nanocrystals (Y-SA/CsPbBr3 NCs) for detecting CH3I [115]. The Y single-atom
deposition was carried out using a photo-assisted method. In the presence of OLA, the PL
peak of CH3I was redshifted due to the halide exchange reaction. The linear range of CH3I
detection was between 5.6 and 157 µM, with an LOD of 0.3 µM. Except for the anchoring of
the Y single atom, this is a follow-up work of an earlier report [114], hence requiring more
research efforts to confirm its novelty.
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(from 660 nm to 560 nm) in CH2Br2 concentrations of 7.2–21.0 mM, with an LOD of 1.7 
mM. Although the results of this work look appealing, improvement in LODs is required 
before commercialization. Saikia et al. used cetyltrimethylammonium bromide (CTAB)-
passivated CsPbBr3 to effectively discriminate ethanol and methanol [117]. Due to the 
different interaction modes with CTAB, CsPbBr3 displayed diverse PL “turn-off/turn-on” 
responses with LODs down to 9.3 ppb. This technique has been validated in petrol and 
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Bahtiar et al. described the employment of CsPbBr3 NCs for quantifying the benzoyl 
peroxide (PBO) concentration in solutions [118]. When adding oleylammonium iodide 

Figure 11. Reaction mechanisms and the spectroscopic response of CsPbBr3 perovskite nanocrystals
(PNCs) to CH3I. (a) Oleylamine (OLA, 0.96 mM) or CH3I (20,000 ppbv solution) were introduced
separately into PNC dispersions in toluene. The emission images under 365 nm UV light were
recorded after 100 min, showing no change in emission. (b) OLA-pretreated CH3I solutions (CH3I
concentration: 20,000 ppbv) were added to a PNC dispersion in toluene, with the emission color
observed under 365 nm UV light before and 20 s after addition. The hypothesized reaction mechanism
occurs when CH3I induces the alkylation of OLA via the SN2 mechanism and stops at dimethyl
analog formation. (c) UV−visible absorption spectra of PNCs exposed to varying amounts of CH3I.
(d) Emission spectra of CsPbBr3 PNCs as a function of the amount of added CH3I; inset: redshift of
PNC PL emission as a function of CH3I concentration. Linear fitting of results from 100 to 10,000 ppbv
is shown as a red line with R2 = 0.997. (e) CIE chart converted from the PL spectra of PNCs exposed
to varying amounts of CH3I. Note: Spectra in c, d were recorded 20 s after CH3I addition at room
temperature to ensure the reaction was complete (permission opted from Ref. [114]).
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Xie et al. reported a paper-based microfluidic colorimetric assay for dichloromethane/
dibromo methane (CH2Cl2/CH2Br2) in the presence of trialkyl phosphines (TOP) by using
CsPbX3 (X = Cl, Br, or I) nanocrystals [116]. When adding TOP or through UV-photon-
induced electron transfer, the homogeneous nucleophilic substitution could be enhanced to
afford a colorimetric fluorescent response with corresponding peak shifts. In the presence
of CH2Cl2, the CsPbBr3 NCs displayed a linear peak shift (from 510 nm to 460 nm) in
CH2Cl2 concentrations of 0–0.9 M, with an LOD of 48 mM. Similarly, In the presence of
CH2Br2, CsPbBr0.5I2.5 displayed a linear PL peak shift (from 660 nm to 560 nm) in CH2Br2
concentrations of 7.2–21.0 mM, with an LOD of 1.7 mM. Although the results of this
work look appealing, improvement in LODs is required before commercialization. Saikia
et al. used cetyltrimethylammonium bromide (CTAB)-passivated CsPbBr3 to effectively
discriminate ethanol and methanol [117]. Due to the different interaction modes with
CTAB, CsPbBr3 displayed diverse PL “turn-off/turn-on” responses with LODs down to
9.3 ppb. This technique has been validated in petrol and cough syrup samples; therefore, it
is quite innovative.

Bahtiar et al. described the employment of CsPbBr3 NCs for quantifying the benzoyl
peroxide (PBO) concentration in solutions [118]. When adding oleylammonium iodide
(OLAM-I), the PL emission of CsPbBr3 NCs at 515 nm was redshifted to 660 nm via the
halide exchange reaction. When BPO was added to the above solution, the original PL
emission was blueshifted within 1–2 min. Zhang and co-workers also used luminescent
CsPbBr3 NCs (synthesized with the hot-injection method; PLQY = 87%) to detect BPO [119].
The linear range of BPO detection was observed between 0 µM and 120 µM, with an LOD
of 0.13 µM. The applicability of both reports was demonstrated in white flour and noodles.
Thus, this is a unique method for BPO detection. Huangfu et al. confirmed the highly
responsive photoluminescence sensing performance of CsPbBr3 quantum dots (QDs) for
total polar material (TPM) identification in edible oils [120]. As seen in Figure 12, the
CsPbBr3 QDs display diverse colorimetric and PL emissive responses to individual polar
solvents (dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), methanol, acetonitrile,
ethanol, 1-propanol, acetone, ethyl acetate, chloroform, dichloromethane, and toluene).
This TPM detection was effectively applied in edible oils, such as olive oil, soybean oil,
and sunflower oil. Hence, it is regarded as an innovative method for the real-time quality
assessment of edible oil.
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and (11) toluene; (a) under ambient light, (b) under 365 nm UV light (permission obtained from
Ref. [120]).
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Zhao and co-workers developed orange-emitting oil-soluble CsPbBr1.5I1.5 QDs for
detecting excessive acid number (AN), 3-chloro-1,2-propanediol (3-MCPD), and moisture
content (MC) for edible oil quality assessment [121]. The PL emission of the CsPbBr1.5I1.5
QDs at 609 nm was quenched when detecting excessive acid number (AN). The peak
at 609 nm was blueshifted to 583 nm when 3-MCPD was detected. For MC detection,
mesoporous silica-coated CsPbBr1.5I1.5 QDs were adopted as ratiometric sensors to develop
water-stable green-emitting CsPbBr3 nanosheet (NS) probes. The LODs were determined
for the detection of AN, 3-MCPD, and MC as 0.71 mg KOH/g, 39.8 µg/mL, and 0.45%,
respectively. Based on these results, this work can be regarded as innovative. Aamir et al.
demonstrated the use of CsPbBr3 microcrystals for the PL-based detection of nitrophe-
nol [122]. The PL emission was quenched rapidly due to the π–π stacking interaction
of the benzene ring with CsPbBr3 microcrystals. PL emission was quenched linearly in
nitrophenol concentrations of 0.1–0.6 mM. This study reported a preliminary result, thereby
requiring more research work.

Chen et al. reported the use of CsPbX3 QDs (Br/I; synthesized via the hot-injection
method; PLQY = 52.88% and 46.18%, respectively) for the highly selective detection of
explosive picric acid (PA) [123]. In which, the green/red fluorescence of CsPbX3 (Br/I)
at 510 nm/675 nm was quenched in the presence of PA. The linear regression of CsPbX3
(Br/I) to PA was in the ranges of 0–180 nM and 0–270 nM, with estimated LODs of 0.8 nM
and 1.9 nM, respectively. Based on the supported evidence, the authors speculated that the
electrostatic-assisted energy transfer is the possible sensor mechanism. Figure 13 displays a
schematic model of the CsPbBr3 QD-based quenching response to PA and its paper-strip
application. This is outstanding work, but additional research is necessary for commercial-
ization. Aznar-Gadea and co-workers described the consumption of molecularly imprinted
CsPbBr3 nanocomposites for rapid explosive taggant detection at the gaseous stage [124].
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Figure 13. Schematic for the sensitive fluorescence detection of PA based on perovskite quantum dots
and its paper-strip applications (permission obtained from Ref. [123]).

A molecularly imprinted polymer (MIP) sensor was fabricated by embedding CsPbBr3
NCs in polycaprolactone (PCL). When exposed to template molecules, such as 3-nitrotoluene
(3-NT) and nitromethane (NM), PL quenching responses (>75%) were observed. The MIP
sensor showed high selectivity to NT within 5 s, with an LOD of 0.218 mg mL−1. This is
a preliminary work; hence, it should be further extended for commercialization. Table 3
summarizes the synthetic route, PLQY, linear range, LOD, and application of CsPbX3
(X = Cl, Br, and I) and composites toward the detection of chemicals and explosives.
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Table 3. The synthetic route, PLQY, linear range, LOD, and application of CsPbX3 (X = Cl, Br, and I)
and composites toward the detection of chemicals and explosives.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression
Detection

Limit (LOD) Applications Ref.

CsPbBr3 NCs Hot-injection
method; NA CH3I PL peak shift 0.7–70 µM 0.2 ± 0.07

µM NA [114]

Yttrium single-
atom-doped

CsPbBr3 NCs

Hot-injection
method; NA CH3I PL peak shift 5.6–157 µM 0.3 µM NA [115]

CsPbX3 (X = Cl,
Br, or I) NCs

Hot-injection
method; NA

CH2Cl2
and

CH2Br2

PL peak shift 0–0.9 M and
7.2–21 mM

48 mM and
1.7 mM

Microfluidic
application [116]

CsPbBr3 NCs NA Benzoyl
peroxide

Peak shift and
Ratiometric

detection
NA NA Food sample

analysis [118]

CsPbBr3 NCs Hot-injection
method; 87%

Benzoyl
peroxide

Peak shift and
Ratiometric

detection
0 µM–120 µM 0.13 µM Food sample

analysis [119]

CsPbBr2I
microcrystals

Hot-injection
method; NA Nitrophenol PL Quenching 0.1–0.6 mM NA NA [122]

CsPbBr3 and
CsPbI3 QDs

Hot-injection
method; 52.88%

and 46.18%,
respectively

Picric acid PL Quenching

0–180 nM
and

0–270 nM,
respectively

0.8 nM and
1.9 nM,

respectively

Paper-strip
analysis [123]

NA = not available; µM = micromole (10−6 M); nM = nanomole (10−9 M); mM = millimole (10−3 M).

