
Citation: Huang, B.; Xie, J.; Yan, J.

Inspection Robot Navigation Based on

Improved TD3 Algorithm. Sensors

2024, 24, 2525. https://doi.org/

10.3390/s24082525

Academic Editor: Andrey V. Savkin

Received: 15 March 2024

Revised: 7 April 2024

Accepted: 10 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Inspection Robot Navigation Based on Improved TD3 Algorithm
Bo Huang *, Jiacheng Xie * and Jiawei Yan

School of Mechanical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
* Correspondence: huangbojx@suse.edu.cn (B.H.); xjc17628243694@163.com (J.X.)

Abstract: The swift advancements in robotics have rendered navigation an essential task for mobile
robots. While map-based navigation methods depend on global environmental maps for decision-
making, their efficacy in unfamiliar or dynamic settings falls short. Current deep reinforcement
learning navigation strategies can navigate successfully without pre-existing map data, yet they
grapple with issues like inefficient training, slow convergence, and infrequent rewards. To tackle
these challenges, this study introduces an improved two-delay depth deterministic policy gradient
algorithm (LP-TD3) for local planning navigation. Initially, the integration of the long–short-term
memory (LSTM) module with the Prioritized Experience Re-play (PER) mechanism into the existing
TD3 framework was performed to optimize training and improve the efficiency of experience data uti-
lization. Furthermore, the incorporation of an Intrinsic Curiosity Module (ICM) merges intrinsic with
extrinsic rewards to tackle sparse reward problems and enhance exploratory behavior. Experimental
evaluations using ROS and Gazebo simulators demonstrate that the proposed method outperforms
the original on various performance metrics.

Keywords: inspection robot navigation; deep reinforcement learning; long- and short-term memory;
curiosity-driven

1. Introduction

Continuous breakthroughs in key robotics technologies have made autonomous mo-
bile robots a focal point in intelligent robotics research. Currently, autonomous mobile
robots are widely used in transportation, industry, agriculture, the service sector, and
aerospace, and are capable of performing tasks such as patrolling, rescue, logistics, trans-
portation, and planetary exploration [1,2]. Thus, a robust autonomous navigation system
is crucial for the deployment of intelligent robots, enabling them to avoid collisions with
dynamic and static obstacles, safely reach the target point via an optimal or suboptimal
route, and complete assigned subsystem tasks.

Navigation, which encompasses both global and local aspects [3], is a critical task in
autonomous mobile robot research. Since the 1980s, researchers have extensively explored
and studied navigation planning for autonomous mobile robots, yielding numerous mature
findings. In 1968, Hart et al. [4] developed the A* algorithm, an enhancement of Dijkstra’s
method [5] for finding the shortest paths in graphs or networks. A* distinguishes itself by
incorporating a heuristic function, a mechanism that intelligently guides the selection of the
next node during the search process, unlike Dijkstra’s algorithm. In 1994, Kavraki et al. [6]
introduced the Probabilistic Roadmap Method (PRM), a sampling-based algorithm for robot
motion planning aimed at efficiently identifying collision-free paths within complex, high-
dimensional environments. Following this, researchers have proposed improvements to
original methods, achieving more refined navigation planning techniques. Shentu et al. [7]
developed a hybrid navigation control system using a motion controller designed via
the backpropagation method and incorporated Kalman filtering to minimize localization
errors. The system adapts to various guidance sensors across different distances. Yufeng
Li et al. [8] enhanced navigation accuracy and stability by combining an improved A*
algorithm with the Dynamic Window Approach (DWA) for global and local path planning,

Sensors 2024, 24, 2525. https://doi.org/10.3390/s24082525 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24082525
https://doi.org/10.3390/s24082525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24082525
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24082525?type=check_update&version=2

Sensors 2024, 24, 2525 2 of 18

outperforming traditional fusion algorithms. Additionally, Chien-Yen Wang et al. [9]
introduced a partition-based map representation to augment the A* path planner (PBPP),
effectively narrowing the search space and reducing time consumption, leading to more
efficient path planning. The classical approach currently combines various algorithms,
like SLAM (Simultaneous Localization and Mapping), to convert perceived environmental
information into a global map for path-planning modules. Based on global and local
path planning results, the control module dynamically adjusts speed, direction, and other
parameters to guide the robot toward the target. In summary, traditional navigation
frameworks depend on high-precision global maps, necessitating costly sensors and manual
calibration to meet requirements. Additionally, the integrated computation in traditional
navigation frameworks leads to cumulative errors, and the high sensitivity of the sensors
to noise significantly reduces the effectiveness of these methods in complex, dynamic, or
unknown environments [10,11].

The rapid advancement in deep reinforcement learning techniques and hardware has
drawn increasing attention from researchers. Among these, learning-based methods have
become a research focus, achieving significant success across diverse fields. In 2013, Mnih
et al. [12] introduced the first deep learning model capable of learning control strategies
directly from high-dimensional perceptual input, achieving success in this endeavor. Ap-
plying this model to the Atari 2600 game, they found it outperformed human experts. In
2015, David Silver et al. [13] developed the Double Deep Q-Network (DDQN) to address
the issue of overestimation of DQN, with experimental results that indicate improved
performance. In 2016, to address the limitations with continuous actions, Timothy P. Lilli-
crap et al. [14] introduced the Model-free Deterministic Policy Gradient-Based Algorithm
(DDPG), which showed promising results in various simulation control scenarios. Subse-
quent studies introduced algorithms like the Asynchronous Dominant Action Evaluation
(A3C) [15], Proximal Policy Optimization (PPO) [16], Two-Delay Deep Deterministic Policy
Gradient (TD3) [17], and Deep Spiking Q-Network (DSQN) [18]. These frameworks aim
to solve issues such as slow convergence, low model robustness, and weak generalization
during training.

Deep reinforcement learning-based schemes, with their powerful characterization
capabilities and excellence in handling high-dimensional dynamic scenarios (e.g., LiDAR,
images) have been introduced to intelligent robot navigation research. Deep reinforcement
learning offers a flexible, adaptive, and efficient way to solve robot navigation problems by
learning decision strategies or value functions directly from raw data, without the need for
human intervention or feature engineering. The end-to-end model enables autonomous
robot–environment interaction for learning navigation strategies without depending on
predefined rules or map information. Through the trained model, the robot makes real-time
decisions in a mapless environment, enabling it to navigate and perform inspection tasks
in unknown environments effectively.

2. Related Work

SLAM technology, comprising laser SLAM and visual SLAM, utilizes laser and visual
sensors, respectively, to achieve real-time localization and mapping in unknown envi-
ronments, facilitating autonomous robot navigation. Visual SLAM depends on precise
image features but is affected by lighting, sensor parameters, and environmental changes.
Laser SLAM, requiring high-precision LiDAR, suffers from low computational efficiency
and large cumulative errors in extensive environments, limiting its application. Wang, X
et al. [19] proposed a SLAM application system based on the fusion of multi-line LiDAR
and visual perception, tailored to sensor characteristics and application scenarios, incor-
porating a hybrid path-planning algorithm that combines the A* and Time Elastic Band
(TEB) algorithms. Experimental results indicate that the designed SLAM and path planning
methods exhibit good reliability and stability.

In the realm of learning-based strategies, Piotr Mirowski et al. [20] developed an agent
capable of navigating complex 3D mazes by integrating goal-driven reinforcement learning

Sensors 2024, 24, 2525 3 of 18

with auxiliary depth prediction and loop-closure classification tasks, achieving human-level
performance even with frequent changes in the target location. Lei Tai et al. [21] developed
a mapless motion planner using deep reinforcement learning, dubbed ADDPG. They
separated the sample collection process into another thread, achieving parallel training
through multiple threads. This planner accepts 10-dimensional sparse laser data and
the target location in the robot’s relative coordinate system as inputs, requiring only
minor adjustments for direct application in unknown real-world environments. Yuke Zhu
et al. [22] introduced a deep reinforcement learning framework tailored for goal-driven
visual navigation. Uniquely, this framework treats task objectives as model inputs, avoiding
the integration of goals directly into the model’s parameters. This methodology effectively
tackles the problem of generalizing across varied scenes and objectives. Furthermore,
they presented the AI2-THOR framework, which supports economical and efficient data
collection. Linhai Xie et al. [23] proposed the Dueling DQN approach (D3QN), inspired by
the Fully Convolutional Residual Networks (FCRN) [24] for predicting depth information
from RGB images. The network, trained in a simulator using monocular RGB images as
an input, successfully transfers the model from virtual to real-world settings, with D3QN
outperforming traditional DQN methods.

