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Abstract: This study aims to enhance diagnostic capabilities for optimising the performance of the
anaerobic sewage treatment lagoon at Melbourne Water’s Western Treatment Plant (WTP) through
a novel machine learning (ML)-based monitoring strategy. This strategy employs ML to make ac-
curate probabilistic predictions of biogas performance by leveraging diverse real-life operational
and inspection sensor and other measurement data for asset management, decision making, and
structural health monitoring (SHM). The paper commences with data analysis and preprocessing of
complex irregular datasets to facilitate efficient learning in an artificial neural network. Subsequently,
a Bayesian mixture density neural network model incorporating an attention-based mechanism in
bidirectional long short-term memory (BiLSTM) was developed. This probabilistic approach uses
a distribution output layer based on the Gaussian mixture model and Monte Carlo (MC) dropout
technique in estimating data and model uncertainties, respectively. Furthermore, systematic hyperpa-
rameter optimisation revealed that the optimised model achieved a negative log-likelihood (NLL)
of 0.074, significantly outperforming other configurations. It achieved an accuracy approximately
9 times greater than the average model performance (NLL = 0.753) and 22 times greater than the
worst performing model (NLL = 1.677). Key factors influencing the model’s accuracy, such as the
input window size and the number of hidden units in the BiLSTM layer, were identified, while
the number of neurons in the fully connected layer was found to have no significant impact on
accuracy. Moreover, model calibration using the expected calibration error was performed to correct
the model’s predictive uncertainty. The findings suggest that the inherent data significantly contribute
to the overall uncertainty of the model, highlighting the need for more high-quality data to enhance
learning. This study lays the groundwork for applying ML in transforming high-value assets into
intelligent structures and has broader implications for ML in asset management, SHM applications,
and renewable energy sectors.

Keywords: deep learning; machine learning; Bayesian neural network; anaerobic lagoon; long short-term
memory; mixture density; Monte Carlo dropout; model calibration; hyperparameter optimisation

1. Introduction

The use of artificial intelligence is expected to become more prevalent in the future, in-
cluding in engineering fields where it has been utilised for predictive maintenance and has
enabled scheduling of maintenance [1–6]. The core concept of deep learning involves learn-
ing hierarchical representations of data through the use of multiple hidden layers. One of
the advantages of deep learning is its ability to automatically extract relevant features within
these hidden layers of the model, thereby eliminating the need for manual feature engineering.
Classical models, such as autoregressive integrated moving averages, have traditionally been
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used for time series forecasting and are still widely used. However, these models often tend
to oversimplify problems, fall short in capturing nonlinearity, and are heavily dependent on
predefined assumptions, which may not accurately capture the intricacies and account for
external and new factors present in the real world. By contrast, data-driven algorithms have
emerged as more prevalent and adaptable approaches, particularly for highly complex systems,
where the limitations of such classical models are more apparent.

Recently, there has been considerable interest in employing machine learning (ML)
methods in the field of engineering [2–8], including the effectiveness of probabilistic arti-
ficial neural networks (ANNs) in structural health monitoring (SHM) applications. The
ability to quantify uncertainty is crucial for engineering prediction systems, as it provides
insight into the reliability of their forecasts and, in turn, the level of confidence required for
quantitative risk assessment. The adoption of a probabilistic approach to ML enables the
measurement of various sources of uncertainties, including those arising from data and
the lack of data. Bayesian neural networks (BNNs) are a type of ANN architecture that
incorporate Bayesian statistical principles to estimate uncertainty [9,10]. Recently, BNNs
have gained significant attention due to their ability to provide uncertainty estimates in
a wide range of engineering applications, including SHM [6–8]. For instance, Arangio
and Bontempi [8] demonstrated BNNs to train on acceleration responses for SHM of a
large bridge, achieving an average of 4.0% relative error in modal frequencies compared to
finite element (FE) modelling. Additionally, Vega and Todd [7] demonstrated the use of
variational inference for BNNs as a surrogate degradation model for miter gates, which
reduced maintenance costs by up to 35.1% and resulted in more cost-effective decision
making. Nevertheless, it is evident that research on the probabilistic approach for ANN
continues to be actively pursued, particularly because of its ability to quantify confidence.
This approach is highly recognised for its relevance in numerous applications, as it enhances
risk management by accounting for uncertainties in both data and models.

The efficient learning and performance of ML models are greatly influenced by their
architectural design and the careful selection of hyperparameters. In ML, hyperparameters
are external configurations for a model, such as the number of hidden layers and learning
rate, that are not learned from the data but are set prior to model training. Techniques for
hyperparameter optimisation, such as grid search and random search [11,12], are employed
to optimise computational cost and the learning rate during training as well as enhance the
model’s ability to accurately generalise to unseen data. Additionally, probabilistic ANNs
often produce overly confident predictions, characterised by narrow confidence intervals
that fail to accurately encompass the true data distribution [13–15]. This issue often arises
from the fact that the optimisation of loss functions primarily measures the goodness of fit
rather than uncertainty estimations [15–19]. An ideally well-calibrated model should gener-
ate prediction intervals that accurately encompass the correct proportions of observations.
For instance, actual values should fall within a 95% prediction interval 95% of the time. Var-
ious methods have been developed for calibrating probabilistic ML models quantitatively,
including techniques that average and maximise calibration errors, yielding a single scalar
metric for both classifications [15], and, more recently, regression models [17,19]. Recent
studies [20,21] have incorporated model calibration into their BNNs to ensure accurate
uncertainty quantification. Okte and Al-Qadi [21] developed a 3D FE surrogate model
using a dropout-based BNN and demonstrated how varying dropout rates influence model
uncertainties through calibration curve plots. Nevertheless, it is imperative to emphasise
the importance of both hyperparameter optimisation and model calibration in ensuring the
accuracy and reliability of probabilistic ANNs for practical applications.