Critical View on CsPbX3 (X = Cl, Br, and I)-Based Chemical and Explosive Sensors

The detection/quantification of specialized chemicals, such as CH3I, CH2Cl2, CH2Br2,
benzoyl peroxide, and excessive acid number (AN), via anion exchange mechanisms [114–121]
cannot be regarded as a specific quantification procedure because of its similarity to anion
detection. This should be critically investigated to pursue the “state-of-the-art” sensing
procedure. Since the observed ratiometric PL responses are also similar to those in the anion
sensing studies, critical investigations are required for commercialization. Furthermore,
discriminating explosives was demonstrated via the PL quenching response resulting from
surface interaction and charge transfer between nitro-containing explosives and CsPbX3
(X = Cl, Br, and I)-based probes or composites [122–124]. However, this also requires critical
studies to justify the exact static/dynamic PL quenching responses.

6. CsPbX3 (X = Cl, Br, and I) and Composites for the Quantification of Gaseous Analytes
and Volatile Organic Compounds (VOCs)

Many CsPbX3 (X = Cl, Br, and I) and composites have also been reported for the detec-
tion of gaseous analytes and VOCs, as described in this section. Huang et al. reported the
oxygen-sensing performance of CsPbBr3 NCs [125]. NCs have a porous structure, which
allows for the rapid diffusion of O2, resulting in PL quenching. The underlying sensor
mechanism is that O2 molecules are directly involved in the extraction of photogenerated
electrons from the conduction band of CsPbBr3 NCs. This work lacks in-depth sensor inves-
tigations, thereby requiring extensive research. Lin et al. developed Mn2+-doped cesium
lead chloride nanocrystals (Mn:CsPbCl3 NCs) by using a heat-up strategy for sensing O2
via luminescent dopants and the host–dopant energy transfer mechanism [126]. As seen in
Figure 14a–e, upon exposure to O2, the phosphorescence intensity of Mn:CsPbCl3 NCs de-
creased linearly between 0 and 12% of O2. High sensing reversibility, rapid signal response,
and high photostability in air were also demonstrated. The estimated Stern–Volmer quench-
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ing constant (KSV) value following first-order kinetics was 0.0658% [O2]−1 (R2 = 0.9997).
This work is innovative, but it lacks practical applications.
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(detected at 586 nm). (e) The response time curve within one cycle test. (f) Photostability test in air
condition (excited at 365 nm) (permission obtained from Ref. [126]).

Brintakis and co-workers described the use of CsPbBr3 nanocubes as self-powered
ozone sensors, which showed higher sensitivity (54% in 187 ppb) and faster responses
(between 100 s and 150 s) and recovery (between 250 s and 320 s) [127]. The sensor response
of CsPbBr3 nanocubes to O3 was recorded between 4 and 2650 ppb (ppb = parts per billion).
The as-synthesized CsPbBr3 nanocubes were semiconductors with a certain resistance.
When exposed to O3, an accumulation layer of holes with lower resistance covering the
whole surface of the nanocubes was formed resulting in an increase in electrical current.
This is an innovative work, which has attracted many scientists to work in this direction.
Park et al. fabricated cesium lead bromide nanofibers (CsPbBr3 NFs) by attaching CsPbBr3
NCs with cellulose nanofibers (CNFs) for N2-sensing investigations [128]. When exposed
to N2 flow, the PL intensity of the CsPbBr3 NFs at 520 nm was quenched linearly between
1 and 20 ppm (R2 = 0.99433; ppm = parts per million) with an LOD of 1 ppm. The surface
trapping of N2 was proposed as the underlying mechanism for N2 detection. This is a
study on a conventional sensor, but further research is still necessary.

Nanocrystalline ZnO sensitized with CsPbBr3 NCs for the photoresistive sensing
of NO2 gas was proposed by Chizhov and co-workers [129]. In a temperature range of
25–100 ◦C, the ZnO/CsPbBr3 nanocomposite showed a linear sensor response between
0.5 and 3.0 ppm to NO2. These sensing measurements were conducted under periodic
blue LED illumination (light = tdark = 20 s; LED = light emitting diode). At 1 ppm of
NO2 gas, it was found that the optimum temperature to provide the best reversibility of
sensor measurements was 75 ◦C. Under periodic illumination, the increase in the electron
concentration of ZnO led to the adsorption of oxidizing molecules over the surface. The
photoexcited holes in CsPbBr3 were involved in the redox reaction, resulting in a change in
the electrical signal. This research is an impressive report, and it could be further developed
for commercialization. Yueyue et al. demonstrated the use of CsPbBr3 QD/ZnO MB
nanocomposites (MBs = microballs) for NO2 detection at room temperature [130]. In the
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presence of diverse CsPbBr3 QDs (0.5 wt%, 1.0 wt%, and 1.5 wt%) with ZnO MBs, the
sensing responses to NO2 were recorded. ZnO MB composited with 1.0 wt% QDs displayed
a greater photoresistive response to NO2 (for 5 ppm NO2; Rgas/Rair = 53; response/recovery
time = 63s/40s under 520 LED (1.2 W/m2) illumination). The adsorption and desorption of
NO2 over the ZnO surface were proposed as the underlying mechanism, and the QDs had
minimal effect on the sensor mechanism. This is a well-developed study on NO2-sensing
studies of CsPbBr3-ZnO conjugates, but more studies on the interference and real-time
applications are required.

The ultrafast sensing of NO2 was demonstrated using FA0.83Cs0.17PbI3 (FAC) prepared
via one-step spin-coating in ambient conditions [131]. When exposed to NO2 (20, 10, 5,
2, 1, and 0.5 ppm), the photoresistive responses (Rgas/Rair) were measured as 2.64, 2,
1.52, 1.27, 1.17, 1.1, respectively. The optimum sensor response of NO2 was recorded at
10 ppm, with a response/recovery time of 2 s/22 s. The strong oxidizing ability of NO2
gas attracts electrons from FAC, which is a p-type semiconductor. The calculated values
of the adsorption energy (Eads) of NO2 of FA+ and Cs+ in FACs are −0.37 and −0.60 eV,
respectively, thereby allowing for the spontaneous adsorption of NO2. It should be noted
that NO2 molecules attached to FACs may induce lattice distortion, which leads to a dipole
moment and the migration of charge carriers. All these factors were involved in the sensing
of NO2. The roles of FA+ and Cs+ in detecting NO2 were clearly justified. Further research
in this direction is required to improve the sensitivity. Wang and co-workers combined
ZnO nanorods with CsPbBr3/Cs4PbBr6 particles to afford the CsPbBr3/Cs4PbBr6/ZnO
composite, which showed photoresistive sensor responses to NO (100 ppm), with the
Rgas/Rair reaching 2296 (at 50 ◦C) and an LOD of 1 ppm [132]. The response and recovery
time were determined as 1235 s and 173 s, respectively. NO gas attracts electrons from the
surface of CsPbBr3/Cs4PbBr6/ZnO to release O2, which results in electrical signal changes.
Although electrons were accumulated in the conduction band of ZnO, the diffusion of NO
gas was hindered due to the covering layer of CsPbBr3/Cs4PbBr6 particles. Therefore, a
long response time was recorded. This work requires further research for the optimization
of the response/recovery time and interference studies.

Chen et al. described the use of luminescent CsPbBr3 QDs (synthesized via the
sonication method) for the solution-mediated detection of hydrogen sulfide (H2S) [133]. As
seen in Figure 15A,B, the luminescent intensity of QDs at 520 nm was quenched linearly
between 0 and 100 µM with an LOD of 0.18 µM. Note that the QDs exhibit a greater
selectivity to H2S among all the interfering species, as shown in Figure 15C. H2S penetrated
the surface of QDs and reacted with Pb2+ to form PbS, which resulted in fluorescent
quenching. The applicability of this work was demonstrated in rat brain samples; therefore,
it can be considered a unique report. Luo and co-workers synthesized a CsPbBr3@CMO
nanocomposite by encapsulating CsPbBr3 QDs with cetyltrimethylammonium bromide
and mineral oil via sonication. The composite was stable in water and was applied for
detecting H2S [134]. When adding H2S, the PL emission of CsPbBr3@CMO at 524 nm was
quenched linearly in the range of 0.15–105 µM, with an estimated LOD of 53 nM. The
sensor response was attributed to the formation of PbS originating from H2S and excessive
Pb2+ present in CsPbBr3 QDs. The high selectivity and applicability of CsPbBr3@CMO to
H2S were confirmed by interference studies and rat brain investigations.