The primary aim of this research is to equip robots with navigation skills through
learning-based strategies, focusing on enhancing the learning efficiency and generalization
of DRL models in subsequent studies. Junli Gao et al. [25] merged the PRM algorithm
with TD3, employing incremental training to fast-track learning and notably enhance the
model’s generalization ability. Lu Chang et al. [26] integrated local path planning with
deep reinforcement learning to develop an enhanced DWA [27] based on Q-learning. They
refined the original evaluation function to increase the scores of better trajectories in each
specific sub-function and introduced two additional sub-functions to accommodate more
complex scenarios, thus improving global navigation performance. Hartmut Surmann
et al. [28] developed a fast parallel robot simulation environment, addressing the problem
of slow neural network learning speeds in existing simulation frameworks. Meiqiang Zhu
et al. [29] proposed a universal reward function based on Matching Networks (MN) to
address the issue of sparse rewards. This function facilitates reward shaping from similar
navigation task trajectories without human supervision, thus accelerating the training speed
of DRL for new tasks. Lastly, Reinis Cimurs et al. [30] developed an autonomous navigation
system based on the double-delayed deep deterministic policy gradient algorithm, utilizing
perceptual data to identify points of interest and select optimal waypoints. This system,
trained through deep reinforcement learning, facilitates autonomous navigation from
waypoints to global objectives without any prior map information, achieving superior
navigation performance in complex static and dynamic environments.

This study aims to improve dual-delay deep deterministic policy gradient algorithms
for autonomous robot navigation by better utilizing empirical data, speeding up conver-
gence, and addressing reward sparsity. LiDAR data was chosen for training due to their
simplicity, reduced resource demands relative to camera data, and their advantages in
real-time performance, stability, and deployment in diverse settings.

The main contributions of the research are summarized as follows:

(1) We propose a training framework that incorporates temporal navigation experience by
integrating the long–short-term memory module (LSTM) with Prioritized Experience
Replay (PER) into the TD3 network structure, enhancing sample data utilization, and
speeding up the learning process.

(2) We introduce an Intrinsic Curiosity Module (ICM) to the dual-delay deep deterministic
policy gradient algorithm’s reward system to address reward sparsity and boost
exploration capabilities.

(3) We propose a new state representation that incorporates laser sensor data, the robot’s
current state, and the distance to the target point as input during model training, thus
enabling adaptation to various environments.

Sensors 2024, 24, 2525 4 of 18

The remainder of this paper is organized as follows: Section 3, Part 1 introduces the
DDPG algorithm within deep reinforcement learning methods and the background of the
TD3 algorithm. Section 3, Part 2 details the mapless robot navigation approach utilizing the
Long-Short-Term Memory Module and the Prioritized Experience Playback mechanism (LP-
TD3). Section 3, Part 3 explores the application of curiosity-driven exploration strategies in
robot navigation. Section 4 will present simulation experiment results and analysis. Finally,
Section 5 will conclude and outline future research directions.

3. Materials and Methods
3.1. Algorithmic Background

Reinforcement learning is an approach where an agent learns to make decisions
by maximizing rewards through interaction with its environment, modeled as Markov
Decision Processes (MDPs) comprising state spaces, action spaces, reward functions, and
state transition probabilities. Unlike supervised learning’s reliance on labels, reinforcement
learning uses reward signals. It encompasses value-based methods for discrete action
spaces, using greedy strategies, and policy-based methods for continuous action spaces,
producing continuous actions. To address the limitations of both, recent trends involve
combining them into an actor–critic structure, enhancing learning outcomes.

3.1.1. Deep Deterministic Policy Gradient Algorithm (DDPG)

DDPG, a seminal actor–critic algorithm, derives from DPG [14], featuring both policy
and value functions. It is the first deep-reinforcement learning algorithm that uses the
actor–critic framework, using neural networks to model DPG functions and address high-
dimensional actions and states in continuous control. The training integrates deep Q-
network techniques like target networks and experience replay, where the target network
reduces overestimation and the replay buffer stores data. DDPG combines a policy network
with a deep Q-network to output action values, necessitating the concurrent learning
of both networks. The policy network (actor) generates deterministic actions, while the
Q network (critic) evaluates these outputs to optimize action selection for maximum
rewards. Bellman’s equation is employed to iteratively approximate the optimal action-
value function.

a∗(s) = argmax
a

Q∗(s, a) (1)

Here, s represents the current state of the agent, a denotes the action produced by the
policy network, and Q∗(s, a) is the hypothetical optimal value function. This assumption
is made because the real-world state space is vast, and the dynamics of the environment
and reward function are highly nonlinear, rendering the computation of the optimal value
function exceedingly difficult. The DDPG aims to identify the action that maximizes the
value based on the fitted value function, thus optimizing the policy network’s gradient
focus on maximizing this Q value. The strategy gradient formula is as follows:

∇θµ J ≈ Est∼ρβ

[
∇θµ Q

(
s, a | θQ) |s=st ,a=µ(st |θµ)

]
= Est∼ρβ

[
∇aQ

(
s, a | θQ) |s=st ,a=µ(st) ∇θµ

µ(s | θµ) |s=st

] (2)

Here, θµ represents the strategy network parameter, and θQ represents the value
network parameter, with the Monte Carlo method used to obtain an unbiased estimate of
the strategy gradient’s expectation. The value network optimization employs the reward r
at time t and the discounted value Q′ at time t + 1 to calculate the Q_target, aiming to align
the Q network’s output closely with the Q_target. The root mean square error serves as the
loss function [31], upon which the gradient descent is applied. The value network gradient
formula is as follows:

Qtarget = r + γQ′
(

s′, π
(

s′ | θµ′
)
| θQ′

)
(3)

Sensors 2024, 24, 2525 5 of 18

∂L
(
θQ)

∂θQ = Es,a,r,s′−D

[
Qtarget −Q

(
s, a | θQ

)∂Q
(
s, a | θQ)
∂θQ

]
(4)

To make the Q_target more stable, DDPG builds the value network and the policy
network with their target networks, Target_q and Target_p, respectively. The actor target
network is responsible for selecting the optimal next action A′ based on the next state S′

sampled in the empirical playback pool, and the critic target network is responsible for
calculating the Q′

(
S′, A′, θQ′). The parameters θµ′ and θQ′ of the goal network are updated

after a fixed period through soft updating.
To enhance the stability of the Q_target, DDPG constructs the value and policy net-

works along with their respective target networks, Target_q and Target_p. The actor target
network selects the optimal next action A′, based on the next state S′ sampled from the
empirical replay pool, while the critic target network calculates Q′

(
S′, A′, θQ′). The pa-

rameters θµ′ and θQ′ of the target networks are updated periodically through soft updates,
as such

θµ′ ← τθµ + (1− τ)θµ′

θQ′ ← τθQ + (1− τ)θQ′ (5)

The update coefficient τ is typically set to 0.1 or 0.01. Meanwhile, the DDPG adopts a
deterministic strategy, unlikely to explore actions beyond the ones chosen to find useful
learning signals. Therefore, adding noise to the selected actions enhances randomness in
the learning process, enabling better exploration. However, random noise is not added to
the actions predicted by the strategy network during the update process.

3.1.2. Two-Delay Deep Deterministic Policy Gradient Algorithm (TD3)

Introduced by Scott Fujimoto et al. in 2018, the Twin-Delayed Deep Deterministic
Policy Gradient (TD3) algorithm [17], with its actor–critic structure, excels in continuous
control tasks. It improves upon the DDPG algorithm to tackle challenges in continuous
action spaces.

Overestimation of value functions is common in both discrete and continuous action
learning, caused by maximization and bootstrapping, leading to error accumulation and
suboptimal or divergent outcomes; Figure 1 illustrates the overestimation cycle process.
Although DDPG addresses bootstrapping with a target network, it does not resolve over-
estimation from maximization. TD3 employs two sets of critic networks with identical
architecture to address this, using the smaller output for target value calculation to guide
learning. During learning, high variance in estimates from function approximation errors
presents challenges, which TD3 mitigates by introducing slight random noise to target
actions and calculating mean values over small batches.

Qtarget = r + γmin
i=1,2

Qi
′
(

s′, π
(

s′ | θµ′
)
+ ϵ

)
(6)

ϵ ∼ clip(N (0, σ),−c, c) (7)

The TD3 algorithm comprises six networks dedicated to intelligence learning. As
illustrated in Figure 2, to circumvent the local optimum of the actor network, a delayed
update strategy is employed where the actor is updated only after several updates of the
critic. The actor target network’s update, in conjunction with the two critic target networks,
mirrors the DDPG algorithm’s approach, employing a soft update method. An update
coefficient τ weights the parameters of the old and new target networks before assigning
them to the target network.