Melbourne Water’s Western Treatment Plant (WTP) in Werribee, Victoria, Australia [22],
processes raw sewage in treatment lagoons approximately 450 m × 200 m, that are covered
with 2 mm thick high-density polyethylene (HDPE) sheets, refer to Figure 1. The covers
enable harvesting of the biogas that is produced during anaerobic digestion and is used for
generating electricity surplus to the operational requirements of the plant. However, the
progressive buildup of semi-solid or solid mass, called scum, which originates from fats,
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oil, floating solids, buoyed sludge, and other fibrous material, can result in the formation
of large mounds commonly referred to as scumbergs. The scumberg can compromise the
HDPE floating covers, affecting the structural integrity of the asset, and obstruct the biogas
pathway, which consequently diminishes economic returns. Recently, UAV photogramme-
try [23–25] has been deployed to construct digital elevation models (DEM) and orthomosaic
images of the floating cover, enabling monitoring of the asset as well as scum evolution.
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Figure 1. Aerial view of 55E anerobic lagoon at Melbourne Water’s WTP.

Melbourne Water is proactively exploring cutting-edge strategies to augment their
capabilities in managing WTP lagoons, aligning with the advancements of Industry 4.0. In
particular, they are seeking innovative tools that provide quantitative metrics, including
uncertainty, for forecasting performance, decision making, and risk management. The
anaerobic lagoon is a highly complex system, the optimisation of which involves diverse
multidisciplinary processes, including structural integrity monitoring, biogas extraction,
chemical reaction balancing, and controlling inlet flows into the anaerobic sewage. Cur-
rently, Melbourne Water employs a supervisory control and data acquisition system for
remote control and real-time monitoring of devices at WTPs. These devices include numer-
ous valves and pumps for gas extraction, gas and inlet flow sensor meters, and controls for
flow inlets and weather stations. Additionally, water quality monitoring involves testing
water samples from the lagoon to measure key chemical parameters, aiming to maintain
the process of anaerobic digestion. Furthermore, UAV imagery and manual inspections
are also conducted to assess the elevation of the floating cover and the characteristics of
the scum in the lagoon. However, due to this complexity, analytical modelling of this
system is very challenging, and accurate scaling down for laboratory simulation is not
reliable, thereby limiting prognostic capabilities. Nonetheless, WTPs are data-rich, and with
the availability of new inspection data (e.g., remote imagery), ML modelling becomes a
feasible and attractive practical option for SHM. In particular, the inclusion of data relating
to scum characteristics underscores the interconnectedness of operational efficiency and
structural resilience of WTP assets. This suggests that predictive models focused on biogas
performance can also contribute valuable data for SHM. Therefore, this enables real-time
monitoring and the development of a diagnostic-prognostic data-driven model based on
actual operational measurements of the sewage processing plant.

Previous work developed safe and rapid non-contact techniques for acquiring infor-
mation on the deformation and solid scum accumulation under the floating cover [23,24,26].
More recent work aims to leverage these asset-based diagnostics to achieve the performance
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targets of the cover, such as the biogas collection rate. The goal is to use these data to make
informed decisions that ensure the cover is meeting its performance criteria while maintain-
ing its structural integrity. Of particular interest in this research is ML, trained to predict
biogas collection rates utilising both operational and inspection sensor data from a WTP, as
well as the associated data processing and analysis. Previous studies have demonstrated
that RNNs can achieve both deterministic and probabilistic biogas predictions based on
operational and environmental conditions over a period of 2 years [27,28]. In this paper, the
research is extended by introducing a novel approach to handling asymmetric probabilistic
distributions in assimilating the real world, a capability not extensively explored in prior
studies. This research further enhances reliable prediction methodologies by integrating a
model calibration technique that ensures predictions closely mirror true values. Moreover,
the study incorporates and preprocesses data from diverse disciplines, including inspection
and chemical parameters, as well as image-based data (DEM and orthomosaics), to model
complex assets with multiple dependencies. This interdisciplinary approach, along with
our focus on complex probabilistic modelling, distinguishes our work from previous efforts
and addresses a critical gap in the application of ML for SHM and asset management. The
paper’s presentation is organised as follows: It begins with an overview of the neural net-
work architecture, followed by the preprocessing of WTP historical datasets for ML model
training. Subsequently, the paper presents a novel advancement in monitoring systems by
incorporating a tailored deep learning BNN architecture to probabilistically predict biogas.
Additionally, the significance of different hyperparameter configurations is investigated
and discussed. Furthermore, with the hyperparameter-optimised model, its uncertainty is
calibrated to quantify various sources of uncertainty. This approach not only showcases
the applications of data analytics techniques but also enhances the utility of sensor data
in the environmental and energy sectors in readiness of ML modelling for infrastructure
management and SHM. The overarching objective of our research project is to transform
the assets at WTPs into a smart structure that autonomously regulates both its anaerobic
reactor performance and structural integrity, aligning with the principles of the digital
twin concept.

2. Neural Network Architecture
2.1. Recurrent Neural Networks and LSTM

Recurrent neural networks (RNNs) are a type of neural network architecture that is
suited for handling sequential data, such as time series data, by using a hidden state that
updates with each step, integrating past and present information. However, in practice, they
struggle with long-term dependencies due to gradient vanishing. More advanced RNN
architectures have been developed, such as long short-term memory (LSTM) networks, that
outperform traditional RNNs in capturing dependency. LSTM cells differ from standard
recurrent cells in two primary parts. Firstly, the cell state is divided into long-term state ct
and short-term state ht, and secondly, three control gates (the forget gate, the input gate,
and the output gate) are introduced to regulate the flow of information through the cell
state. The LSTM operates as follows:

The forget gate ft, controls the amount of information to be removed from the previous
long-term state ct−1 via the following formula:

ft = σ
(

Wx, f xt + Wh, f ht−1 + b f

)
(1)

where σ is the sigmoid function, xt is the input at time step t, and W and b are the weights
and bias vectors, respectively, of the corresponding gate and layer.