A water-soluble CsPbBr3@sulfobutylether-β-cyclodextrins nanocomposite was syn-
thesized via sonication and employed as a photothermal sensor [135]. The H2S acted as
a switch to trigger a photothermal response, which resulted in PL quenching (at 520 nm).
The linear regression of H2S was observed between 0.5 µM and 6 mM with an LOD of
0.3 µM. This work involved zebra fish-based in vivo studies, but it lacks interference inves-
tigations; therefore, further research is mandatory. Shan et al. reported the utilization of
tributyltin oxide (TBTO)-capped CsPbBr3 QDs (CsPbBr3-Sn QDs) for the chemoresistive
sensing of H2S [136]. The sensor response (Rgas/Rair) at 100 ppm H2S reached 6.69, with a
response/recovery time of 278 s/730 s. The sensitivity of H2S could reach 0.58 at 250 ppb.
During the adsorption of H2S, the charge distribution of the internal CsPbBr3-Sn QDs
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was affected by a metalloorganic TBTO molecule, thereby leading to enhanced sensing
performance. On the other hand, the sensor performance was affected by the interaction
between H2S and CsPbBr3 QDs through PbS formation. This is an innovative work, but the
response still needs to be improved with more interference studies.
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Figure 15. (A) Fluorescence spectra of CsPbBr3 QDs upon the addition of different concentrations of
H2S. The concentration of H2S from top to bottom was 0−100 µM. (B) A linear relationship between
the fluorescence intensity of CsPbBr3 QDs and H2S concentration. (C) Changes in fluorescence
intensity of CsPbBr3 QDs in the presence of H2S (100 µM) and other interfering agents (1 mM)
(permission obtained from Ref. [133]).

Chen et al. described the fabrication of photoresistive sensors comprising a porous
network of CsPbBr3, which can generate an open-circuit voltage of 0.87 V under visible
light irradiation, to be employed in O2 and VOC (acetone and ethanol) detection [137]. The
device showed 100% photocurrent enhancement for O2 with a corresponding response and
recovery time of 17 s and 128 s under visible light irradiation. At 1 ppm of acetone/ethanol
(at 30 ◦C; illumination density = 37.8 mW cm−2), the device displayed sensor responses
(IVOC/Iair − 1) of 0.03 and 0.025 with a response/recovery time of >200 s/400 s, respectively.
The sensor response was attributed to surface lattice changes. This work needs further
optimization to improve the sensor response and response/recovery time before commer-
cialization. Xuan et al. proposed the use of stable ZnO-coated CsPbBr3 NCs (CsPbBr3@ZnO
NCs, synthesized using an in situ technique) for the photoresistive detection of heptanal
(breath biomarker) at room temperature [138]. The sensor response of CsPbBr3@ZnO NCs
at 200 ppm heptanal was measured as S = 0.36 (S = Ih − I0/I0, where Ih and I0 repre-
sent the current values in the presence and absence of heptanal gas, respectively) with
response/recovery time of 36.5 s/5.3 s. Note that the LODs were down to 2 ppm in air and
3 ppm under artificial conditions. The heptanal-induced lattice distortion was attributed
as the underlying mechanism for the sensor response. This method can facilitate the early
detection of lung cancer and COVID-19. This is an innovative work and should be exten-
sively studied with interfering species toward biomedical applications. CsPbBr2I was also
reported as a self-powered sensor for reducing and oxidizing gas molecules via surface
adsorption and desorption [139]. Because this device detects multiple gaseous analytes, the
possibility of an interfering effect cannot be ruled out.

Liu and co-workers reported triethylamine (TEA) detection by using CsPbBr3- dec-
orated ZnO polyhedrons derived from ZIF-8 [140]. ZnO-CsPbBr3 showed a higher pho-
toresistive sensor response to TEA (~60 for 100 ppm at 180 ◦C) than pristine ZnO and ZnO
NP-CsPbBr3. Note that the ZnO-CsPbBr3 also displayed shorter response and recovery
times of 2 s and 18 s with an LOD of 5 ppb. The sensor response is due to the adsorption
of oxygen molecules in the air onto the surface of ZnO-CsPbBr3, which generates oxygen
anions to initiate a redox reaction when exposed to TEA. Based on the reported sensing
performance, this work is innovative, but it requires more research to optimize interference
studies. Xu et al. demonstrated the sensing performance of CsPbBr3 to ethanolamine (EA),
in which a high response (Rgas/Rair = 29.87 for 100 ppm EA) with a response/recovery time
of 62 s/782 s and an LOD of 21ppb were reported [141]. Figure 16 shows the EA sensing
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performance of CsPbBr3, reversibility, and linear ranges to EA. Following the reaction
Formulas (2) and (3), the adsorbed O2 molecules on the CsPbBr3 surface generate O2

−

anions, which further reduce EA to generate sensor signals.

O2(gas) + e− → O2
− (ads) (2)

H2NCH2CH2OH + 3O2
− → NH2OH + 2CO2 + 2H2O + 3e− (3)
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Figure 16. Gas sensitivity test of the CsPbBr3 gas sensor at 13% RH: (a) Selective response to 100 ppm
of different test gases. (b) Response curve to different concentrations of EA at RT. The error bars were
taken from 5 sets of data. (c) Dynamic response curve; the inset shows that the response is linearly
related to the low concentration of EA of less than 50 ppm. (d) Repeatable response curve of the
CsPbBr3 sensor to 50 ppm EA at RT (permission obtained from Ref. [141]).

Shortly after, the same research group as in Ref. [141] demonstrated using the 3-
mercaptopropionic acid (MPA)-regulated heterojunction of CsPbBr3 NPs/ZnO NPs for
detecting EA [142]. The hydrophilic groups in MPA enhance the stable anchoring of ZnO
over the CsPbBr3 surface via hydrogen bond-facilitated MPA network structures. The O2
molecules anchored on ZnO generated O2

− species, which interacted with EA via a redox
reaction to generate a sensor signal. At 100 ppm of EA, CsPbBr3-2MPA/ZnO displayed a
chemoresistive sensor response of 13.23 with a response/recovery time of 50 s/698 s and
an LOD of 31 ppb. This work is innovative, judging from its supportive evidence in inter-
ference studies and the justification of the underlying mechanism. Nevertheless, further
optimization to maximize the sensor signal is still required. CsPbBr3 NC-anchored amine-
functionalized graphene oxide (GO) was demonstrated in the electrochemiluminescence
(ECL)-based detection of cupric oleate in acetonitrile containing 10 mM of tripropylamine
(TPrA) [143]. The ECL response for the cupric oleate showed a decreasing trend in the range
of 10−18−10−16 M with LODs down to the attomolar (10−18 M) level. This is a preliminary
study, thereby requiring additional efforts.



Sensors 2024, 24, 2504 26 of 53

Thiophene sulfides are one of the harmful contaminants of air pollutants; hence, their
detection becomes vital. Feng and co-workers proposed the use of CsPbBr3 NCs and
CsPbBr3/SiO2 NCs for detecting diverse thiophene sulfides [144]. Benzothiophene (BT),
dibenzothiophene (DBT), 2-methylbenzothiophene (2-MeBT), 3-methylthiophene (3-MeBT),
and thiophene (TP) were discriminated using the fluorescent quenching method, as seen
in Figure 17. The linear regression of BT, DBT, 2-MeBT, and TP detection was observed
between 10 and 50 ppm. As for t3-MTP, linearity was observed between 20 and 50 ppm.
The fluorescence of perovskite NCs can be effectively weakened by thiophene sulfides to
varying degrees due to the different interactions between thiophene sulfides and CsPbBr3
NCs and CsPbBr3/SiO2 NCs. Hence, this method can be adopted for both quantitative
and qualitative detection of thiophene sulfides. This work is impressive in terms of its
qualitative and quantitative measurements.
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Figure 17. Schematic illustration of the discrimination principle of the fluorescent sensor array for
thiophene sulfides based on two perovskite NCs (permission obtained from Ref. [144]).

A method involving dynamic passivation over the surface of CsPbBr3 QDs (synthe-
sized using the hot-injection method) was proposed by Huang et al. for the PL-enhanced
detection of ammonia (NH3) [145]. In this study, the luminescence of purified QD film
was enhanced when exposed to NH3. The linear range of PL enhancement at 610 nm was
between 25 and 300 ppm with an LOD of 8.85 ppm. The photoluminescent response and
recovery times were determined as 10 s and 30 s, respectively, at room temperature. In
particular, this innovative work explains the analysis at room temperature. Following a
similar approach, the employment of CsPbBr1.5Cl1.5 QDs, CsPbBr3 QDs, and CsPbBr1.5I1.5
QD films for the PL “turn-on” detection of ammonia (NH3) was demonstrated [146]. As
illustrated in Figure 18, the QD films display exceptional selectivity among other interfer-
ences. All these films display good linear behavior (25–200 ppm) and LODs of ≈20 ppm.
The uniqueness of this passivation method is well demonstrated by these reports, and hence
it can be extended for developing commercialized devices for the detection of ammonia
(NH3). Similar to the “turn-on” detection, a few CsPbX3-conjugated materials were also
proposed for the discrimination and quantification of NH3 via PL quenching responses.
Humidity-resistant CsPbBr3–SiO2 nanocomposites, porous nanofibers/nanocomposites
(CsPbBr3 NFs and CsPbBr3/BNNF; BNNF = boron nitride nanofiber), and stable CsPbBr3
QDs grown within Fe-doped zeolite X were proposed for the PL-quenched detection of
NH3 [147–150]. The adsorption and desorption of NH3 over the surface of these nanocom-
posites resulted in reversible cycles with given linear ranges and LODs. Table 4 summarizes
the synthetic route, PLQY, linear ranges, LODs, and applications of CsPbX3 (X = Cl, Br, and
I) and composites toward the detection of gas and VOCs.
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Figure 18. (a–c) The responses of CsPbBr1.5Cl1.5, CsPbBr3, and CsPbBr1.5I1.5 perovskite QD film
sensors to various gases (permission obtained from Ref. [146]).