Sensors 2024, 24, 2525 6 of 18Sensors 2024, 24, x FOR PEER REVIEW 6 of 18

Figure 1. Schematic diagram of the overestimation process.

Figure 2. TD3 algorithm update flowchart.

3.2. Improvement Methods
The TD3 algorithm, with its actor-critic architecture, is widely applied in robot navi-

gation. While adept at managing high-dimensional states and actions and path planning
in dynamic environments, it encounters challenges like low training efficiency and slow
convergence. To overcome these, LP-TD3 integrates an LSTM module with a Prioritized
Experience Replay mechanism [32,33], enhancing decision-making and navigation effi-
ciency. Additionally, its reward function combines external and intrinsic curiosity re-
wards, boosting exploration and speeding up model training convergence.

3.2.1. Navigation Principle of Inspection Robot Based on LP-TD3
Inspection robots synthesize historical data to develop optimal strategies for current

situations. In partially observable Markov decision processes (POMDP) scenarios, such as
obstacle avoidance, this study uses LSTM with prioritized experience replay to overcome
the limitations of the TD3 network in long-term memory and learning efficiency. The ro-
bots constantly collect time series data, including LIDAR scans and camera images,
through sensors. LSTM effectively captures long-term dependencies in these data, en-
hancing memory capabilities, and allowing for the retention of past observations and
learning of environmental features for improved navigation decisions. The model also
optimizes actions based on recent data, leading to smoother navigation paths.

Figure 3 shows that LSTM contains not just a single network layer, but four intercon-
nected neural network layers. Information transfer within LSTM’s repeating modules

Figure 1. Schematic diagram of the overestimation process.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 18

Figure 1. Schematic diagram of the overestimation process.

Figure 2. TD3 algorithm update flowchart.

3.2. Improvement Methods
The TD3 algorithm, with its actor-critic architecture, is widely applied in robot navi-

gation. While adept at managing high-dimensional states and actions and path planning
in dynamic environments, it encounters challenges like low training efficiency and slow
convergence. To overcome these, LP-TD3 integrates an LSTM module with a Prioritized
Experience Replay mechanism [32,33], enhancing decision-making and navigation effi-
ciency. Additionally, its reward function combines external and intrinsic curiosity re-
wards, boosting exploration and speeding up model training convergence.

3.2.1. Navigation Principle of Inspection Robot Based on LP-TD3
Inspection robots synthesize historical data to develop optimal strategies for current

situations. In partially observable Markov decision processes (POMDP) scenarios, such as
obstacle avoidance, this study uses LSTM with prioritized experience replay to overcome
the limitations of the TD3 network in long-term memory and learning efficiency. The ro-
bots constantly collect time series data, including LIDAR scans and camera images,
through sensors. LSTM effectively captures long-term dependencies in these data, en-
hancing memory capabilities, and allowing for the retention of past observations and
learning of environmental features for improved navigation decisions. The model also
optimizes actions based on recent data, leading to smoother navigation paths.

Figure 3 shows that LSTM contains not just a single network layer, but four intercon-
nected neural network layers. Information transfer within LSTM’s repeating modules

Figure 2. TD3 algorithm update flowchart.

3.2. Improvement Methods

The TD3 algorithm, with its actor-critic architecture, is widely applied in robot navi-
gation. While adept at managing high-dimensional states and actions and path planning
in dynamic environments, it encounters challenges like low training efficiency and slow
convergence. To overcome these, LP-TD3 integrates an LSTM module with a Prioritized
Experience Replay mechanism [32,33], enhancing decision-making and navigation effi-
ciency. Additionally, its reward function combines external and intrinsic curiosity rewards,
boosting exploration and speeding up model training convergence.

3.2.1. Navigation Principle of Inspection Robot Based on LP-TD3

Inspection robots synthesize historical data to develop optimal strategies for current
situations. In partially observable Markov decision processes (POMDP) scenarios, such as
obstacle avoidance, this study uses LSTM with prioritized experience replay to overcome
the limitations of the TD3 network in long-term memory and learning efficiency. The robots
constantly collect time series data, including LIDAR scans and camera images, through
sensors. LSTM effectively captures long-term dependencies in these data, enhancing
memory capabilities, and allowing for the retention of past observations and learning
of environmental features for improved navigation decisions. The model also optimizes
actions based on recent data, leading to smoother navigation paths.

Figure 3 shows that LSTM contains not just a single network layer, but four inter-
connected neural network layers. Information transfer within LSTM’s repeating modules

Sensors 2024, 24, 2525 7 of 18

depends on the cell state, which can be regulated by a gate structure to add or remove
information. An LSTM comprises three gates: the forgetting gate Ft, the input gate It, and
the output gate Ot, which protects and controls the cell [27].

Sensors 2024, 24, x FOR PEER REVIEW 7 of 18

depends on the cell state, which can be regulated by a gate structure to add or remove
information. An LSTM comprises three gates: the forgetting gate 𝐹 , the input gate 𝐼 , and
the output gate 𝑂 , which protects and controls the cell [27].

Figure 3. LSTM repetition module.

LSTMs can retain long-term information and recognize and utilize the information
at any position within a sequence. This means that the network can access not only recent
information, but also information processed long ago, thus overcoming short-term
memory limitations. The “gate” structure design enables the network to filter sequence
information, allowing it to determine post-training whether to retain certain information.
In this paper, we fully leverage LSTM’s unique structure, enabling the model to retain
experiential information throughout the navigation training, thereby enhancing its under-
standing of environmental dynamics.

3.2.2. LP-TD3 Intelligent Body Inputs and Outputs
Network training relies on experience data generated from interactions with the en-

vironment, which includes the current state 𝑠 , the action 𝑎 taken, the reward 𝑟 , the
next state 𝑠 , and the termination flag, all stored in the experience replay pool. Origi-
nally, network training involved uniform sampling of a batch of experiences directly from
the experience replay pool. However, the high correlation among experiences in the re-
play pool makes it challenging to distinguish their contributions to training in a uniform
sampling approach. Therefore, only a simple replay of the experience cannot fulfill the
need for efficient training.

The LP-TD3 algorithm introduced in this paper employs a prioritized experience re-
play mechanism, ranking the experiences in the replay pool by priority and sampling
them accordingly. Specifically, the agent selects actions based on the environmental state,
generating experience data that are stored in the replay pool. Subsequently, experiences
in the replay pool are ranked and updated based on the discrepancy between target and
actual values, using the TD error and the loss function. Following prioritization, the agent
interacts with the environment to acquire new experiences, iterating this process in a con-
tinuous loop.

This study uses a two-wheeled differential speed robot for simulation experiments.
The network model outputs continuous linear 𝑣 and angular 𝑤 velocities to control the
robot’s forward movement and steering. The 𝑔 and the previous action 𝑎 serve as state
input, enabling the neural network to gauge the robot’s speed and its distance from the
target [34]. It is pertinent to highlight that 𝑔 represents the Euclidean distance between
the target coordinates 𝑇 = (𝑇 , 𝑇) and the current robot coordinates 𝑇 = (𝑇 , 𝑇) ,
which is defined as follows:

Figure 3. LSTM repetition module.

LSTMs can retain long-term information and recognize and utilize the information at
any position within a sequence. This means that the network can access not only recent
information, but also information processed long ago, thus overcoming short-term memory
limitations. The “gate” structure design enables the network to filter sequence information,
allowing it to determine post-training whether to retain certain information. In this paper,
we fully leverage LSTM’s unique structure, enabling the model to retain experiential
information throughout the navigation training, thereby enhancing its understanding of
environmental dynamics.

3.2.2. LP-TD3 Intelligent Body Inputs and Outputs

Network training relies on experience data generated from interactions with the
environment, which includes the current state st, the action at taken, the reward rt, the next
state st+1, and the termination flag, all stored in the experience replay pool. Originally,
network training involved uniform sampling of a batch of experiences directly from the
experience replay pool. However, the high correlation among experiences in the replay pool
makes it challenging to distinguish their contributions to training in a uniform sampling
approach. Therefore, only a simple replay of the experience cannot fulfill the need for
efficient training.

The LP-TD3 algorithm introduced in this paper employs a prioritized experience
replay mechanism, ranking the experiences in the replay pool by priority and sampling
them accordingly. Specifically, the agent selects actions based on the environmental state,
generating experience data that are stored in the replay pool. Subsequently, experiences
in the replay pool are ranked and updated based on the discrepancy between target and
actual values, using the TD error and the loss function. Following prioritization, the agent
interacts with the environment to acquire new experiences, iterating this process in a
continuous loop.