Secondly, the LSTM cell determines what new information is to be stored in its cell
state. The input gate it regulates the flow of new information from the current output gate
gt into the current long-term state ct, while the output gate ot controls the formation of
the current short-term state ht using the information from the current long-term state ct.
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Both input gate it and output gate ot can be computed similarly as in Equation (1), using
Equations (2) and (3), respectfully:

it = σ(Wx,ixt + Wh,iht−1 + bi) (2)

ot = σ(Wx,oxt + Wh,oht−1 + bo) (3)

Next, a vector of new candidate memory content gt is created that may be added to
the state, which is given by:

gt = ϕ
(

Wx,gxt + Wh,ght−1 + bg

)
(4)

where ϕ is the hyperbolic tangent (tanh) function.
In the LSTM cell, the subsequent step involves updating the previous cell state ct−1 to

the new cell state ct. This is achieved by multiplying the old state by ft, which removes the
information deemed irrelevant by the LSTM cell. Then, only a portion of the output gt is
transferred into the current states ct and ht. The value of cell state ct is then passed through
the tanh filter and multiplied by the output of the output gate layer, resulting in the output
of the LSTM cell, which is essentially ht. Finally, the equations governing the cell output
for the long-term state and the short-term state can be obtained as, respectively:

ct = ft ∗ ct−1 + it ∗ gt (5)

ht = ot ∗ ϕ(ct) (6)

where ∗ is element-wise multiplication.

2.2. Bidirectional Long Short-Term Memory

The bidirectional LSTM (BiLSTM) structure is designed to incorporate information that
flows both forwards and backwards simultaneously. This is accomplished by utilising two
separate LSTMs, which merge data from both preceding and succeeding sequences. Fur-
thermore, the two LSTM neural network parameters in BiLSTM networks are independent
but share the same inputs. This approach enhances context comprehension by uncovering
system variations and highly nonlinear patterns, while also smoothing predictions for a
more accurate representation of the input sequence [29]. The governing equations in the
backwards path correspond to the previous Equations (1)–(6):

↼
f t = σ

(
↼
Wx, f xt +

↼
Wh, f

↼
h t+1 +

↼
b f

)
↼
i t = σ

(
↼
Wx,ixt +

↼
Wh,i

↼
h t+1 +

↼
b i

)
↼
o t = σ

(
↼
Wx,oxt +

↼
Wh,o

↼
h t+1 +

↼
b o

)
↼
g t = ϕ

(
↼
Wx,gxt +

↼
Wh,g

↼
h t+1 +

↼
b g

)
↼
c t =

↼
f t ∗

↼
c t+1 +

↼
i t ∗

↼
g t

↼
h t =

↼
o t ∗ ϕ

(
↼
c t

)
(7)

where the leftward arrow accent indicates the backward direction path.

At each time step t, the forward LSTM generates the hidden state
⇀
h t based on the

previous hidden
⇀
h t−1 and the input vector xt, while the backward LSTM generates the

hidden state
↼
h t based on the future hidden state

↼
h t+1 and the input vector xt. The final
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hidden state of the BiLSTM model is then formed by concatenating the hidden vectors of
both directions. The final output ht of the BiLSTM model at step t is given by:

ht =

[
⇀
h t,

↼
h t

]
(8)

where from hereafter, the forward direction hidden state from Equation (6) is replaced and

denoted as
⇀
h t.

2.3. Attention Mechanism

Although LSTM and BiLSTM are proficient in handling long-term dependencies, they
can face challenges with extremely long sequences due to their limited ability to compress
information [30]. The attention mechanism addresses this by focusing on specific sections of
arbitrarily long input sequences using attention weights, rather than considering the entire
input equally. Earlier studies [2] show that LSTMs with attention outperform traditional
LSTMs and other ML algorithms.

The attention mechanism can be integrated with an BiLSTM layer, enabling the al-
location of distinct weights to components of the hidden state vector during prediction.
Unlike the traditional BiLSTM layer, where the final hidden state vector hT , where T is the
sequence length, solely encodes the sequence information, the attention mechanism lever-
ages all hidden states (h1, h2, . . . , hT) to construct the context vector ct. An attention score
sz is computed for each hidden state hz based on a similarity measure between the current
BiLSTM hidden state and the corresponding element of ct. The score is then normalised
using a SoftMax function to obtain the attention weights az, which are parameterised by a
single-layer feed-forward neural network. These weights are then applied to compute a
weighted sum of the BiLSTM hidden states, forming the context vector ct. This essentially
gives importance to different temporal information by emphasising the contribution of
hidden states that are most relevant to the current time step t.

ct =
T
∑

z=1
azhz

az = SoftMax(sz) = esz /
T
∑

ξ=1
esξ

sz = v⊺a ϕ
(
W1,ahz + W2,aht + ba

) (9)

where va, Wa, and ba and are learnable weights and biases for the attention layer, and hz
and ht are the zth and current BiLSTM hidden states, respectively. Finally, ct can then be
passed through the next layer in the neural network.

2.4. Bayesian Neural Networks for Epistemic Uncertainty

Implementing BNNs is a challenging and computationally intensive task due to the
need for exact Bayesian inference, which involves computing the joint probability distri-
bution of weights given to the observed data. To address these challenges, approximate
inference techniques, such as variational inference (VI), have been developed. In the
VI approach, weights and bias terms are assigned variational distributions instead of fixed
values, unlike in deterministic neural networks [9]. However, the training of VI-BNNs can
be computationally expensive due to the increased number of parameters.

Alternatively, an elegant approach for converting a neural network to a Bayesian vari-
ant is the Monte Carlo (MC) dropout method [10], which performs approximate inference
without changing the entire neural network architecture. Originally, the standard dropout
was a widely-used regularisation technique in neural networks, where network neurons
are stochastically dropped out with a dropout probability p during model training [31]. The
MC dropout method involves conducting multiple stochastic feed-forward passes through
the neural network with dropout probability pMC at each layer during the inference phase,
which occurs after the model has been trained. This allows for the estimation of both the
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predictive mean and uncertainty, which are computed as the average and variance of the
sampled model outputs, respectively.

Given y∗ = f (x∗) is the trained model’s prediction of the new input x∗, the predictive
mean y∗ is estimated as the average of H output vectors obtained from H stochastic feed-
forwards passes [10]:

y∗ =
1
H

H

∑
j=1

ŷ∗j (10)

where ŷ∗j is the sample prediction from the jth stochastic forward pass through the neural
network with dropout applied.