Table 4. The synthetic route, PLQY, linear range, LOD, and application of CsPbX3 (X = Cl, Br, and I)
and composites toward the detection of gas and VOCs.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

Mn:CsPbCl3 NCs Heat-up strategy;
NA O2 PL quenching 0–12% NA NA [126]

CsPbBr3 NFs Hot-injection
method; NA N2 PL quenching 1–20 ppm 1 ppm NA [128]

CsPbBr3 QDs Sonication Method;
NA H2S PL quenching 0–100 µM 0.18 µM Rat brain

studies [133]

CsPbBr3@CMO

Sonication
followed by
compositing
method; NA

H2S PL quenching 0.15–105 µM 53 nM Rat brain
studies [134]

CsPbBr3@SBE-β-
CD

nanocomposite

Sonication
followed by
compositing
method; NA

H2S PL quenching 0.5 µM–
6 mM 0.19 µM Zebrafish

studies [136]

CsPbBr3/NCM
composite

Hot injection
followed by
EDC−NHS
method; NA

tripropyla-
mine (TPrA)
and Cesium

oleate

Electrochem-
iluminescence
(ECL) signals

10 mM and
NA

NA and
1 aM NA [143]

CsPbBr3/SiO2
NCs

Precursor injection
followed by
compositing
method; NA

Thiophene
Sulfides PL quenching 10–50 ppm ≈10 ppm NA [144]

CsPbBr3 QD film Hot-injection
method; NA NH3

PL
enhancement 25–300 ppm 8.85 ppm Film-based

sensor study [145]

CsPbX3 (X = Cl,
Br, I or mixed

halogen) QD film

Hot-injection
method; NA NH3

PL
enhancement 25–200 ppm ≈20 ppm Film-based

sensor study [146]

CsPbBr3–SiO2
nanocomposites

on PVDF
membrane

controllable
strategy; NA NH3 PL quenching 2160–

3600 ppm NA Test paper
study [147]

CsPbBr3 NFs

Hot-injection
method followed

by electrospinning;
NA

NH3 PL quenching 528 µM–
1.76 mM <0.5 mM NA [148]
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Table 4. Cont.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

CsPbBr3/BNNF
composites

Hot-injection
method followed
by compositing
method; ~54%

NH3 PL quenching NA NA NA [149]

CsPbX3 (X = Cl,
Br, and I) QDs

@Fe/X-n

Hydrothermal
crystallization

followed by in situ
growth of QDs;

NA

NH3 PL quenching 0–10 mL NA NA [150]

NA = not available; mM = millimole (10−3 M); µM = micromole (10−6 M); nM = nanomole (10−9 M); aM = attomole
(10−18 M); ppm= parts per million.

Critical View on the Detection of CsPbX3 (X = Cl, Br, and I)-Based Gases and VOCs

Combining CsPbX3 (X = Cl, Br, and I) with different materials can result in compos-
ited materials with exceptional electro-optical properties and less defect, which can be
adopted in the design of PL-based probes, electrochemiluminescence probes, chemoresis-
tive sensors for discriminating N2, O2, H2S, tripropylamine (TPrA), thiophene sulfides,
and NH3 [125–150]. To achieve the above goal, compositing ratios need to be optimized.
Changes in the compositing ratios may significantly affect selectivity, thereby requiring
careful/critical adjustments. The detection of H2S was demonstrated in rat brain and
zebrafish studies [133–135], but there is no clear indication of how to overcome the toxicity
induced by Pb2+ in CsPbX3. The film- or test-strip-based sensing of NH3 mostly displayed
dependence on the crystalline and morphological features of CsPbX3 (X = Cl, Br, and I)
and composites. Thus, optimizing the crystallinity/morphology of thin film is critical to
attaining the best results.

7. Humidity, Temperature, and Radiation/Photodetection by CsPbX3 (X = Cl, Br, and I)
and Composites

Humidity and moisture are the main causes resulting in perovskite material degra-
dation, which affects the practical use and commercialization of perovskite-based energy
devices [151]. The water molecules in the air react with the metal halide perovskite surface,
which rapidly affects the morphology and uniformity, resulting in changes in optical prop-
erties and conductivity [152]. The above effect is the major mechanism of humidity-sensing
responses. Doping with specified metal ions can improve the environmental stability of
metal halide perovskites and reduce the humidity effect on the surface/morphology [153].
Due to the structural distortion (phase change) and instability of CsPbBr3, its composites
can be effectively employed for the trace detection of water and humidity (%RH). For exam-
ple, dimethyl aminoterephthalate-functionalized CsPbBr3 QDs (CsPbBr3@DMT-NH2 QDs)
were synthesized with a low-temperature method and engaged in trace water detection in
edible oils [154]. The PL emission at 530 nm was quenched in trace water (0.05–5%; v/v)
with ratiometric enhancement at 445 nm. The LOD (3σ/slope) and limit of quantification
(LOQ; 10σ/slope) were 0.01% and 0.04%, respectively. The involvement of the IFE, FRET,
aggregation of QDs, and disintegration were proposed as the underlying mechanisms. This
work is notable and can be extended to detect water traces in oils and chemicals. Thereafter,
Xiang and co-workers described the luminescent quenching response of CsPbBr3 to trace
water in herbal medicines [155]. The PL intensity at 503 nm was quenched linearly with
water contents of 1–17%. The values of LODs in Seutellaria baicalensis and Astragalus
flavone were 0.75% and 0.67%, respectively.

These materials also show a great response to varying humid conditions with a linear
behavior between 33 and 98% RHs and an estimated LOD of 12% RH, as visualized in
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Figure 19. A phase change from CsPbBr3 to CsPb2Br5 was attributed as the mechanism
for the observed PL quenching response to water and RH. The recovery of RH in the
above herbals was in the range of 96.7–102.5%; therefore, this is noted as an inspiring
work. The utilization of CsPbBr3 NPs in impedance-based humidity-sensing (under 20 mV)
studies was also proposed [156]. The CsPbBr3 NPs were operative in the humidity range
of 11–95% with a response/recovery time of 2.8 s/9.7 s and a sensitivity of 1.56% RH.
This is also an inspiring work that can be further explored in commercial electrochemical
device fabrication.
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Figure 19. (A) PL images of paper substrates loading CsPbBr3 perovskite. (B) PL images of paper-
substrate-loading CsPbBr3 exposed to different RHs. (C) Humidity-dependent PL spectra of CsPbBr3

perovskite loaded on paper substrates. (D) Calibration curve for detecting different RHs, n = 3
(permission obtained from Ref. [155]).

Variations in temperature led to changes in phase and grain sizes [157], which can
be adopted in temperature sensors via monitoring changes in I–V responses, PL intensity,
absorbance, etc. On the other hand, alterations in temperature also affected the grain
uniformity and morphologies of CsPbX3 and composites [158], resulting in changes in the
PL intensity and current density. However, the doping of metal ions may also improve
the temperature sensitivity of CsPbX3 and composites [159], as illustrated in this section.
The doping of metal ions may enhance the sensitivity of CsPbX3 and composites. For
example, Chang et al. described the temperature-sensing ability of Mn2+-doped CsPbCl3
QDs (CsPbCl3:0.1Mn2+ QDs; PLQY = 47.3%) via a dual-mode luminescent response at
298–353 K [160]. In this study, the stability of QDs was improved by replacing Pb2+ with
Mn2+. For the 6% Mn2+-doped CsPbCl3 QDs, the PL intensity at 410 nm and 600 nm was
quenched considerably compared with those of undoped CsPbCl3 QDs (quenching was
observed at 410 nm only), as seen in Figure 20.
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mode fluorescent response, its results are impressive. Moreover, Mn2+-doped 
CsPbCl3@glass [161] and Mn2+-doped CsPbCl3 NCs [162] were employed as dual-mode 
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Figure 20. Temperature-dependent emission spectra of (a) CsPbCl3 and (b) CsPbCl3:6% Mn2+ QDs in
the range of 298 K–353 K. The integrated emission intensity centered at (c) approximately 410 nm
and (d) approximately 600 nm as a function of temperature (permission opted from Ref. [160]).

The 6% Mn2+-doped CsPbCl3:QDs displayed 83% and 22% quenching at 410 nm
and 600 nm, respectively. Using the fluorescence intensity ratio (FIR) and full width
at half-maximum (FWHM), the maximum relative sensitivity (SR) of CsPbCl3:0% Mn2+

was 7.38% K−1 at 298 K and 2.13% K−1 at 353 K. Although this is a follow-up work of
earlier reports [161,162], which also demonstrated the temperature-sensing ability through
the dual-mode fluorescent response, its results are impressive. Moreover, Mn2+-doped
CsPbCl3@glass [161] and Mn2+-doped CsPbCl3 NCs [162] were employed as dual-mode
luminescent sensors in temperature ranges of 80–293 K and 80–30 K, respectively.

Similar to Mn2+ doping, Eu3+-doped cesium lead halide perovskite glasses (Eu3+:
CsPbCl2Br1 QDs and Eu3+:CsPbBr3 QDs) were also used as effective materials in optical
temperature-sensing studies [163,164]. With increasing temperature from 80 K to 440 K
and 93 K to 383 K, both Eu3+:CsPbCl2Br1 QDs and Eu3+:CsPbBr3 QD glasses displayed
blueshifted PL quenching at 458 nm (excitation at 395 nm) and 519 nm (excitation at
394 nm), respectively. For Eu3+:CsPbCl2Br1 QD glass, the absolute temperature sensitivity
maxima (Sa) and the relative temperature sensitivity (Sr) were established as 0.0315 K−1

and 3.097%/K, respectively. Similarly, the Sa and Sr values of Eu3+:CsPbBr3 QD oxyhalide
glass were 0.0224 K−1 and 2.25% K−1. Figure 21 shows the optical quenching response
of one of the Eu3+:CsPbBr3 QD oxyhalide glass samples (S3) between 93 K and 383 K.
These results also suggest that metal doping can enhance the temperature-sensing ability
of cesium lead halide perovskites and composites for future device development.