This study uses a two-wheeled differential speed robot for simulation experiments.
The network model outputs continuous linear v and angular w velocities to control the
robot’s forward movement and steering. The g and the previous action a serve as state
input, enabling the neural network to gauge the robot’s speed and its distance from the
target [34]. It is pertinent to highlight that g represents the Euclidean distance between the
target coordinates Tg = (T g

x, Tg
y

)
and the current robot coordinates T = (T x, Ty

)
, which

is defined as follows:
a = [v, w] (8)

Sensors 2024, 24, 2525 8 of 18

s = [l, g, a] (9)

g =

√
(T x − Tg

x

)2
+ (T y − Tg

y

)2
(10)

In addition to incorporating the target point and the previous action as state inputs,
the final state representation also includes laser data, resulting in a composite of one-
dimensional vectors. The variable l represents 20-dimensional laser data, with the LIDAR’s
scanning field of view set at 180 degrees, and evenly divided into 20 sections. During
initialization, the start and end angles of each section are recorded. The smallest laser value
in each section is recorded during interactions between the robot and its environment.

To improve the model’s environmental understanding, this study enhances the original
TD3 algorithm by incorporating a long–short-term memory (LSTM) module into both the
actor and the critic networks. As illustrated in Figure 4, the actor network maps input
states to action information, whereas the critic network evaluates the current strategy based
on these inputs. The actor network comprises one LSTM layer and four fully connected
layers, while the critic network contains one LSTM layer and five fully connected layers.
The ReLU activation function is used during the forward-pass process.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18

𝑎 = [𝑣, 𝑤 (8)𝑠 = [𝑙, 𝑔, 𝑎 (9)

𝑔 = (𝑇 − 𝑇) + (𝑇 − 𝑇) (10)

In addition to incorporating the target point and the previous action as state inputs,
the final state representation also includes laser data, resulting in a composite of one-di-
mensional vectors. The variable l represents 20-dimensional laser data, with the LIDAR’s
scanning field of view set at 180 degrees, and evenly divided into 20 sections. During ini-
tialization, the start and end angles of each section are recorded. The smallest laser value
in each section is recorded during interactions between the robot and its environment.

To improve the model’s environmental understanding, this study enhances the orig-
inal TD3 algorithm by incorporating a long–short-term memory (LSTM) module into both
the actor and the critic networks. As illustrated in Figure 4, the actor network maps input
states to action information, whereas the critic network evaluates the current strategy
based on these inputs. The actor network comprises one LSTM layer and four fully con-
nected layers, while the critic network contains one LSTM layer and five fully connected
layers. The ReLU activation function is used during the forward-pass process.

Figure 4. Network structure schematic.

Action information comprises a tuple of linear and angular velocities. Given the robot
velocity’s specific constraints, the Tanh function is applied in the actor network’s final
layer to restrict velocity information to the (−1, 1) interval. The model’s input is a state
sequence comprising a batch of state information across multiple time steps. This state
sequence is derived from sampling via a prioritized experience replay mechanism, with
the sampled navigation experiences processed to yield a fixed-length, multi-time-step
state sequence. Thus, the network model efficiently leverages empirical information
throughout the navigation process, enabling quick decision-making in similar scenarios.

3.2.3. Reward Function Design Based on ICM
The reward function, central to deep reinforcement learning, encompasses both in-

trinsic and extrinsic rewards to quantitatively evaluate an agent’s behavior in the environ-
ment. A good reward function provides robust feedback, ensuring similar actions receive
comparable rewards, and motivating the agent to explore and avoid local optima. In nav-
igation scenarios, the reward function’s role is to train the robot to complete its tasks. Typ-
ically, rewards or penalties are issued when the robot reaches the goal or experiences a
collision. However, since reward signals are derived from experience, rewards tend to be

Figure 4. Network structure schematic.

Action information comprises a tuple of linear and angular velocities. Given the robot
velocity’s specific constraints, the Tanh function is applied in the actor network’s final
layer to restrict velocity information to the (−1, 1) interval. The model’s input is a state
sequence comprising a batch of state information across multiple time steps. This state
sequence is derived from sampling via a prioritized experience replay mechanism, with
the sampled navigation experiences processed to yield a fixed-length, multi-time-step state
sequence. Thus, the network model efficiently leverages empirical information throughout
the navigation process, enabling quick decision-making in similar scenarios.

3.2.3. Reward Function Design Based on ICM

The reward function, central to deep reinforcement learning, encompasses both intrin-
sic and extrinsic rewards to quantitatively evaluate an agent’s behavior in the environment.
A good reward function provides robust feedback, ensuring similar actions receive compa-
rable rewards, and motivating the agent to explore and avoid local optima. In navigation
scenarios, the reward function’s role is to train the robot to complete its tasks. Typically,
rewards or penalties are issued when the robot reaches the goal or experiences a collision.
However, since reward signals are derived from experience, rewards tend to be sparse,
leading to challenges in inefficiency and limited exploration ability during training. To
address these issues, this paper introduces the Intrinsic Curiosity Module (ICM) as an

Sensors 2024, 24, 2525 9 of 18

intrinsic reward [35]. Combined with extrinsic rewards, this forms the comprehensive
reward function module described herein.

R = Ri + R (11)

Here, Ri denotes the intrinsic reward, and Re represents the extrinsic reward, with
the intrinsic reward Ri calculated using the Intrinsic Curiosity Module (ICM). The ICM
is utilized to assess the agent’s ability to predict environmental changes from the current
state, calculating the reward signal based on the prediction error’s magnitude. Figure 5
illustrates the ICM’s structure, comprising a feature extraction layer, a forward model, and
a reverse model. The initial states st and st+1 are encoded as ϕ(st) and ϕ(st+1) via the
feature extraction layer. The inverse model predicts the agent’s action based on the current
and subsequent states as follows:

∼
a t = g(ϕ(st), ϕ(st+1); θI) (12)

Sensors 2024, 24, x FOR PEER REVIEW 10 of 18

𝑟 , = 𝑣 − |𝑤| − 𝜂𝑑 ⋯ ⋯ 𝜂 ∈ (0,1) (19)

The 𝑑 represents the current distance from the target point, 𝑑 is the threshold to
determine if the target has been reached, 𝑜 the minimum value in the radar data, and 𝑑 the threshold for collision detection. 𝜉, the amplification coefficient for the reward re-
lated to the target point, is assigned a negative value. 𝜂, the obstacle avoidance coefficient
increases in value as the proximity to an obstacle decreases.

Figure 5. Structure of the intrinsic curiosity module.

4. Experiments
This section will validate the proposed LP-TD3 navigation method. This method ne-

cessitates extensive training data. Training in a real-world environment is time-consum-
ing and poses a risk of damaging the equipment due to interactions between the agent
and the environment. To rapidly assess the method’s effectiveness, training will be con-
ducted in a simulation environment.

4.1. Experimental Parameters and Environment
The experiment will utilize two platforms, ROS and GAZEBO, with the open-source

Turtlebot3 two-wheeled differential robot serving as the testbed. A computer equipped
with an i7-11800H CPU, NVIDIA Geforce 3060 GPU, and 32 G RAM will serve as the
training platform for this experiment. Hyperparameters were empirically set based on the
performance capabilities of the training platform, as detailed in Table 1.

Table 1. Experimental parameters.

Parameters Value
Learn rate 0.001

Discount factor 0.999
Batch size 32

Soft update 0.005
Initial exploration 1
Final exploration 0.1

rarrive 120
rcollision −120 𝜉 −5

This study undertakes a comparative analysis of the LP-TD3 navigation strategy and
the original TD3 method, utilizing two simulated scenarios within the Gazebo environ-
ment, as illustrated in Figure 6. The first scenario assumes a static environment brimming
with obstacles, such as fire hydrants, cardboard boxes, and cross-shaped walls. The

Figure 5. Structure of the intrinsic curiosity module.

Here, θI represents the inverse model’s neural network parameter, and
∼
a t denotes the

predicted action. The inverse model is refined by minimizing the discrepancy between
the predicted and actual actions. Originally, the inverse model loss function in ICM was
based on cross-entropy. However, in this study, due to the continuous action space, the loss
function employs the mean squared deviation.