Similarly, the predictive variance is also estimated as the variance of H output vectors
obtained from H stochastic feed-forward passes:

Var( f (x∗)) = σ2
E =

1
H

H

∑
j=1

(
ŷ∗j − y∗

)2
(11)

This variance, known as model (epistemic) uncertainty and denoted as σ2
E, emerges

from insufficient data.
It is important to perform hyperparameter optimisation and model calibration (dis-

cussed in the later section) to ensure that the dropout probabilities p and pMC, respectively,
are set optimally. Excessive dropout can lead to a deterioration in model learning, resulting
in inaccurate predictive means. Conversely, setting the dropout probability too low may
cause the model to overfit and yield overly confident predictions, leading to unreliable
estimates of predictive variance [14,28].

2.5. Mixture Density Networks Using Gaussian Mixture Models for Aleatoric Uncertainty

Aleatoric uncertainty refers to the irreducible noise inherent in data due to measure-
ment errors in sensors or equipment. To estimate this in neural networks, outputs are
treated as probability distributions, not single point estimates. The network learns to
output both the mean and variance of a probability distribution by employing a maximum
likelihood inference approach [32,33], with the variance capturing the aleatoric uncertainty
in the training data.

Mixture density networks (MDNs) are an extension of deep learning neural networks
that can model complex probability distribution, including asymmetrical and multi-model
distributions over continuous variables. MDNs output the parameters of a mixture model,
which consists of multiple underlying probability distributions, each being a predefined
type of the same family distributions. In general, the probability density for a mixture is
defined as follows:

p(y|x) =
N
∑

k=1
αk(x)D(y

∣∣λ1,k(x), λ2,k(x), . . .)

N
∑

k=1
αk = 1, 0 ≤ αk ≤ 1

(12)

where D is the corresponding parametric distribution, λ denotes the parameters of the
distribution D, k denotes the index of the corresponding mixture component, N is the
number of components in the mixture, and αk is the mixture weights that sums to unity.

Gaussian mixture models (GMMs) are a popular choice for mixture models used in
MDNs for modelling arbitrary probability density [2]. In a GMM, the probability density
function is modelled as a weighted sum of Gaussian distributions and, hence, the MDN
learns the parameters of the GMM, including the mean and standard deviation of each
Gaussian component and the weights.
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Moreover, in the case where the output distribution layer of a network neural model
is a GMM, then:

p(y|x, θ) =
N

∑
k=1

αk(x, θ) N
(

y
∣∣∣µk(x, θ), σ2

k (x, θ)
)

(13)

where µk and σk are the conditional mean and standard deviation of the kth Gaussian
component, respectively. The neural network outputs a set of values, ak, µk, and σk, when
given input x, with θ representing the parameters of the network that need to be optimised.
In MDNs, N is an additional hyperparameter that can be optimised through optimisation.

Furthermore, the mean of the GMM, µGMM, is computed as the weighted sum of individual
means of the Gaussian component weighted by their mixture weights, as follows:

µGMM =
N

∑
k=1

αk µk (14)

The mixture variance, σ2
mix, as the weighted sum of the individual variances of the

Gaussian component, is weighted by their mixture weights, as follows:

σ2
mix =

N

∑
k=1

αk σ2
k (15)

Therefore, the variance of the GMM, σ2
GMM, which is also the aleatoric uncertainty σ2

A,
is the sum of the mixture variance and correction term µC, which accounts for the distance
between the mean and the centroid of the GMM, as follows:

σ2
GMM = σ2

A = σ2
mix + ∥µGMM − µC∥2 (16)

where

µC =
1

αT

N

∑
k=1

αk µk, αT =
N

∑
k=1

αk

2.6. Proposed Bayesian Mixture Density Neural Network Architecture

The aim of this study is to develop a Bayesian MDN model with an attention-based
BiLSTM to predict the biogas collection rate at the next time step and to establish confidence
bounds, providing probabilistic estimates of the outcome. The proposed neural network
architecture primarily consists of a sequence input layer, followed by a BiLSTM layer with
an attention mechanism, a fully-connected (FC) layer with the tanh activation function,
and a mixture density distribution output layer based on the GMM, as shown in Figure 2.
Furthermore, dropout layers are included in the BiLSTM, attention, and FC layers. The
model summary, indicating the array and output shape of each layer, is shown in Table 1.
In describing the proposed model, the following hyperparameters are defined: the input
window size (m) in the sequence layer, the number of hidden units (h) in the BiLSTM layer,
the number of neurons (n) in the FC layer, the dropout probability (p), and the number (N) of
Gaussian components for the mixture density distribution output layer. Referring to Table 1,
the input layer utilises previous and current timesteps of input vectors xt, xt−1, . . . , xt−m.
This configuration ensures that the input shape is an array with dimension m by the number
of input variables i, which is determined in Section 3. The BiLSTM layer’s output feature
size is 2 h for each time step m, and the attention layer summarises the sequence into a
single vector of length 2 h. The GMM layer comprises an FC layer without activation,
which is designed to generate parameters for this mixture model, outputting a vector of
size 3 N that represents the mixture parameters (µk, σ2

k , and αk) and finally, the mixture
normal distribution, for which outputs of the GMM are µGMM and σ2

A.
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Table 1. The proposed model summary and array/output shape.

Layers Array/Output Shape

Input Shape (m, i)
BiLSTM + Dropout (p) (None, m, 2 h)

Attention Layer + Dropout (p) (None, 2 h)
FC Layer (tanh) + Dropout (p) (None, n)

GMM Layer FC Layer (None) (None, 3 N)
Mixture Normal Distribution ((None,1), (None,1))

The time series dataset is partitioned according to an 80–20 time series train–validation
sequential split, where the initial 80% of the data are used for training and the remaining
20% are used for validation. The objective loss function for estimating the parameters of
the Gaussian mixture distributions is the negative log-likelihood (NLL) [33]. To mitigate
overfitting, an early stopping callback function with a patience value of 100 epochs was
implemented. This stops training if there is no improvement in the validation NLL and
restores the best model weights based on validation NLL loss. Model optimisation was
performed with Adam [34], with a learning rate of 0.001, using the exponential decay
rate for the first- and second-moment estimates β1 and β2, with values of 0.9 and 0.999,
respectively, and a minibatch size of 64.