CsPbClxBr3−x NCs confined in hollow mesoporous silica (CsPbCl1.2Br1.8 NCs@h-SiO2)
and integrated with K2SiF6:Mn4+ phosphor in the EVA polymer matrix (EVA = ethylene–vinyl
acetate) were proposed by Huang and co-workers for reversible temperature sensing [165].
The high density of halide vacancies played a vital role in temperature sensing between
30.0 ◦C and 45.0 ◦C. The temperature sensitivity was established as 13.44% ◦C−1 at 37.0 ◦C.
This is an inspiring work that investigates defects in sensor performance. Similarly, mi-
croencapsulated CsPbBr3 NCs with K2SiF6:Mn4+ phosphor (CsPbBr3-KSF-PS film) showed
temperature sensitivity between 30 ◦C and 70 ◦C, with the Sr value reaching 0.31% ◦C−1 at
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45 ◦C [166]. A highly stable film with its fluorescence visible to the naked eye (green-to-red
fluorescence) was achieved by optimizing the CsPbBr3 and KSF ratio and applied for
temperature sensing. Lu et al. developed dual-phase compounds containing CsPbBr3 QDs
(emission at 529 nm) and NaYF4:Ho3+ NPs (emission at 647 nm and 751 nm) for conduct-
ing optical temperature sensing between 293 and 433 K at an excitation wavelength of
447 nm [167]. The nonradiative recombination between the energy band and the defective
surface led to the thermal quenching of CsPbBr3. Sa and Sr values of 385 K−1 and 5.13%
K−1 were reported in this work. This is an interesting report among all the studies on
temperature sensors.
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The use of cesium lead halides and composites in radiation/photo detection was
proposed by numerous researchers [168–180]. Ti/Ni/CsPbBr3/Ni/Ti (with ER of 5.70%
at 8250 V·cm−1; ER = energy resolution) [153], single crystals of CsPbBr3 (with diverse
hole mobilities) [169–172,175], In/LiF/CPB/Au detectors [173], CsPbBr3 QDs embedded in
P3HT:PC61BM (P3HT:PC61BM:QD; a bulk heterojunction photodiode) [174], CsPbBr3 micro-
crystals on ITO functional substrate [176], a single-crystalline thin film of CsPbBr3 (CsPbBr3
SCF; switching ratio = 3.2 × 103, and response time = 200/300 ns) [177], CsPbBr3/RGO
nanocomposites (RGO = reduced graphene oxide) [178], CsPbBr3 QD/ZnO NWs nanocom-
posites [179], and ZnONW/CsPbBr3 QD/graphene heterojunction were demonstrated for
X-ray, radiation, and photodetection. Ion migration, photon–exciton coupling, electron–hole
diffusion, and strain-based mechanisms were proposed as the underlying mechanisms for
the radiation/photodetection. Most of the proposed cesium lead halide-based composites
showed exceptional performance. For example, P3HT:PC61BM:QD [174] displayed good
current density and X-ray photocurrent response by optimizing the weight ratio, as depicted
in Figure 22. Since there are several reviews available on the radiation/photodetection
performance of perovskites [14–19,32,61,63], they will not be discussed here.
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(b) Dark current densities of hybrid OPDs under −3 V bias. (c) The X-ray response of the device
with the weight ratio of 1:1:1 under various bias voltages. (d) The X-ray response of the hybrid OPDs
with different QD weight ratios (dose rate: 27.14 mGy s−1). (e) X-ray photocurrent of devices with
different QD weight ratios under a reversed bias varying from −0.1 to −5 V. (f) The linear response
of the OPD device with a weight ratio of 1:1:2 at different dose rates (permission obtained from
Ref. [174]).

Critical View on the Detection of CsPbX3 (X = Cl, Br, and I)-Based Humidity, Temperature, and
Radiation/Photodetection

The low stability and degradation of CsPbX3 (X = Cl, Br, and I) and composites were
adopted as sensor responses for humidity detection [151–156]. However, reports on = hu-
midity sensors also discussed the recovery, which is problematic due to the environmental
instability issue of the CsPbX3 (X = Cl, Br, and I) and composites. Thus, CsPbX3 (X = Cl,
Br, and I) and composite-based recovery of humidity sensors must be carefully examined.
Phase transitions may occur in CsPbX3 (X = Cl, Br, and I) and composites during tempera-
ture sensing [157–167]; thus, in-depth investigations are critical in many cases involving
phase transitions. Likewise, doping of ions, such as Mn2+, may enhance the phase changes,
which requires a more careful examination. When detecting photon/radiation, lattice
defects could be generated in CsPbX3 (X = Cl, Br, and I). This problem can be alleviated by
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using composites with diverse materials [168–180]. However, the compositing ratios must
be critically evaluated to achieve better sensing results.

8. CsPbX3 (X = Cl, Br, and I) and Composites in the Detection of Bioanalytes, Drugs,
Fungicides, and Pesticides

Cesium lead halides and composites were applied in discriminating biologically
significant analytes, as described in this section. Niu and co-workers constructed a dual-
emitting nanoprobe consisting of CsPbBr3 NCs and red-emissive Cu NCs (CsPbBr3@Cu
nanohybrid) for the luminescent detection of hydrogen peroxide (H2O2) and glucose [181].
CsPbBr3@Cu nanohybrid with PL emission centered at 517 nm and 645 nm displayed
ratiometric responses to H2O2 and glucose. A linear ratiometric response at F645/F517
was observed in the ranges of 0.2–100 µM and 2.0–170.0 µM with LODs of 0.07 µM and
0.8 µM, respectively, when recognizing H2O2 and glucose. The electron-transfer-induced
redox reaction was considered to be the underlying sensor mechanism. This method was
also demonstrated for glucose detection in human serum samples with an impressive
RSD value of < 4%. The TiO2/CsPbBr1.5I1.5 composite film and CsPbCl3/TiO2 served as
inverse opal electrodes for the photoelectrochemical discrimination of dopamine (DA) and
alpha-fetoprotein (AFP), respectively [182,183]. Slow volatilization was used to fabricate
electrodes. The detection of DA showed a linear response between 0.1 and 250 µM, with an
LOD of 12 nM, and the detection was also demonstrated in human serum samples [167].
Therefore, it is noted as an impressive report. On the contrary, the detection of AFP showed
a linear regression between 0.08 and 980 ng/mL with an LOD of 30 pg/mL [183]. However,
this report lacks information on real-time applications.

Saikia et al. reported the utilization of CsPbBr3 microcrystals (via one-pot synthe-
sis; PLQY = 60%) as a sensing probe for the fluorometric detection of uric acid (UA) via
hydrogen bonding interactions [184]. The PL of CsPbBr3 microcrystals at 520 nm (green
to blue) was dynamically quenched within a response time of 30 s in the presence of
UA. The linear regression of UA was observed between UA concentrations of 3.1 nM
and 1.33 µM with an LOD of 0.063 ppm. This is a remarkable work with applications in
human serum samples. Wang and co-workers described a ratiometric fluorescent approach
for sensing acetylcholinesterase (AChE; 57 kDa protein; dispenses nerve impulse spread)
by using the CsPbBr3 NC-TPPS nanocomposite (synthesized via self-assembly strategy;
PLQY = 60%; TPPS = Tetraphenylporphyrin tetrasulfonic acid) [185]. The ratiometric re-
sponse at F520/F650 to AChE showed a linear response between 0.05 and 1.0 U/L, with
an LOD of 0.0042 U/L. Investigations of AChE quantification in human serum samples
displayed >95% recovery, with an RSD of <4%. This is an interesting work with low in-
terfering effects and real-time applicability. CsPbBr3 QDs and CsPbBr3 QD/MoS2 (MoS2
= molybdenum sulfide) nanoflakes were proposed as chemiluminescence biosensors for
human hepatitis B, immunodeficiency virus, and AFP via the sandwich complex forma-
tion [186]. In this work, the CsPbBr3 QD/MoS2 nanoflakes were fabricated by including a
parylene-C passivation layer. This is an interesting photosensor for multianalyte detection,
which can be extended for commercialization.

Hu et al. reported the use of water-stable CsPbX3 (X = Br/I) as a probe for the
sensitive detection of penicillamine (PA) [187]. Firstly, CsPbBr3 (PL maxima at 525 nm)
interacted with iodide via an anion exchange reaction to afford CsPbX3 (X = Br/I), which
displayed PL emission at 580 nm. As shown in Figure 23, the PL intensity increases
accompanied by a blueshift when adding PA between 5.0 and 35.0 nM. The linear regression
of PA quantification was observed between 5.0 and 35.0 nM, with LOD values of 1.19 nM
(PL intensity vs. PA concentration) and 5.47 nM (PL peak shift vs. PA concentration).
Based on the results from high-angle annular dark-field (HAADF) imaging and multiple
investigations with organic S-containing substances, the interaction of the sulfhydryl group
present in penicillamine with iodide is identified as the underlying sensor mechanism. This
is an inspiring work in detecting PA in water. Through a one-pot synthetic method, stable
carboxyl group-functionalized CsPbBr3–COOH QDs were developed by using amino-
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poly(ethylene glycol)-carboxyl and perfluorooctyltriethoxylsilane as ligands and were
engaged in the PL “turn-on” detection of Mycobacterium tuberculosis (Mtb) [188].
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CsPbBr3–COOH QDs were composited with MoS2 and deoxy nucleic acid (DNA) to
afford CsPbBr3 QD-DNA/MoS2 for the effective detection of Mtb via PL enhancement.
Mtb showed a linear response between 0.2 and 4.0 nM, with an LOD of 51.9 pM. This
work involved the clinical analysis of tuberculosis pathogens and thereby is noted as an
innovative work. CsPbBr3 QDs composited with MoS2 and passivated with parylene (C, N,
and F) were utilized in microbial detection [189] and photo-sensing of bioanalytes. An an-
odic electrochemiluminescence-based assay of alkaline phosphatase (LOD = 0.714 mU L−1;
mU = milli units) was also proposed using CsPbBr3 QDs [190]. In both reports, charge/
electron transport plays a vital role in the detection mechanism.