LI =
1
n

n

∑
i=1

(∼
a t − at

)2
(13)

The forward model employs current actions and states to predict the subsequent state
as follows: ∼

ϕ(st+1) = f (ϕ(st), at; θF) (14)

Here,
∼
ϕ(st+1) represents the predicted state, and θF denotes the forward model’s

neural network parameters. Training involves minimizing the loss function LF and using

the prediction error between
∼
ϕ(st+1) and ϕ(st+1) as the intrinsic reward, as follows:

LF =
1
2
∥
∼
ϕ(st+1)− ϕ(st+1) ∥

2

2 (15)

Ri =
1
2
∥
∼
ϕ(st+1)− ϕ(st+1) ∥

2

2 (16)

A large prediction error suggests that the agent’s predictions about environmental
changes in a specific state are not accurate, resulting in a relatively large reward signal in

Sensors 2024, 24, 2525 10 of 18

such cases. The Intrinsic Curiosity Module generates an exploratory signal that significantly
encourages the agent to explore unknown environments.

With the introduction of intrinsic rewards, the reward module now includes the sum
of both intrinsic and extrinsic rewards. The composition of extrinsic rewards is as follows:

R = rt + rv,w (17)

The reward rt comprises three elements: a reward for reaching the goal, a collision
penalty, and a reward for approaching the goal. The reward rv,w, based on linear and
angular velocities, incentivizes the robot to advance and minimize rotational movements,
aiming to avoid obstacles as effectively as possible.

rt =

rarrive i f dt < da
rcollision i f omin < dc

ξ(dt − dt−1) otherwise
(18)

rv,w = v− |w| − ηdc · · · · · · η ∈ (0, 1) (19)

The dt represents the current distance from the target point, da is the threshold to
determine if the target has been reached, omin the minimum value in the radar data, and dc
the threshold for collision detection. ξ, the amplification coefficient for the reward related to
the target point, is assigned a negative value. η, the obstacle avoidance coefficient increases
in value as the proximity to an obstacle decreases.

4. Experiments

This section will validate the proposed LP-TD3 navigation method. This method ne-
cessitates extensive training data. Training in a real-world environment is time-consuming
and poses a risk of damaging the equipment due to interactions between the agent and the
environment. To rapidly assess the method’s effectiveness, training will be conducted in a
simulation environment.

4.1. Experimental Parameters and Environment

The experiment will utilize two platforms, ROS and GAZEBO, with the open-source
Turtlebot3 two-wheeled differential robot serving as the testbed. A computer equipped
with an i7-11800H CPU, NVIDIA Geforce 3060 GPU, and 32 G RAM will serve as the
training platform for this experiment. Hyperparameters were empirically set based on the
performance capabilities of the training platform, as detailed in Table 1.

Table 1. Experimental parameters.

Parameters Value

Learn rate 0.001
Discount factor 0.999

Batch size 32
Soft update 0.005

Initial exploration 1
Final exploration 0.1

rarrive 120
rcollision −120

ξ −5

This study undertakes a comparative analysis of the LP-TD3 navigation strategy and
the original TD3 method, utilizing two simulated scenarios within the Gazebo environment,
as illustrated in Figure 6. The first scenario assumes a static environment brimming with
obstacles, such as fire hydrants, cardboard boxes, and cross-shaped walls. The second
scenario, however, is more intricate and encompasses a larger map with the addition of

Sensors 2024, 24, 2525 11 of 18

dynamic pedestrian obstacles. Two such dynamic pedestrians are programmed to move in
a clockwise direction along the trajectory delineated by the red dotted line in the figure, at
a speed of 0.5 m/s. The green origin in the figure denotes the initial position of these two
dynamic pedestrian obstacles in each episode. Moreover, four yellow cardboard boxes, each
with dimensions of 0.5 m × 0.5 m × 0.5 m (as represented in the figure), are programmed
to appear randomly at any location within this scene. This scene is designed to mimic a
warehouse inspection environment, complete with warehouse shelves, randomly dispersed
cardboard boxes, and designated maintenance areas. These scenarios partially replicate
the real inspection environment and validate the comprehensiveness of the proposed
navigation method.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18

second scenario, however, is more intricate and encompasses a larger map with the addi-
tion of dynamic pedestrian obstacles. Two such dynamic pedestrians are programmed to
move in a clockwise direction along the trajectory delineated by the red dotted line in the
figure, at a speed of 0.5 m/s. The green origin in the figure denotes the initial position of
these two dynamic pedestrian obstacles in each episode. Moreover, four yellow cardboard
boxes, each with dimensions of 0.5 m × 0.5 m × 0.5 m (as represented in the figure), are
programmed to appear randomly at any location within this scene. This scene is designed
to mimic a warehouse inspection environment, complete with warehouse shelves, ran-
domly dispersed cardboard boxes, and designated maintenance areas. These scenarios
partially replicate the real inspection environment and validate the comprehensiveness of
the proposed navigation method.

(a) Simulation test scenario 1.

(b) Simulation test scenario 2.

Figure 6. LP-TD3 simulation verification scenario.

The robot’s workflow involves gathering environmental data via external sensors
and executing actions through its decision-making model based on these data. In this ex-
periment’s simulation, the Turtlebot3 robot features a 16-line LIDAR with a 180-degree
scan and a camera for visual inspection, with the LIDAR’s scan segmented into 20 dimen-
sions. The blue ray in Figure 7 illustrates the visualization of the LIDAR scan. LIDAR scan
data serve as state inputs to minimize discrepancies between the simulated and real envi-
ronments. Navigation is achieved using 20-dimensional laser data, previous actions, and
the target’s relative position. Each round randomly sets the robot’s initial position and the
target point to avoid training overfitting. If the robot collides with an obstacle or misses
the target within a round’s step limit, it ends the round to assess if it meets the decision-
making model’s learning criteria before proceeding.

Figure 7. Schematic diagram of LP-TD3 status inputs.

4.2. Analysis of Training Results
To compare the performance of the proposed method with the original method in

different test environments, we define three performance metrics.

Figure 6. LP-TD3 simulation verification scenario.

The robot’s workflow involves gathering environmental data via external sensors
and executing actions through its decision-making model based on these data. In this
experiment’s simulation, the Turtlebot3 robot features a 16-line LIDAR with a 180-degree
scan and a camera for visual inspection, with the LIDAR’s scan segmented into 20 dimen-
sions. The blue ray in Figure 7 illustrates the visualization of the LIDAR scan. LIDAR
scan data serve as state inputs to minimize discrepancies between the simulated and real
environments. Navigation is achieved using 20-dimensional laser data, previous actions,
and the target’s relative position. Each round randomly sets the robot’s initial position
and the target point to avoid training overfitting. If the robot collides with an obstacle
or misses the target within a round’s step limit, it ends the round to assess if it meets the
decision-making model’s learning criteria before proceeding.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 18

second scenario, however, is more intricate and encompasses a larger map with the addi-
tion of dynamic pedestrian obstacles. Two such dynamic pedestrians are programmed to
move in a clockwise direction along the trajectory delineated by the red dotted line in the
figure, at a speed of 0.5 m/s. The green origin in the figure denotes the initial position of
these two dynamic pedestrian obstacles in each episode. Moreover, four yellow cardboard
boxes, each with dimensions of 0.5 m × 0.5 m × 0.5 m (as represented in the figure), are
programmed to appear randomly at any location within this scene. This scene is designed
to mimic a warehouse inspection environment, complete with warehouse shelves, ran-
domly dispersed cardboard boxes, and designated maintenance areas. These scenarios
partially replicate the real inspection environment and validate the comprehensiveness of
the proposed navigation method.

(a) Simulation test scenario 1.

(b) Simulation test scenario 2.

Figure 6. LP-TD3 simulation verification scenario.

The robot’s workflow involves gathering environmental data via external sensors
and executing actions through its decision-making model based on these data. In this ex-
periment’s simulation, the Turtlebot3 robot features a 16-line LIDAR with a 180-degree
scan and a camera for visual inspection, with the LIDAR’s scan segmented into 20 dimen-
sions. The blue ray in Figure 7 illustrates the visualization of the LIDAR scan. LIDAR scan
data serve as state inputs to minimize discrepancies between the simulated and real envi-
ronments. Navigation is achieved using 20-dimensional laser data, previous actions, and
the target’s relative position. Each round randomly sets the robot’s initial position and the
target point to avoid training overfitting. If the robot collides with an obstacle or misses
the target within a round’s step limit, it ends the round to assess if it meets the decision-
making model’s learning criteria before proceeding.

Figure 7. Schematic diagram of LP-TD3 status inputs.

4.2. Analysis of Training Results
To compare the performance of the proposed method with the original method in

different test environments, we define three performance metrics.

Figure 7. Schematic diagram of LP-TD3 status inputs.

Sensors 2024, 24, 2525 12 of 18

4.2. Analysis of Training Results

To compare the performance of the proposed method with the original method in
different test environments, we define three performance metrics.

(1) Average reward Ar: Ar is the average of the sum of episodes rewards when the model
is evaluated.