Neural networks have various hyperparameters, i.e., the number of neurons, number
of hidden layers, learning rates and type, etc., which are optimised to obtain the most
accurate hyperparameter configuration for any given model. However, the model parame-
ters (weights and biases) are generally discovered by backpropagation optimisation, while
hyperparameters cannot be discovered through this training process. Instead, techniques
such as exhaustive methods, including grid search and random search, are used to identify
the optimal hyperparameter configuration [11]. In this study, the grid search method was
performed to analyse and optimise the hyperparameters, generating a total of 3840 can-
didates from a specified subset of the hyperparameter space, as detailed in Table 2. The
tuned hyperparameters included the previous defined hyperparameters: m, h, n, p, and N.
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Table 2. Hyperparameters for optimisation.

Hyperparameter Search Grid Range

Input Window Size m [3, 7, 14, 30]
Dropout Probability p [0.01, 0.05, 0.10]

BiLSTM Layer
Hidden Units h [2–16] increments of 2

FC Layer
Neurons n [2–16] increments of 2

GMM Output Layer
Gaussian Components N [1–5]

The hyperparameters were initially analysed statistically to identify any significant
differences in their impact on the model’s performance. A nonparametric Friedman test as-
sessed if model performance was significantly affected by varying a single hyperparameter
while keeping others constant. The null hypothesis stated no significant difference in perfor-
mance among the hyperparameter settings and, therefore, any observed differences were
due to random variability. Subsequentially, a post-hoc Wilcoxon signed-rank test deter-
mined the statistical significance of performance between two models with different values
of one varying hyperparameter (with the remaining hyperparameters were held constant).
Additionally, a Bonferroni correction was applied to the Wilcoxon test by dividing the
significance level of 0.05 by the number of pairwise comparisons to control the likelihood
of family-wise (probability of at least 1 false positive) error rate for multiple comparisons.

After hyperparameter optimisation, the model with the lowest validation NLL loss
was considered the optimal model. This model underwent the MC dropout method with
varying values of pMC to predict biogas performance and associated uncertainty intervals.
MC dropout was applied to all layers during the testing phase and µGMM was sampled
to determine the sampled mean µ∗ and variance σ2

E (epistemic uncertainty). Preliminary
validation confirmed that H ≥ 100 feed-forward passes were sufficient for a relative
percentage change of less than 5% in both predictive mean and standard deviation. Finally,
assuming that aleatoric and epistemic uncertainties were independent, their combination
yielded the total variance. Subsequently, this total uncertainty and their coefficients of
variance (CVs) were then analysed [33].

2.7. Model Calibration

The calibration of the optimised model was evaluated using a post-hoc calibration method
based on the expected calibration error (ECE). ECE measures the discrepancy between the
model’s expected confidence and its empirical accuracy [15–18], thereby assessing the extent to
which the model’s predictive uncertainty corresponds to its accuracy. ECE is calculated by first
partitioning a set of predictions into equally spaced bins according to their predicted confidence
values. For each bin, the expected confidence is determined as the average of the confidence
values. For classification problems, empirical accuracy is calculated as the fraction of correct
predictions, while for regression problems, it is calculated as a measure of error between the
predicted and actual values of the samples within the bin. ECE is then computed as a weighted
average of the absolute difference between the confidence and accuracy across all bins. The
general form of ECE can be expressed as follows:

ECE =
B

∑
b=1

|Bb|
K

|acc(Bb)− con f (Bb)| (17)

where K is the total number of predictions, B is the total number of equally spaced bins,
|Bb| is the number of samples in bin b, and acc(Bb) and con f (Bb) are the empirical accuracy
and expected confidence of bin b, respectively.

In accordance with prior works [17–19], the ECE for regression approach was applied
to our study application. Given a test dataset of K predictions, where the predictive mean
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and model uncertainty y∗l and σ̂El are extracted via MC dropout for the lth sample of the test
dataset, the predicted uncertainty range was partitioned into B equally spaced bins. Each
sample was then assigned to the corresponding bin based on its uncertainty value. For each
bin b, the empirical accuracy was computed as the average absolute difference between the
predictive mean and the true value for the samples assigned to bin b. Similarly, the expected
confidence was calculated as the mean predictive uncertainty of the model for the samples in
bin b. Therefore, the empirical accuracy and expected variances for bin b are given by:

acc(Bb) =
1

|Bb | ∑
l ∈ Bb

∣∣yl − y∗l |

con f (Bb) =
1

|Bb | ∑
l ∈ Bb

σ̂El

(18)

With the accuracy and confidence defined using Equation (18), ECE was determined
using Equation (17). A lower ECE signifies better calibration, indicating more accurate
and reliable uncertainty estimates from the model. Conversely, a high ECE indicates poor
calibration, suggesting that the predicted uncertainties are not good estimates of the true
uncertainties. In this study, three different B values, 10, 50 and 100, were used to evaluate
the model uncertainty of the optimal model with varying pMC, ranging from 0.01 to 0.80.

3. Method
3.1. Data Preparation

A historical time series dataset, consisting of measurements from pump and flow sensors as
well as chemical and weather measurements of a real-world 55E anaerobic lagoon at a WTP, was
used in this study, refer to Table 3. The compilation of the data was undertaken by WTP process
engineers, expert technicians, and researchers in their respective fields. The dataset comprised
24 operational and environmental variables recorded daily from 1 January 2012, to 26 August
2019, resulting in a total of 2795 readings. The variables included average, maximum, and
minimum biogas collection rates (g), Inlet A (IA) and Inlet B (IB) readings, ambient temperature
(TA), solar exposure (S), and rainfall (R). Additionally, the dataset also comprised six chemical
field and laboratory variables, such as pH level (pH), alkalinity (ALK), biochemical oxygen
demand (BOD), chemical oxygen demand (COD), filtered chemical oxygen demand (FCOD),
and volatile fatty acids (VFA). It is important to note that the data were irregular, i.e., COD
had non-uniform readings taken every 0.65–14.04 days with a median time step of 1.01 days,
containing 1688 data points.