Li and co-workers used phospholipid-coated CsPbBr3 NCs for the effective detection
of pore-forming biotoxins and prostate-specific antigens via dual-readout assays [191,192].
By using fluorometric and electrochemical assays, the pore-forming biotoxins were detected
by CsPbBr3 NCs@PL, which showed a linear regression between 50 nM and 150 µM with
an LOD of 50 nM [160]. Likewise, the detection of prostate-specific antigens by CsPbBr3
NCs@PL displayed a linear PL enhancement and colorimetric response in the ranges of
0.01–80 ng/mL and 0.1–15 ng/mL, with calculated LODs of 0.081 ng/mL and 0.29 ng/mL,
respectively [192]. Both reports were applied in bacterial and clinical analyses, and they
can be noted as innovative bioanalytical research. Qi et al. designed a composite consisting
of of aptamer-functionalized CsPbBr3 NCs and magnetic nanoparticles of Fe3O4 (MNPs),
namely the “Apt-PNCs@cDNA-MNPs” material, for detecting peanut allergen Ara h1 in
food samples [193]. In their study, the CsPbBr3 NCs were employed as PL labeling probes
for collecting fluorescent data. Also, the interaction of Ara h1 with aptamer resulted in
PL recovery. The Apt-PNCs@cDNA-MNPs showed linear PL enhancement between 0.1
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and 100 ng/mL, with an estimated LOD of 0.04 ng/mL. In terms of the reported real-time
studies in food samples, this research can be regarded as inspiring work and should be
extended toward food safety monitoring.

Similar to bioanalytes, cesium lead halide perovskites were also employed in the selec-
tive and sensitive quantification of drugs. 3-Aminopropyltriethoxysilane-functionalized
CsPbBr3 QDs (APTES-IPQDs), mesoporous silica nanoparticle-composited CsPbBr3 QDs
(LMSNs@IPQDs), perofluorooctyltriethyloxylsilane fluorocarbon-assembled Cs4PbBr6/
CsPbBr3 NPs (CPB-PFOS), molecularly imprinted CsPbBr3 QDs (IPQDs@MIPs), and
CsPbBr3 QD/BN composites (BN = boron nitride) were used in detecting tetracycline
(TC; antibiotic drug) by means of photoinduced electron transfer (PET) or the inner-filter
effect (IFE) mechanism [194–198]. All these materials displayed linear TC detection ranges
in micro- to millimolar levels with estimated LODs at a nanomolar or micromolar concentra-
tion, as listed in Table 5. Moreover, these reports can further attest to the applicability of TC
detection in food, water, and soil samples for possible commercialization. Figure 24 illus-
trates the PL quenching response of CPB-PFOS to TC and the related linear response [196].
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Figure 24. (a) Response of FL intensity of different concentrations of CPB-PFOS aqueous solution
in the presence of 25 mM of TC, where F and F0 are FL intensity with and without TC, respectively.
(b) The spectra of an aqueous solution of 5% (v/v) of CPB-PFOS samples with different concentrations
of TC under an excitation of 355 nm wavelength. (c) Relationship between TC concentration and FL
intensity log((F0 − F)/F0) = 3.281 + 0.7259 × log(CTC(M)) with R2 = 0.986 (permission opted from
Ref. [196]).

Shi et al. described the sensing utility of CsPbBr3 NCs toward the quantification
of ciprofloxacin hydrochloride (an antibiotic) via PL peak shifting induced by anion ex-
change [199]. In the presence of ciprofloxacin hydrochloride, the transformation from
CsPbBr3 NCs to CsPbBr(3−x)Clx NCs occurred together with a corresponding peak shift
from 513 nm to 442 nm via anion exchange. The PL peak shift was achieved between
0.8 and 50 mM, with an LOD of 0.1 mM. Though this work was applied in colorimetric
paper-strip analysis, additional research is still required to lower the LODs. Through an in
situ hot-injection method, CsPbBr3-loaded MIP nanogels were developed and employed
for discriminating roxithromycin (ROX; an antibiotic) via PL quenching responses [200].
The nanogels showed linear PL quenching behavior between 100 pM and 100 nM, with an
LOD of 20.6 pM in detecting ROX. Phase transformation and structural decomposition were
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proposed as the mechanisms underlying ROX detection. This work was applied in animal-
derived food analysis, and hence it can be regarded as an inspiring work toward biomedical
applications. Salari and co-workers adopted CsPbBr3 QDs (PLQY = 42%) in an organic
phase, together with Fe(II) and K2S2O8, in an aqueous medium for the chemiluminescence-
based detection of cefazolin (CFZ; an antibiotic) [201]. A chemiluminescence response of
CsPbBr3 QDs in the presence of Fe(II) and K2S2O8 was observed in CFZ concentrations of
25–300 nM with an LOD of 9.6 nM at pH 7. This report was demonstrated with recoveries
of >90% in multiple real samples, such as human plasma, urine, water, and milk samples.
Although this is an interesting work, further research must be conducted to optimize
experimental conditions.

Water-stable luminescent CsPbBr3/Cs4PbBr6 NCs were synthesized using a water
emulsion technique and demonstrated for sensing folic acid (FA; vitamin B) [202]. The
CsPbBr3/Cs4PbBr6 NCs showed a linear PL quenching response between 10 and 800 µM
of FA, with an LOD of 1.695 µM. The quenching response was attributed to the electro-
static mechanism between NCs and FA. This work was demonstrated through a urine
sample-based recovery (>99% with <0.5% RSD). It is a preliminary work on cesium lead
halide-based FA detection. He et al. fabricated molecularly imprinted polymer-encoded
CsPbX3 (X = Cl, Br, and I) microspheres for quantitatively detecting Sudan I (a food col-
orimetric enhancer) [203]. The PL emission of CsPbBr3, CsPbCl1.5Br1.5, and CsPbI2Br
microspheres was recorded at 463 nm, 508 nm, and 644 nm, respectively. Interestingly,
MIP-CsPbBr3 microspheres showed a greater response to Sudan I than nonimprinted ones
(NIP-CsPbBr3), as shown in Figure 25. A linear range of between 2 and 604 nM with an
estimated LOD of 1.21 nM was recorded for detecting Sudan I by MIP-CsPbBr3. This
work was effectively applied in foodstuffs (egg and chili), which showed >95% recovery.
Therefore, it can be utilized in commercial food safety monitoring. Thereafter, barium
sulfate-coated cesium lead bromide nanocrystals (CsPbBr3 NCs@BaSO4) were proposed for
the PL-enhanced quantitation of melamine [204]. The PL emission of CsPbBr3 NCs@BaSO4
was quenched via the IFE when adding Au NPs. When adding melamine to the above
conjugate, the PL emission was restored to the original intensity via the weakening of the
IFE. A linear detection range of melamine was recorded between 5 nM and 5 µM with
an LOD of 0.42 nM. Through using this method, >95% recoveries of melamine in raw
milk samples were achieved with <4% RSDs. This is an inspiring and innovative work
for melamine monitoring. Su et al. fabricated a CsPbBr3/a-TiO2/FTO electrode for the
photoelectrochemical immunoassay of aflatoxin B1 (AFB1; a carcinogen) by compositing
CsPbBr3 NCs with amorphous titanium dioxide (TiO2) [205]. A linear regression of AFB1
detection by CsPbBr3/a-TiO2/FTO electrode was observed between 32 pM and 48 nM
with an LOD of 9 pM. This work was confirmed by recoveries (ranging between 90.2%
and 109.0%) in peanut and corn samples; therefore, it can be regarded as one of the most
inspiring photoelectrochemical analytical methods.