(2) Collision rate Cr: Cr is the ratio of total collisions to the number of episodes, assessing
the model’s obstacle avoidance capability.

(3) Success rate Su: Su measures the ratio of episodes where the robot successfully reaches
the goal to the total number of episodes, evaluating the navigation performance.

The results for scenario 1 are presented in Figure 8. Identical hyperparameters were
used to train both algorithms. Training initiates upon the robot reaching the target or
encountering a collision, with evaluations conducted every 5000 steps, repeated 15 times,
to accurately showcase the model’s current performance. The figure shows smoothed
evaluation results; the green curve represents the LP-TD3 algorithm, and the blue curve,
the original TD3 algorithm.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 18

(1) Average reward 𝐴 : 𝐴 is the average of the sum of episodes rewards when the
model is evaluated.

(2) Collision rate 𝐶 : 𝐶 is the ratio of total collisions to the number of episodes, as-
sessing the model’s obstacle avoidance capability.

(3) Success rate 𝑆 : 𝑆 measures the ratio of episodes where the robot successfully
reaches the goal to the total number of episodes, evaluating the navigation perfor-
mance.
The results for scenario 1 are presented in Figure 8. Identical hyperparameters were

used to train both algorithms. Training initiates upon the robot reaching the target or en-
countering a collision, with evaluations conducted every 5000 steps, repeated 15 times, to
accurately showcase the model’s current performance. The figure shows smoothed eval-
uation results; the green curve represents the LP-TD3 algorithm, and the blue curve, the
original TD3 algorithm.

(a)

(b)

(c)

Figure 8. Indicator curves of different methods during training in scene 1. (a) Comparison of aver-
age reward between two methods. (b) Comparison of collision rate between two methods. (c)
Comparison of success rate between two methods.

In scenario 1, LP-TD3 significantly outperforms the original TD3 in average reward,
collision rate, and success rate. The average reward curve indicates LP-TD3’s superior
sample utilization efficiency, converging around the 20th Epoch compared to the 40th for
TD3, showcasing faster convergence. Scene 1, with its small area and static obstacles like
cross-shaped and L-shaped walls, can lead to local optima challenges for the robot. How-
ever, the experimental results suggest that the proposed strategy explores the environ-
ment more effectively than the original, successfully navigating to challenging targets, like
those near cross-shaped and L-shaped walls.

Figure 8. Indicator curves of different methods during training in scene 1. (a) Comparison of average
reward between two methods. (b) Comparison of collision rate between two methods. (c) Comparison
of success rate between two methods.

In scenario 1, LP-TD3 significantly outperforms the original TD3 in average reward,
collision rate, and success rate. The average reward curve indicates LP-TD3’s superior
sample utilization efficiency, converging around the 20th Epoch compared to the 40th for
TD3, showcasing faster convergence. Scene 1, with its small area and static obstacles like

Sensors 2024, 24, 2525 13 of 18

cross-shaped and L-shaped walls, can lead to local optima challenges for the robot. How-
ever, the experimental results suggest that the proposed strategy explores the environment
more effectively than the original, successfully navigating to challenging targets, like those
near cross-shaped and L-shaped walls.

The training index curves for scenario 2, as illustrated in Figure 9, employ the same
experimental parameters and methods as for scenario 1. Compared to scenario 1, sce-
nario 2 presents a greater challenge with its larger size and complexity, especially due
to the presence of dynamic obstacles that significantly hinder the robot’s ability to reach
its destination. In such environments, robots are required to learn more sophisticated
navigation strategies to effectively deal with these ever-present obstacles. Experimental
results for scenario 2 indicate that, although both the proposed and original strategies
necessitate additional time for environmental exploration, the proposed method surpasses
the original in terms of model convergence speed, success rate, and collision rate. Initially,
the LP-TD3 strategy, which emphasizes comprehensive exploration and leverages intrinsic
curiosity rewards, exhibits lower performance metrics compared to the original TD3, as
it facilitates the exploration of new states and prevents the robot from simply rotating in
place, a limitation that the original TD3 strategy could not overcome. However, by the
50th epoch, LP-TD3 begins to outperform the original strategy, and by the 100th epoch, it
adeptly navigates around obstacles, successfully reaching the destination, and completing
the navigation task.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18

The training index curves for scenario 2, as illustrated in Figure 9, employ the same
experimental parameters and methods as for scenario 1. Compared to scenario 1, scenario
2 presents a greater challenge with its larger size and complexity, especially due to the
presence of dynamic obstacles that significantly hinder the robot’s ability to reach its des-
tination. In such environments, robots are required to learn more sophisticated navigation
strategies to effectively deal with these ever-present obstacles. Experimental results for
scenario 2 indicate that, although both the proposed and original strategies necessitate
additional time for environmental exploration, the proposed method surpasses the origi-
nal in terms of model convergence speed, success rate, and collision rate. Initially, the LP-
TD3 strategy, which emphasizes comprehensive exploration and leverages intrinsic curi-
osity rewards, exhibits lower performance metrics compared to the original TD3, as it fa-
cilitates the exploration of new states and prevents the robot from simply rotating in place,
a limitation that the original TD3 strategy could not overcome. However, by the 50th
epoch, LP-TD3 begins to outperform the original strategy, and by the 100th epoch, it
adeptly navigates around obstacles, successfully reaching the destination, and completing
the navigation task.

(a)

(b)

(c)

Figure 9. Indicator curves of different methods during training in scene 2. (a) Comparison of aver-
age reward between two methods. (b) Comparison of collision rate between two methods. (c)
Comparison of success rate between two methods.

4.3. Analysis of Evaluation Results
To assess the effectiveness of the local planning algorithm proposed in this study, we

constructed a test environment in GAZEBO. As depicted in Figure 10, the test environ-
ment comprises a 10 × 10 square meter area featuring multiple obstacles. The test environ-
ment is divided into two levels to evaluate the algorithm’s performance. The first level
features a static environment, while the second introduces a dynamic setting with two

Figure 9. Indicator curves of different methods during training in scene 2. (a) Comparison of average
reward between two methods. (b) Comparison of collision rate between two methods. (c) Comparison
of success rate between two methods.

Sensors 2024, 24, 2525 14 of 18

4.3. Analysis of Evaluation Results

To assess the effectiveness of the local planning algorithm proposed in this study, we
constructed a test environment in GAZEBO. As depicted in Figure 10, the test environment
comprises a 10 × 10 square meter area featuring multiple obstacles. The test environment
is divided into two levels to evaluate the algorithm’s performance. The first level features a
static environment, while the second introduces a dynamic setting with two pedestrians
moving counterclockwise, as indicated by the red dotted line in the figure, at a speed of
0.6 m/s. For the test task, we designated 10 sequential points for the planner; the robot
must navigate these sub-objectives in sequence while avoiding obstacles.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 18

pedestrians moving counterclockwise, as indicated by the red dotted line in the figure, at
a speed of 0.6 m/s. For the test task, we designated 10 sequential points for the planner;
the robot must navigate these sub-objectives in sequence while avoiding obstacles.

(a) Static

(b) Dynamic

(c) Global cost-map

Figure 10. Simulation test environment.

To demonstrate the distinctions between the proposed method and traditional ap-
proaches, we will compare it with the original TD3 algorithm and the move_base. The
move_base is a fundamental navigation component offered within the Robot Operating
System (ROS). This intricate component is responsible for executing paths that are gener-
ated collaboratively by both the global and local planners, thereby performing motion
control. In addition to this, move_base also incorporates local position estimation coupled
with dynamic map updates to enhance navigation capabilities. In the comparative exper-
iment conducted, the default global planner of move_base, which is based on Dijkstra’s
algorithm, is utilized alongside the local planner that employs the Dynamic Window Ap-
proach (DWA) algorithm. The specific parameter settings utilized for this experiment are
detailed in Appendix A.

The move_base requires construction of a global map for path planning, whereas the
proposed method uses this map solely for visual display. The navigation path results for
the three methods in both static and dynamic environments are depicted in Figure 11,
marked by a red pentagram indicating the robot’s starting point. To effectively illustrate
the impact of varying methods under identical experimental parameters, the robot’s posi-
tion was recorded at 5 s intervals. As depicted in Figure 11, line segments of diverse colors
signify the paths traversed by the robot during these 5 s intervals. This color-coded repre-
sentation facilitates a clear understanding of the robot’s movement under different meth-
ods.

(a) move_base

(b) original TD3

(c) LP-TD3

Figure 10. Simulation test environment.