Table 3. Descriptive statistics of the operational and environmental data.

Variable Units Mean Min Max Standard
Deviation

Data
Portion

Time Steps
(Days)

Median
Time Steps

(Days)
gavg Nm3/hr 1693.6 0 3680.6 843.9 100% 1 1
gmax Nm3/hr 2197.8 0 5451.0 1033.5 100% 1 1
gmin Nm3/hr 1098.6 0 3390.0 922.3 100% 1 1
pH pH Units 6.6 6 7.0 0.1 30.7% [0.01–20.95] 2.92

ALK mg/L 378.9 210 580.0 40.8 14.2% [0.38–20.95] 7
BOD mg/L 309.6 34 830.0 92.0 32.0% [0.01–20.95] 1.07
COD mg/L 690.6 170 1300.0 133.7 60.4% [0.65–14.04] 1.01

FCOD mg/L 254.2 69 540.0 62.3 31.9% [0.37–14.07] 1.02
VFA mg/L 98.5 10 260.0 54.8 14.2% [0.38–20.95] 7
IA
avg ML/d 199.2 0 428.9 51.3 100% 1 1

IA
max ML/d 277.6 0 750.0 79.1 100% 1 1

IA
min ML/d 94.4 0 342.0 43.0 100% 1 1

IB
avg ML/d 10.7 0 257.1 36.2 100% 1 1

IB
max ML/d 27.8 0 595.0 73.8 100% 1 1

IB
min ML/d 5.0 0 183.0 18.2 100% 1 1
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Table 3. Cont.

Variable Units Mean Min Max Standard
Deviation

Data
Portion

Time Steps
(Days)

Median
Time Steps

(Days)
Tw Celsius 20.2 12 25.0 2.0 19.3% [0.01–20.95] 6.98

TG
avg Celsius 14.1 6.867 35.8 5.2 100% 1 1

TG
max Celsius 19.8 8.7 51.5 8.4 100% 1 1

TG
min Celsius 10.1 0 27.3 3.7 100% 1 1

TA
avg Celsius 15.4 4.05 35.1 5.1 100% 1 1

TA
max Celsius 20.6 8.1 44.8 6.4 100% 1 1

TA
min Celsius 10.3 −2.1 28.9 4.8 100% 1 1
S MJ/m2 14.8 1.3 34.3 8.1 100% 1 1
R mm 1.2 0 41.0 3.5 99.7% 1 1

3.2. Inspection Parameters
Scum Representative Variable Using Scum Depth Surveys and Digital Elevation Models

In addition to the aforementioned variables, the study also incorporated the inspection
parameters, which included digital elevation models (DEMs) and their associated orthomosaics
and scum depth surveys. A total of nine scum depth surveys were conducted approximately
every 5 months to 1 year from August 2014 to January 2018. These surveys involved manually
measuring the scum depth at 32 different portholes on the cover. Specifically, authorised field
personnel inserted a long, rigid rod into the access ports, and the scum depth was recorded
when encountering a transition in resistance from solid to liquid sewage, with a tolerance
of 100 mm. Additionally, six DEMs and orthomosaics of the floating cover asset in 2019
(January to September) were utilised as variables for this study. To address the irregularity of
the limited available raw inspection data, assumptions were made to regularise and merge these
scum survey data and DEMs into a single cohesive dataset.

The process of combining two datasets into a single variable involves using a relation-
ship between two variables to derive a single variable for each data point. Previous work
by Wong et al. [23] showed a linear association between scum depth and DEM elevation,
which accounted for 77% of the variability in scum depth, with a linear gradient of 3.55
at a different WTP anaerobic lagoon. The relationship of the elevation of the 55E floating
cover was first validated using by performing a Pearson’s correlation test using the WTP
laser measurements and scum depth surveys recorded in January 2018. The correlation
test indicated a strong linear relationship, with a coefficient of 0.83 and a strong statistical
significance of p-value < 10−7. Subsequently, a robust linear regression using the bisquare
method was conducted to determine the linear model. To ensure more reliable and unbi-
ased estimates of the coefficients and error measurements, 13 zero readings were excluded
from the 32 laser measurements. According to the regression model, approximately 65.8%
of the observed variability in the scum depth could be explained by the model, with a
root-mean-square error of 394.5 mm. The findings indicated that for each one-unit rise in
elevation, the scum depth increased by a factor of 3.59 with a positive offset of 27.78 mm.
This linear relationship allowed for the combination of both DEM and scum survey datasets
into a single variable representing the scum depth. This was accomplished by considering
the elevations within the vicinity of the 32 portholes in the DEM. However, it is important
to note that the elevations are susceptible to noise, often requiring intensive preprocessing
steps to filter out unwanted features prior to analysis [35]. In this context, undesirable
artefacts such as trapped rainwater and dirt introduce significant variations in displacement
readings, distorting the accuracy of elevation measurements for analysis [23,25].

In our previous work [25], an improved k-means with a centroid initialisation technique
clustering method was introduced to filter unwanted artefacts, such as water features, de-
bris/dirt, and man-made objects, in WTP anaerobic lagoons. The premise was that the artefact
and noise clusters could be rapidly identified through a visual examination and hence removed
by excluding these clusters. It was shown that using the k-means filtering method to remove
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water features achieved a relative error of 3.8% with respect to on-site laser measurements,
compared to a relative error of at least 17.2% when using classical methods (such as median
filters). This study incorporates the k-means filtering method and the procedure is as follows:

• The DEMs and their associated orthomosaics are stacked as a 4D array to enable the
algorithm to cluster features into distinct groups.

• The Calinski–Harabasz (CH) criterion, which measures the between-cluster variance
and within-cluster variance, is then employed to determine the optimal k groups. The
optimal k groups correspond to the highest CH index, by inspecting k from 0 to 10.

• The algorithm proceeds with the optimal k groupings and the resulting clusters with
features not associated with the membrane cover are considered artefacts. Thereby,
the remaining clusters are then merged to provide a filtered DEM.