The employment of CsPbX3 (X = C, Br, and I) and composites toward the quantifi-
cation of pesticides, insecticides, and fungicides has also been demonstrated by many
researchers. CsPbBr3 QDs (PLQY = 96%), CsPbBr3 QD-coated MIPs (PLQY = 92%), CsPbI3
QDs (PLQY = 27%), MIP/CsPbBr3 QD composites, and MIP-mesoporous silica-embedded
CsPbBr3 QDs were demonstrated for discriminating ziram (a fungicide), omethoate (an
organophosphorus insecticide), clodinafop (an herbicide), phoxim (an organophosphate
insecticide), and dichlorvos (2,2-dichlorovinyl dimethyl phosphate; an insecticide), respec-
tively, via PL quenching responses [206–210]. These composites were developed using
diverse methods, such as room-temperature-controlled synthesis, the slow hydrolysis of
the capping agent, microwave synthesis, self-assembly, etc. It should be noted that cesium
lead halide composites have displayed exceptional linear regression with excellent LODs
and have been applied in real-time food stuff/soil analysis, as detailed in Table 5. Moreover,
all these composites showed negligible interfering effects from competing species, which
is rather unique. For example, the MIP/CsPbBr3 QD composite [209] displayed greater
selectivity than other interferences, as seen in Figure 26. Table 5 summarizes the synthetic
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route, PLQY, linear range, detection limit, and application of CsPbX3 (X = Cl, Br, and I) and
composites toward the detection of bioanalytes, drugs, fungicides, and pesticides.
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Table 5. The synthetic route, PLQY, linear range, detection limit, and application of CsPbX3 (X = Cl,
Br, and I) and composites toward the detection of bioanalytes, drugs, fungicides, and pesticides.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

CsPbBr3@Cu
nanohybrid

In situ synthesis;
NA

H2O2
and

Glucose

Ratiometric
PL response

0.2–100 µM
and

2–120 µM

0.07 µM and
0.8 µM

Human serum
analysis [181]

TiO2/CsPbBr1.5I1.5
composite film

Slow
volatilization
method; NA

Dopamine
(DA)

Photoelectro-
chemical

(PEC)
detection

0.1–250 µM 12 nM Human serum
analysis [182]

TiO2
IOPCs/CsPbCl3

slow
volatilization
method; NA

alpha-
fetoprotein

(AFP)

Photoelectro-
chemical

(PEC)
detection

0.08–
980 ng/mL 30 pg/mL NA [183]

CsPbBr3
microcrystals

one-pot
synthesis

method; 60%

Uric acid
(UA)

PL
quenching

3.1 nM–1.33
µM 0.063 ppm Human blood

serum analysis [184]

CsPbBr3 NC-TPPS
nanocomposite

Self-assembly
strategy; 60%

Acetylcho-

linesterase
(AChE)

PL
quenching 0.05–1.0 U/L 0.0042 U/L Human serum

analysis [185]

CsPbX3 (X = Br/I)
PNCs

Anion exchange
method; NA

Penicill-
amine

PL
enhancement 5.0–35.0 nM 1.19 nM and

5. 47 nM NA [187]

CsPbBr3
QD-DNA/MoS2

NS

One-pot
synthetic

method; NA

Mycobac-
terium

tubercu-
losis

(Mtb)

PL
enhancement 0.2–4.0 nM 51.9 pM

Clinical
tuberculosis

pathogen
analysis

[188]

CsPbBr3 NCs@PL Film hydration
method; NA

Pore-
forming
biotoxins

PL
quenching

50 nM–
150 µM 50 nM Bacterial study [191]

Phospholipid-
coated CsPbBr3

NCs

Film hydration
method; NA

Prostate-
specific
antigen
(PSA)

PL
enhancement

and
colorimetric

sensing

0.01–
80 ng/mL
and 0.1–

15 ng/mL

0.081 ng/mL
and

0.29 ng/mL

Clinical sample
analysis [192]

Apt-PNCs@cDNA-
MNPs

One-pot
synthesis,

magnetic stirring,
and sonication;

NA

Peanut
allergen
Ara h1

PL
enhancement

0.1–
100 ng/mL 0.04 ng/mL Food sample

analysis [193]

APTES-
functionalized
CsPbBr3 QDs

Slow hydrolysis
of the capping
agent; 46.86%

Tetracycline PL
quenching 0.5–15.0 µM 76 nM Soil sample

analysis [194]

LMSNs@CsPbBr3
QDs

Water emulsion
followed by

homogeneous
mixing; ~54%

Tetracycline PL
quenching 0.7–15 µM 93 nM Water sample

analysis [195]

Cs4PbBr6/CsPbBr3
NPs

Temperature-
controlled

synthesis; NA
Tetracycline PL

quenching 0.4–10 µM 76 nM Food sample
analysis [196]
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Table 5. Cont.

Composition Synthetic Route;
PLQY (%) Analyte Method of

Detection
Linear

Regression

Detection
Limit
(LOD)

Applications Ref.

Molecularly
imprinted CsPbBr3

QDs

Water emulsion
followed by

homogeneous
mixing; NA

Tetracycline PL
quenching 0.2–5 µM 28 nM Water sample

analysis [197]

CsPbBr3@BN
Hot injection
followed by

calcination; NA
Tetracycline PL

quenching 0–99 µM 14.6 µM Honey and milk
samples analysis [198]

CsPbBr3 NCs Hot-injection
method; NA

Ciproflox-
acin

hydrochlo-
ride

PL peak shift 0.8–50 mM 0.1 mM Paper-strip
analysis [199]

CsPbBr3-loaded
MIP nanogels

In situ
hot-injection
method; NA

Roxithro-
mycin

PL
quenching

100 pM–
100 nM 20.6 pM

Animal-derived
food product

analysis
[200]

CsPbBr3 QDs
ligand-assisted
reprecipitation
method; 42%

Cefazolin Chemilumin-
escence 25–300 nM 9.6 nM

Human plasma,
urine, water, and

milk samples
analysis

[201]

Water-stable
fluorescent

CsPbBr3/Cs4PbBr6
NCs

Water emulsion
method; NA Folic acid PL

quenching 10–800 µM 1.695 µM Urine sample
analysis [202]

MIP-CsPbX3
(X = Cl, Br, and I)

fluorescent-
encoding

microspheres

Encoding of
MIPs with

CsPbX3 QDs:
NA

Sudan I PL
quenching 2–604 nM 1.21 nM Food sample

analysis [203]

CsPbBr3
NCs@BaSO4

Aqueous
emulsion

process; 80.3%
Melamine PL

enhancement 5 nM–5 µM 0.42 nM Spiked dairy
sample analysis [204]

CsPbBr3/a-
TiO2/FTO

Hot injection
followed by

compositing; NA

Aflatoxin
B1 (AFB1)

Photoelectro-
chemical im-
munoassay

32 pM–48 nM 9 pM Food sample
analysis [205]

CsPbBr3 QDs

Room-
temperature-

controlled
synthesis; 96%

Ziram PL
quenching 0.1–50 ppm 0.086 ppm Food sample

analysis [206]

CsPbBr3 QDs
coated MIPs

Slow hydrolysis
of the capping

agent; 92%
Omethoate PL

quenching 0–1.9 µM 88 nM soil and cabbage
samples analysis [207]

CsPbI3 QDs Microwave
synthesis; 27% Clodinafop PL

quenching 0.1–5 µM 34.7 nM Food sample
analysis [208]

MIP/CsPbBr3 QD
composite

Hot injection
followed by

self-assembly
method; NA

Phoxim PL
quenching

16.8–
335.4 nM 4.9 nM Food sample

analysis [209]

MIP-mesoporous
silica-embedded

CsPbBr3 QDs

Multiple
synthetic

methods; NA
Dichlorvos PL

quenching 23–110 nM 5.7 nM Food sample
analysis [210]

NA = not available; mM = millimole (10−3 M); µM = micromole (10−6 M); nM = manomole (10−9 M);
pM = picomole (10−12 M); ng = microgram (10−9 g); pg = picogram (10−12 g); ppm = parts per million.
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Critical View on the Detection of CsPbX3 (X = Cl, Br, and I)-Based Bioanalytes, Drugs, Fungicides,
and Pesticides

The stability of CsPbX3 (X = Cl, Br, and I) in water is the main issue for discriminating
bioanalytes, drugs, fungicides, and pesticides [181–210]. To avoid the above complications,
compositing CsPbX3 (X = Cl, Br, and I) with other materials, such as APTES, BN, and MIPs
has been proposed. However, there are still a few probes that require critical evaluation
in terms of structural degradation in aqueous media. Water-stable CsPbBr3/Cs4PbBr6
NCs were proposed for detecting folic acid [202], but how long can the proposed structure
remain stable is still under debate. Another controversial issue regarding CsPbX3 (X = Cl,
Br, and I) and composite-based biomolecule sensing is how to avoid the toxicity of Pb2+ in
food sample analysis. Consequently, the sensor’s selectivity to specific analytes requires
careful investigation in many reports. Detecting pesticides and fungicides in real samples
using CsPbX3 (X = Cl, Br, and I) and composites needs critical analysis to overcome the
toxicity induced by Pb2+.

9. Cellular Imaging Applications of CsPbX3 (X = Cl, Br, and I) and Composites

Getachew et al. and Kar et al. described the cellular imaging utility of magnesium-
and zinc-doped cesium lead halides, namely CsMgxPb1−xI3 QDs and zinc-doped CsPbBr3-
Cs4PbBr6 nanocomposites [211,212]. The doping of metal ions in perovskite quantum
dots could result in stability and biocompatibility improvement. In CsMgxPb1−xI3 QDs,
Mg2+ partially substituted Pb2+ in the CsPbI3 framework [211]. When encapsulating
CsMgxPb1−xI3 QDs with gadolinium-conjugated pluronic 127 (PF127-Gd), PQD@Gd
nanoagents were achieved, which were applied in ROS detection in cancer cells and
photocatalytic studies. The Zn2+ doping in CsPbBr3-Cs4PbBr6 NCs (emission at 494–506;
nm, ; PLQY = 88%) improved the stability compared to bare NCs in highly polar sol-
vents [212]. Moreover, the zinc-doped ensemble showed greater biocompatibility, thereby
becoming effective in cellular imaging, as visualized in Figure 27. In this report, silica-
coated CsPbBr3-Cs4PbBr6@(OA)2PbBr4 (core–shell NCs synthesized via the LARP method
using (3-amino-propyl)trimethoxysilane [APTMS]) without zinc doping were labeled as
NC-0. The NCs with 20%, 40%, 60%, and 80% zinc doping were labeled as NC-20, NC-40,
NC-60, and NC-80, respectively. NC-40 was engaged in cellular imaging studies be-
cause of its exceptional biocompatibility and stability. Similarly, CsPbBr3@SiO2 core–shell,
CsPbBr3/SiO2/mPEG-DSPE NCs (mPEG-DSPE = polyethylene glycol-grafted phospho-
lipid), and phTEOS-TMOS@CsPbBr3 NCs (TMOS and phTEOS represent the alkoxysilanes)
were also demonstrated in bioimaging studies [213–215]. SiO2-coated CsPbBr3 core–shell
structures reduced the toxicity and made NCs more effective for in vitro cellular imag-
ing [213]. Hydrophobic CsPbBr3/SiO2 encapsulated with mPEG-DSPE showed better water
stability and photostability; thus, they can be applied in multiphoton bioimaging [214].
CsPbBr3 NCs coated with alkoxysilanes showed improved stability, water dispersibility,
and lower toxicity and thus can be used in two-photon cellular imaging studies [215].