To demonstrate the distinctions between the proposed method and traditional ap-
proaches, we will compare it with the original TD3 algorithm and the move_base. The
move_base is a fundamental navigation component offered within the Robot Operating Sys-
tem (ROS). This intricate component is responsible for executing paths that are generated
collaboratively by both the global and local planners, thereby performing motion control.
In addition to this, move_base also incorporates local position estimation coupled with
dynamic map updates to enhance navigation capabilities. In the comparative experiment
conducted, the default global planner of move_base, which is based on Dijkstra’s algo-
rithm, is utilized alongside the local planner that employs the Dynamic Window Approach
(DWA) algorithm. The specific parameter settings utilized for this experiment are detailed
in Appendix A.

The move_base requires construction of a global map for path planning, whereas the
proposed method uses this map solely for visual display. The navigation path results for the
three methods in both static and dynamic environments are depicted in Figure 11, marked
by a red pentagram indicating the robot’s starting point. To effectively illustrate the impact
of varying methods under identical experimental parameters, the robot’s position was
recorded at 5 s intervals. As depicted in Figure 11, line segments of diverse colors signify
the paths traversed by the robot during these 5 s intervals. This color-coded representation
facilitates a clear understanding of the robot’s movement under different methods.

We selected two metrics to evaluate the planners: the time taken by the robot to
complete the navigation task and the total distance traveled. Within the testing environment,
each method was executed 10 times. Figure 11 demonstrates one of the generated paths for
each method. The generated experimental data are presented in Table 2, which details the
test results for both static and dynamic environments.

Sensors 2024, 24, 2525 15 of 18

Sensors 2024, 24, x FOR PEER REVIEW 14 of 18

pedestrians moving counterclockwise, as indicated by the red dotted line in the figure, at
a speed of 0.6 m/s. For the test task, we designated 10 sequential points for the planner;
the robot must navigate these sub-objectives in sequence while avoiding obstacles.

(a) Static

(b) Dynamic

(c) Global cost-map

Figure 10. Simulation test environment.

To demonstrate the distinctions between the proposed method and traditional ap-
proaches, we will compare it with the original TD3 algorithm and the move_base. The
move_base is a fundamental navigation component offered within the Robot Operating
System (ROS). This intricate component is responsible for executing paths that are gener-
ated collaboratively by both the global and local planners, thereby performing motion
control. In addition to this, move_base also incorporates local position estimation coupled
with dynamic map updates to enhance navigation capabilities. In the comparative exper-
iment conducted, the default global planner of move_base, which is based on Dijkstra’s
algorithm, is utilized alongside the local planner that employs the Dynamic Window Ap-
proach (DWA) algorithm. The specific parameter settings utilized for this experiment are
detailed in Appendix A.

The move_base requires construction of a global map for path planning, whereas the
proposed method uses this map solely for visual display. The navigation path results for
the three methods in both static and dynamic environments are depicted in Figure 11,
marked by a red pentagram indicating the robot’s starting point. To effectively illustrate
the impact of varying methods under identical experimental parameters, the robot’s posi-
tion was recorded at 5 s intervals. As depicted in Figure 11, line segments of diverse colors
signify the paths traversed by the robot during these 5 s intervals. This color-coded repre-
sentation facilitates a clear understanding of the robot’s movement under different meth-
ods.

(a) move_base

(b) original TD3

(c) LP-TD3

Sensors 2024, 24, x FOR PEER REVIEW 15 of 18

(d) move_base

(e) original TD3

(f) LP-TD3

Figure 11. Path trajectory in the virtual test environment. (a–c) show static environment paths and
(d–f) show dynamic environment paths.

We selected two metrics to evaluate the planners: the time taken by the robot to com-
plete the navigation task and the total distance traveled. Within the testing environment,
each method was executed 10 times. Figure 11 demonstrates one of the generated paths
for each method. The generated experimental data are presented in Table 2, which details
the test results for both static and dynamic environments.

Table 2. Indicator values for different methods.

Method Distance (Static) Time (Static) Distance (Dynamic) Time (Dynamic)
Move_base 41.71 m 95.66 s 46.13 m 135.63 s

Original TD3 48.02 m 105.70 s 48.96 m 133.30 s
LP-TD3 45.70 m 97.13 s 47.71 m 120.98 s

In the static test environment, Figure 11a–c displays the trajectory plots for the navi-
gation tasks, showing that all methods can complete the tasks without collisions. Accord-
ing to Table 2, the conventional navigation method, move_base, reduces the cumulative
distance traveled by 15.13% and 9.57% compared to the original TD3 and LP-TD3 algo-
rithms, respectively, suggesting that the paths generated using deep reinforcement learn-
ing-based methods are not optimal. In a static environment, while the method proposed
in this paper does not surpass the performance of the classical algorithm, it indeed shows
a marked improvement over the original TD3.

In a dynamic environment, the move_base successfully completes the navigation task
most of the time. However, in certain instances, such as during the robot’s journey from
navigation point 9 to navigation point 10 as illustrated in Figure 11d, the robot encoun-
tered challenges when avoiding pedestrians. Specifically, while the robot managed to plan
a route to circumvent the first pedestrian it encountered, it struggled to react in time to a
second approaching pedestrian. This delay resulted in the robot remaining stationary un-
til the pedestrian was very close, at which point the robot hastily reversed and altered its
path. The original TD3 algorithm’s inability to effectively navigate around dynamic pe-
destrians is highlighted by the interruption indicated by a black line segment in Figure
11e, requiring human intervention to resume the navigation task. In contrast, our pro-
posed LP-TD3 method, presented in Figure 11f, successfully completes the navigation task
under similar circumstances. For instance, during the robot’s movement from navigation
point 5 to navigation point 6, as pedestrians gradually approached, the robot swiftly opted
to turn left to avoid them. The experimental results demonstrate that LP-TD3 is capable
of successfully completing navigation tasks even in the absence of a map.

Figure 11. Path trajectory in the virtual test environment. (a–c) show static environment paths and
(d–f) show dynamic environment paths.

Table 2. Indicator values for different methods.

Method Distance (Static) Time (Static) Distance (Dynamic) Time (Dynamic)

Move_base 41.71 m 95.66 s 46.13 m 135.63 s
Original TD3 48.02 m 105.70 s 48.96 m 133.30 s

LP-TD3 45.70 m 97.13 s 47.71 m 120.98 s

In the static test environment, Figure 11a–c displays the trajectory plots for the naviga-
tion tasks, showing that all methods can complete the tasks without collisions. According
to Table 2, the conventional navigation method, move_base, reduces the cumulative dis-
tance traveled by 15.13% and 9.57% compared to the original TD3 and LP-TD3 algorithms,
respectively, suggesting that the paths generated using deep reinforcement learning-based
methods are not optimal. In a static environment, while the method proposed in this paper
does not surpass the performance of the classical algorithm, it indeed shows a marked
improvement over the original TD3.

In a dynamic environment, the move_base successfully completes the navigation task
most of the time. However, in certain instances, such as during the robot’s journey from
navigation point 9 to navigation point 10 as illustrated in Figure 11d, the robot encountered
challenges when avoiding pedestrians. Specifically, while the robot managed to plan a
route to circumvent the first pedestrian it encountered, it struggled to react in time to a
second approaching pedestrian. This delay resulted in the robot remaining stationary until
the pedestrian was very close, at which point the robot hastily reversed and altered its path.
The original TD3 algorithm’s inability to effectively navigate around dynamic pedestrians
is highlighted by the interruption indicated by a black line segment in Figure 11e, requiring
human intervention to resume the navigation task. In contrast, our proposed LP-TD3

Sensors 2024, 24, 2525 16 of 18

method, presented in Figure 11f, successfully completes the navigation task under similar
circumstances. For instance, during the robot’s movement from navigation point 5 to
navigation point 6, as pedestrians gradually approached, the robot swiftly opted to turn left
to avoid them. The experimental results demonstrate that LP-TD3 is capable of successfully
completing navigation tasks even in the absence of a map.

5. Conclusions

This study introduces a mapless navigation solution for indoor inspection scenarios,
addressing the poor performance of current navigation methods via deep reinforcement
learning. Building on the existing TD3 algorithm, we propose the LP-TD3 algorithm, which
combines intrinsic curiosity rewards with extrinsic rewards to motivate the robot to explore
its environment. LP-TD3 equips the robot with both long-term and short-term memory
modules, enhancing learning from beneficial navigational experiences through a prioritized
experience replay mechanism. The model inputs comprise the robot’s current actions,
LiDAR scan data, and its relative position to the target, offering comprehensive learning
data. In the training phase, the algorithm surpasses the original TD3 in average reward,
collision rate, success rate, and achieves faster convergence. Simulation tests demonstrate
that the LP-TD3 local planning algorithm enables efficient navigation amidst both static and
dynamic obstacles. Therefore, the method proposed in this paper is applicable to inspection
scenarios, such as in factories, to facilitate smarter and safer production activities. This
paper focuses on enhancing learning efficiency and addressing the reward sparsity issue of
the original method. Future research will aim at deploying these learning algorithms on
actual detection robots, enabling ongoing post-deployment learning for optimal real-world
performance and long-range navigation path optimization.