Further details on the k-means filtering procedure can be found in [25].
Porthole elevation measurements from the filtered DEM were derived by calculating

the median displacement within a 2 m-by-2 m localised region centred at each porthole
location, refer to Figure 3. This process was repeated for all DEMs captured at various times.
Scum depth measurements at 20 porthole locations were found to be essentially zero [24],
and thus deemed redundant. Consequently, measurements at these porthole locations
were excluded from the study and, therefore, the analysis focused solely on the scum
depth measurements from the remaining 12 porthole locations, as indicated in Figure 3.
Consequently, the scum depth measurements obtained from both the scum survey and the
filtered DEMs were merged. In this context, Pq represents the scum depth value at the q-th
porthole location, and the statistics of each Pq as shown in Table 4.
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labelled portholes.

Table 4. Descriptive statistics of the scum depth, in metres, at 12 portholes.

Porthole Mean Min Max Standard
Deviation

P1 1.7 0 2.9 0.7
P2 1.4 0 2.4 0.6
P3 1.0 0 1.8 0.5
P4 1.5 0 3.1 1.0
P5 1.2 0 2.4 0.9
P6 1.2 0 2.1 0.6
P7 0.6 0 1.1 0.4
P8 0.6 0 1.2 0.4
P9 0.5 0 1.0 0.4
P10 0.5 0 1.1 0.4
P11 0.5 0 1.0 0.3
P12 0.5 0 1.0 0.4
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3.3. Reduction of Data Dimensionality

In practical applications, the reduction of inputs by eliminating redundant variables
is highly advantageous. This approach helps to mitigate risks associated with overfitting
and multicollinearity and expedites the training process by simplifying the model. Our
previous investigations [27,28] served as the basis for employing a feature selection tech-
nique based on correlation for input dimensionality reduction. In our previous work on
data preprocessing, it was demonstrated that reducing the number of input variables by
removing those that are highly correlated enhances model accuracy. This was achieved
by employing a thresholding approach in pairwise Spearman’s Rank correlation analysis.
Variables exhibiting coefficient values greater than 0.75 were identified as highly correlated
and subsequently eliminated [27]. In this study, considering a total of 36 variables, further
exploration of this threshold value using an incremental step size of 0.05 revealed that the
number of variables reduced to eight remained constant between threshold values of 0.35
and 0.8, and beyond a threshold value of 0.8, more than 25 variables were retained. There-
fore, the work maintained a threshold of 0.75 for correlation-based dimensionality reduction to
effectively balance model simplification with the retention of significant variables.

With the highly correlated variables identified, the rationale behind the retention and
removal of variables is based on their representativeness, quality, and statistical properties.
As shown in Figure 4, the average, maximum, and minimum variables of biogas exhibited
positive correlations, and this correlation pattern was also observed for Inlet A, Inlet B,
and temperature variables. The average values of these variables were retained because
they provided a more comprehensive overview, reflecting general conditions rather than
extreme values, refer to Table 3. Furthermore, the temperature readings and S demonstrated
a strong positive correlation, thereby leading to the removal of S. The scum depth readings
at each porthole were also highly positively correlated. However, P2 and P8 were retained
based on their location, which is significant for the distribution of the scum geometry and
to preserve spatial information. The chemical and organic variables (BOD, COD, FCOD,
and VFA)) exhibited strong positive correlations. However, the variables with more than
60% missing data, specifically pH, ALK, BOD, FCOD, and VFA, were not considered and
thus removed. Therefore, COD was retained as the more representative chemical variable
due to its higher data quality (similar time step and higher data portion) compared to other
chemical variables. Consequently, 28 highly correlated variables were eliminated, reducing
the total number of representative input variables x to eight unique variables. These
included the average values of biogas collection, Inlet A, Inlet B, and ambient temperature,
hereafter denoted as g, IA, IB, and TA, respectively, along with COD, R, P2 and P8.
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The correlation coefficients of the representative input variables that had a high level
of statistical significance are shown in Figure 5. It is shown that there was a moderate
negative correlation between IA and g, as well as between P2 and g, with coefficients of
−0.28 and −0.44, respectively. Additionally, a moderate positive correlation was found
between TA and g, with a coefficient of 0.26. These variables were considered to exert a
primary influence, displaying a monotonic-like relationship with g. However, variables
with weaker correlations, such as IB, were anticipated to exhibit a nonlinear relationship
with g, as suggested by previous investigations [28].
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3.4. Resampling of Irregular Representative Variables

Data regularity is crucial for effectively training a model, as irregular data with biased
patterns can introduce spurious relationships between the inputs and outputs, negatively
impacting the model’s performance. Several techniques can be employed to address
irregular data for model training, such as resampling and interpolation. These techniques
can be selectively applied to specific variables based on their unique data characteristics.

In this study, the missing rainfall data, which constituted only a small portion of the
overall dataset, were replaced with the average value of the preceding and next-day values.
To address the irregular time step of the COD variable, a Lomb–Scargle periodogram was
initially constructed to confirm the existence of a 7-day cyclic trend. As this trend was
relatively longer than the time step, data regularisation was performed using interpolation.
For this purpose, a piecewise cubic Hermite interpolation polynomial (PCHIP) with a daily
time step was employed, which helped to prevent overshooting and preserve monotonicity,
refer to Figure 6.

Consequently, the scum depth measurements P2 and P8 were resampled for model
training. Due to the gradual accumulation of scum over an extended period (ranging
several months to years) [36], interpolation was considered appropriate for resampling
the scum depth. Using a similar interpolation approach as with the COD variable, scum
depth measurements were interpolated daily using PCHIP, ensuring the preservation of
monotonicity and preventing overshooting, as illustrated in Figure 7.
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Figure 7. Resampled portholes data P2 and P8 interpolated using PCHIP, based on inspection surveys
and DEM-derived scum depth measurements.