Many research groups reported the preparation of encapsulated CsPbX3 (X = C, Br,
and I) and composites with a polymer matrix to maintain the structural and emission
stability of cesium lead halides. Methoxypolyethylene glycol amine-capped CsPbBr3
NCs (CsPbBr3/mPEG-NH2 NCs), polyvinylidene fluoride (PVDF)-encapsulated CsPbBr3,
poly-vinyl pyrrolidone (PVP)-capped CsPbX3 NCs, poly(lactic-co-glycolic acid) (PLGA)-
encapsulated CsPbBr3 QDs, and polystyrene-block-poly(acrylic acid) (PS-b-PAA) were
developed with high water stability, greater biocompatibility, and low toxicity; thus, they
can be applied in long-term cellular imaging studies [216–220]. For cellular imaging
of cesium lead halide perovskites, Lou et al. synthesized insoluble CsPbBr3/CsPb2Br5-
composited NCs (PLQY = 80%) via water-assisted chemical transformations and HeLa
cellular imaging studies [221]. Judging from the synthetic simplicity and low toxicity, this
work can be regarded as inspiring. However, more investigations on structural stability
and PL emission are required.
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Critical View on CsPbX3 (X = Cl, Br, and I)-Based Cellular Imaging

It has been argued that cellular imaging using CsPbX3 (X = Cl, Br, and I) could
be hindered due to the unstable emission properties of CsPbX3 in aqueous media. To
avoid the instability issue, capping CsPbX3 (X = Cl, Br, and I) with suitable ligands, such
as 3-amino-propyl)trimethoxysilane (APTMS), polyethylene glycol-grafted phospholipid
(mPEG-DSPE), and alkoxysilanes (TMOS and phTEOS) has been proposed. This capping
could not only reduce toxicity due to Pb2+ but can also improve biocompatibility [211–215].
However, careful optimization is still required. Polymer capping, metal doping, and surface
coating were also used to improve the biocompatibility of CsPbX3 (X = Cl, Br, and I) in
cellular imaging studies [216–221]. Nevertheless, critical assessments of toxicity profiles
when applying these composites in cellular imaging still require much attention.

10. Advantages and Limitations

The employment of CsPbX3 (X = Cl, Br, and I) and composites in sensing investigations
has certain advantages and limitations, as noted below.

10.1. Advantages

1. Due to the unique structural features, tuning the photophysical properties of CsPbX3
(X = Cl, Br, and I) and anion exchange can result in red, green, and blue emission with
an enhanced PLQY (reaches up to 98%); therefore, PL-based sensors with relevant
colorimetric responses can benefit from the above properties.

2. The greater carrier mobility of CsPbX3 (X = Cl, Br, and I) can be adjusted by com-
bining with other semiconducting materials (such as MoS2, graphene, mxenes, etc.),
which is advantageous to the fabrication of heterojunction devices and electrodes for
photo/chemoresistive and electrochemical detection of a specific analyte [222–225].
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3. The capping and encapsulation of the proposed CsPbX3 (X = Cl, Br, and I) system can
enhance water stability, which allows for long-term tracking of bioanalytes.

4. Core–shell/polymer encapsulation can produce a low-toxicity, biocompatible CsPbX3
(X = Cl, Br, and I) conjugate, which can be applied in bioimaging with comparable
performance to other lead-free perovskites and luminescent organic probes [226–229].

5. Advancing sensing studies in real samples is highly feasible with capped/functional-
ized CsPbX3 (X = Cl, Br, and I) nanostructures; therefore, their performance can be
comparable to other nanoprobes (nanoparticles, nanoclusters, nanowires, nanocom-
posites, etc.) [230–235].

10.2. Limitations

1. Many stable CsPbX3 (X = Cl, Br, and I) and composites are fabricated using multiple
synthetic steps, which require precision optimization. However, optimizing synthesis
processes is time-consuming, which restricts the use of CsPbX3 (X = Cl, Br, and I) as
sensor probes.

2. CsPbX3 (X = Cl, Br, and I) and composites can degrade rapidly when exposed to air
moisture, elevated temperature, humid conditions, etc., thereby limiting their sensing
utility in harsh conditions [236–238].

3. The major contributing factor for the sensing performance of CsPbX3 (X = Cl, Br, and
I) and composites has been attributed to structural/phase transformation [239,240].
Thus, it is questionable if reversible cycles in analyte detection can be realized.

4. To investigate the precise underlying mechanism of the sensing response to a specific
analyte, supporting lines of evidence through methods, such as TEM, XPS, dynamic
light scattering spectra (DLS), Zeta potential, etc., are necessary. Thus, the cost-
effectiveness of research is questionable, which limits such sensor development in
developing or underdeveloped countries.

5. Since real water samples may contain certain numbers of ionic species, the reliability
of metal ion quantification by CsPbX3 (X = Cl, Br, and I) and composites in real
samples is still questionable. This limits the application of CsPbX3 (X = Cl, Br, and I)
probes toward the detection of metal ions and anions.

11. Conclusions and Perspectives

This article provides a detailed review of the sensing performance of CsPbX3 (X = Cl,
Br, and I) and composites toward the detection of analytes, such as metal ions, anions, chem-
icals, explosives, gases, volatile organic compounds, bioanalytes, humidity, temperature,
radiation, etc. In particular, the involved synthetic methods in developing CsPbX3 (X = Cl,
Br, and I)-based sensor probes, the linear detection range, LODs, and real-time applicability
were also tabulated for a broad audience. Discussions on the mechanistic aspects of analyte
detection, novelty, deficiencies, and feasible directions were also extrapolated for readers.
Finally, the bioimaging applications of CsPbX3 (X = Cl, Br, and I)-based composites were
illustrated for future biomedical research.

The following questions/perspective points must be addressed or focused on in future
research: (A) There are many reports available on the employment of CsPbX3 (X = Cl, Br,
and I)-based probes toward Cu2+ quantification; hence, a state-of-the-art procedure for
fabricating commercial sensors must be developed; (B) to date, the detection of Cu2+, Hg2+,
Co2+, Zn2+, Cd2+, UO2

2+, In3+, and Fe3+ have been demonstrated using CsPbX3 (X = Cl,
Br, and I)-based probes, but the research direction should be further extended toward the
sensing of monovalent (M+) cations, divalent (M2+) cations, trivalent (M3+) cations, etc.,
by optimizing the functional/capping agents; (C) the method can be further fine-tuned
to develop an effective procedure for the commercialization of anion-exchange-facilitated
detection of Cl− and I− by CsPbBr3 toward real-time monitoring; (D) the optimization
of functional/capping moieties can be carried out to extend the sensing capability of
CsPbX3 (X = Cl, Br, and I)-based probes to existing anions, such as SO4

2−, PO4
2−, P2O7

2−,
CN−, SCN−, etc.; (E) the anion-exchange-directed detection of alkyl halides, benzoyl
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peroxide, and solvent polarity by CsPbX3 (X = Cl, Br, and I) and composites requires
in-depth investigation to confirm its novelty; (F) advancing CsPbX3 (X = Cl, Br, and
I) and composites toward the detection of toxic gases, such as carbon monoxide (CO),
carbon dioxide (CO2), phosgene (COCl2), etc., must be the focus in future research; (G)
numerous reports on CsPbBr3-based NH3 sensors are available; therefore, fabricating
commercial NH3-sensing devices must be the focus in future research; (H) research on
humidity, temperature, radiation, and photodetection using CsPbX3 (X = Cl, Br, and I) and
composites can be expanded to include other nanostructures, such as graphene, metal–
organic frameworks, nanosheets, nanotubes, etc.; (I) few reports are available on detecting
essential bioanalytes, drugs, fungicides, and pesticides using CsPbX3 (X = Cl, Br, and I)
and composites; thus, more attention is required in this research direction; (J) in-depth
(in vitro/in vivo) cellular imaging, tracking, and the underlying mechanisms of the imaging
responses of CsPbX3 (X = Cl, Br, and I) and composites and the construction of low-toxicity
probes must be carried out in future research; (K) the majority of CsPbX3 (X = Cl, Br, and I)
and composite-based sensor reports lack theoretical support from density functional theory
(DFT) calculations, which should be included in new sensor designs.

Apart from the above open questions and possible future research directions, sensing
studies that involve composites of CsPbX3 (X = Cl, Br, and I) toward the detection of
diverse analytes require more innovative approaches to realize real-time applications.
Many scientists are currently working on developing a “state-of-the-art” sensor procedure
for the detection of diverse analytes. Thus, innovative breakthroughs can be expected in
the near future.
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