Author Contributions: Methodology, J.X.; Software, J.X.; Formal analysis, J.X. and J.Y.; Resources,
B.H.; Writing—original draft, J.X.; Supervision, B.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Scientific Research and Innovation Team Program of
Sichuan University of Science and Engineering, grant number H92322, and the Graduate Innovation
Fund of Sichuan University of Science & Engineering, grant number Y2023085.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. The move_base navigation package global parameters.

Global Planner Parameters Value

shutdown_costmaps False
controller_frequency 10.0

planner_patience 5.0
controller_patience 15.0

conservative_reset_dist 3.0
planner_frequency 5.0
oscillation_timeout 10.0
oscillation_distance 0.3

Sensors 2024, 24, 2525 17 of 18

Table A2. The move_base navigation package local parameters.

Local Planner Parameters Value

max_vel_x 1.0
min_vel_x −1.0
max_vel_y 0.0
min_vel_y 0.0

max_vel_trans 1.0
min_vel_trans −1.0
max_vel_theta 1.0
min_vel_theta −1.0

acc_lim_x 2.5
acc_lim_y 0.0

acc_lim_theta 3.2
xy_goal_tolerance 0.05

yaw_goal_tolerance 0.17
latch_xy_goal_tolerance false

sim_time 2.0
vx_samples 20
vy_samples 0
vth_samples 40

controller_frequency 10.0
path_distance_bias 32.0
goal_distance_bias 20.0

occdist_scale 0.02
forward_point_distance 0.325

stop_time_buffer 0.2
scaling_speed 0.25

max_scaling_factor 0.2
oscillation_reset_dist 0.05

References
1. Pandey, A. Mobile Robot Navigation and Obstacle Avoidance Techniques: A Review. Int. Robot. Autom. J. 2017, 2, 96–105.

[CrossRef]
2. Patle, B.; Ganesh Babu, L.; Pandey, A.; Parhi, D.; Jagadeesh, A. A review: On path planning strategies for navigation of mobile

robot. Def. Technol. 2019, 15, 582–606. [CrossRef]
3. Zhang, H.-Y.; Lin, W.-M.; Chen, A.-X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
4. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
5. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
6. Kavraki, L.; Latombe, J.-C. Randomized preprocessing of configuration for fast path planning. In Proceedings of the 1994 IEEE

International Conference on Robotics and Automation, San Diego, CA, USA, 8–13 May 1994. [CrossRef]
7. Shentu, S.; Gong, Z.; Liu, X.-J.; Liu, Q.; Xie, F. Hybrid Navigation System Based Autonomous Positioning and Path Planning for

Mobile Robots. Chin. J. Mech. Eng. 2022, 35, 109. [CrossRef]
8. Li, Y.; Li, J.; Zhou, W.; Yao, Q.; Nie, J.; Qi, X. Robot Path Planning Navigation for Dense Planting Red Jujube Orchards Based on

the Joint Improved A* and DWA Algorithms under Laser SLAM. Agriculture 2022, 12, 1445. [CrossRef]
9. Wang, C.-Y.; Yang, C.-Y.; Banitaan, S.; Luo, C.; Galsanbadam, S. Coarse grid partition to speed up A* robot navigation. J. Chin.

Inst. Eng. 2020, 43, 186–199. [CrossRef]
10. Yasuda, Y.D.V.; Martins, L.E.G.; Cappabianco, F.A.M. Autonomous Visual Navigation for Mobile Robots. ACM Comput. Surv.

2020, 53, 1–34. [CrossRef]
11. Singh, R.; Nagla, K.S. Comparative analysis of range sensors for the robust autonomous navigation—A review. Sens. Rev. 2019,

40, 17–41. [CrossRef]
12. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2023, arXiv:1312.5602.
13. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings of the AAAI’16:

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 12–17 February 2016; Volume 30.
[CrossRef]

14. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

https://doi.org/10.15406/iratj.2017.02.00023
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.3390/sym10100450
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/robot.1994.350966
https://doi.org/10.1186/s10033-022-00775-4
https://doi.org/10.3390/agriculture12091445
https://doi.org/10.1080/02533839.2019.1694444
https://doi.org/10.1145/3368961
https://doi.org/10.1108/SR-01-2019-0029
https://doi.org/10.1609/aaai.v30i1.10295

Sensors 2024, 24, 2525 18 of 18

15. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for
Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA,
19–24 June 2016.

16. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, arXiv:1707.06347.
17. Fujimoto, S.; Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the 35th

International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
18. Chen, D.; Peng, P.; Huang, T.; Tian, Y. Deep Reinforcement Learning with Spiking Q-learning. arXiv 2022, arXiv:2201.09754.
19. Wang, X.; Ma, X.; Li, Z. Research on SLAM and Path Planning Method of Inspection Robot in Complex Scenarios. Electronics 2023,

12, 2178. [CrossRef]
20. Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard, A.J.; Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.; Kavukcuoglu, K.; et al.

Learning to Navigate in Complex Environments. In Proceedings of the International Conference on Learning Representations,
San Juan, Puerto Rico, 2–4 May 2016.

21. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017. [CrossRef]

22. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Li, F.; Farhadi, A. Target-driven visual navigation in indoor scenes using
deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017. [CrossRef]

23. Xie, L.; Wang, S.; Markham, A.; Trigoni, N. Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement
Learning. arXiv 2017, arXiv:1706.09829.

24. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper depth prediction with fully convolutional residual
networks. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October
2016; pp. 239–248.

25. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning. Sensors 2020, 20, 5493.
[CrossRef]

26. Chang, L.; Shan, L.; Jiang, C.; Dai, Y. Reinforcement based mobile robot path planning with improved dynamic window approach
in unknown environment. Auton. Robot. 2020, 45, 51–76. [CrossRef]

27. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.
[CrossRef]

28. Surmann, H.; Jestel, C.; Marchel, R.; Musberg, F.; Elhadj, H.; Ardani, M. Deep Reinforcement learning for real autonomous mobile
robot navigation in indoor environments. arXiv 2020, arXiv:2005.13857.

29. Zhang, Q.; Zhu, M.; Zou, L.; Li, M.; Zhang, Y. Learning Reward Function with Matching Network for Mapless Navigation.
Sensors 2020, 20, 3664. [CrossRef] [PubMed]

30. Cimurs, R.; Suh, I.H.; Lee, J.H. Goal-Driven Autonomous Exploration Through Deep Reinforcement Learning. IEEE Robot. Autom.
Lett. 2021, 7, 730–737. [CrossRef]

31. Kingma Diederik, P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
32. Bakker, B. Reinforcement Learning with Long Short-Term Memory. In Proceedings of the NIPS’01: Proceedings of the 14th Inter-

national Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, 3–8 December
2001; pp. 1475–1482.

33. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2015, arXiv:1511.05952.
34. Park, M.; Lee, S.Y.; Hong, J.S.; Kwon, N.K. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in

Sparse Reward Environments. Sensors 2022, 22, 9574. [CrossRef]
35. Pathak, D.; Agrawal, P.; Efros, A.A.; Darrell, T. Curiosity-Driven Exploration by Self-Supervised Prediction. In Proceedings of the

International Conference on Machine Learning, Honolulu, HI, USA, 21–26 July 2017; pp. 488–489. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics12102178
https://doi.org/10.1109/IROS.2017.8202134
https://doi.org/10.1109/icra.2017.7989381
https://doi.org/10.3390/s20195493
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.1109/100.580977
https://doi.org/10.3390/s20133664
https://www.ncbi.nlm.nih.gov/pubmed/32629934
https://doi.org/10.1109/LRA.2021.3133591
https://doi.org/10.3390/s22249574
https://doi.org/10.1109/cvprw.2017.70

	Introduction
	Related Work
	Materials and Methods
	Algorithmic Background
	Deep Deterministic Policy Gradient Algorithm (DDPG)
	Two-Delay Deep Deterministic Policy Gradient Algorithm (TD3)

	Improvement Methods
	Navigation Principle of Inspection Robot Based on LP-TD3
	LP-TD3 Intelligent Body Inputs and Outputs
	Reward Function Design Based on ICM

	Experiments
	Experimental Parameters and Environment
	Analysis of Training Results
	Analysis of Evaluation Results

	Conclusions
	Appendix A
	References