It was revealed that resampling and preprocessing of the variables COD and R had a
negligible effect on their statistical properties, refer to Table 5. In particular, the mean value
of the resampled COD showed a difference of 0.7% and its standard deviation showed a
difference of 2.1% relative to the unprocessed COD. This indicated accurate interpolation of data
in capturing COD’s periodic trend. Furthermore, the interpolated P2 and P8 exhibited significant
differences in mean values, with changes of 26.1% and 12.3% relative to the unprocessed P2 and
P8, respectively. However, this was an expected outcome due to the nonlinear positive trend
observed in the scum depth values. Thereby, these eight representative variables, each with
2795 daily measurements, were considered for model training.

Furthermore, our previous work [27] demonstrated that data standardisation, which
involved rescaling the data to have a mean of zero and a standard deviation of one, led to a
reduction in the mean square error of approximately 15% compared to data normalisation,
and it was approximately twice as fast to train, requiring half the number of epochs to
achieve an optimal model based on training and validation errors. Hence, in this study, the
representative variables underwent data standardisation. This ensured similar scales and
distributions among variables, thereby enhancing the neural network’s ability to identify
patterns in the dataset, reducing bias towards variables with larger scales, and improving
outlier handling [27,37].
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Table 5. Descriptive statistics of the representative variables, including those resampled and interpolated.

Representative
Variable Unit Mean Min Max Standard Deviation

g Nm3/hr 1693.6 0 3680.6 843.9
COD mg/L 686.2 170 1300.0 130.9

IA ML/d 199.2 0 428.9 51.3
IB ML/d 10.7 0 257.1 36.2
TA Celsius 15.4 4.05 35.1 5.1
R mm 1.2 0 41.0 3.5
P2 m 1 0 2.4 0.6
P8 m 0.5 0 1.2 0.4

4. Results
4.1. Effects of Hyperparameters

Based on the optimisation of hyperparameters, the optimal model consisted of an input
window size of 7, a dropout probability of 0.01, three Gaussian components in the mixture
distribution output layer, 12 neurons in the FC layer, and two hidden units in the BiLSTM
layer. The optimal model achieved an NLL of 0.074, which was approximately 9 times more
accurate than the average model performance (NLL = 0.753) and approximately 22 times
that of the worst model (NLL = 1.677).

The Friedman test showed significant differences in model performance across all
hyperparameters, refer to Table 6. Notably, the input window size and the number of
hidden units (m and h) displayed strong statistical significance in performance differences,
suggesting their significant impact on the model’s overall performance.

Table 6. Friedman test on the hyperparameters.

Window Size Dropout
Probability

Hidden
Units Neurons Gaussian

Components

m p h n N

p-value 1.23 × 10−251 1.50 × 10−37 7.11 × 10−212 1.40 × 10−5 5.03 × 10−22

The Wilcoxon signed-rank test revealed significant differences in model performance
for various dropout probability settings, refer to Figure 8. However, for the input window
size, no significant differences were observed between the 3- and 7-day models. In terms of
the number of hidden units, three pairwise comparisons (2 vs. 6, 8 vs. 14, and 10 vs. 12)
showed no significant differences in performance, refer to Figure 8d. Most pairwise com-
parisons of the number of neurons showed no significant differences. Pairwise comparisons
involving 2 and 12 neurons demonstrated the highest number of pairs with some significant
differences in model performances.

In Table 7, the results present the average and standard deviation performance of models
for a fixed single hyperparameter, along with the proportion of these models that ranked within
the top 10% (top performing) and bottom 10% (worst performing) of all models.

The model’s performance was significantly influenced by the dropout probability, with
the best average performance observed for p = 0.01. However, this value exhibited the
highest variance among all dropout probabilities. Notably, approximately 56.8% of models
with p = 0.01 ranked among the worst performing models. An increase in the number of
Gaussian components in the output layer improved the average model performance. The
analysis indicated that most top performing models had m ≥ 3. On average, the model
performed best with an input window size of 7. By contrast, larger window sizes of 14 and
30 days negatively affected model performance, which indicated overfitting, as a greater
number of parameters increases the model’s capacity to assimilate noise and granular
details from the training data, thereby resulting in model degradation. It was observed that
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75.2% of the worst performing models had larger window sizes of 14 and 30 days, while
window sizes of 3 and 7 days were associated with 86.4% of the top performing models.
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Figure 8. Significance results obtained using Wilcoxon signed-rank test with Bonferroni correction
of different values within the same type of hyperparameter: (a) input window size, (b) number of
Gaussian components, (c) dropout probability, (d) number of hidden units in BiLSTM layer, and (e)
number of neurons in FC layer.

Table 7. Statistical summary of average model performance for each hyperparameter. Bolded is the
best value of the corresponding statistics.

Average NLL Standard Deviation
NLL Top 10% Bottom 10%

Dropout Probability p

0.01 0.715 0.216 30.2% 56.8%
0.05 0.751 0.185 31.5% 31.3%
0.1 0.793 0.163 38.3% 12.0%

Gaussian Components N

1 0.795 0.198 12.5% 33.9%
2 0.765 0.186 16.9% 23.4%
3 0.751 0.192 21.4% 18.0%
4 0.738 0.195 24.7% 21.1%
5 0.716 0.179 24.5% 3.6%
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Table 7. Cont.

Average NLL Standard Deviation
NLL Top 10% Bottom 10%

Window Size m

3 0.700 0.210 47.9% 10.9%
7 0.689 0.186 38.5% 13.8%
14 0.761 0.169 12.0% 26.3%
30 0.860 0.148 1.6% 49.0%

Neurons n

2 0.728 0.197 7.6% 16.1%
4 0.770 0.179 15.1% 8.3%
6 0.754 0.190 13.8% 14.8%
8 0.758 0.207 16.4% 14.3%
10 0.769 0.198 13.3% 12.8%
12 0.734 0.196 12.8% 14.1%
14 0.762 0.196 11.7% 10.7%
16 0.747 0.168 9.4% 8.9%

Hidden Units h

2 0.652 0.204 29.7% 4.7%
4 0.612 0.171 30.5% 0.5%
6 0.673 0.148 13.8% 3.1%
8 0.757 0.157 7.6% 5.7%
10 0.866 0.156 2.9% 22.9%
12 0.881 0.162 1.8% 29.9%
14 0.774 0.180 8.1% 16.7%
16 0.809 0.161 5.7% 16.4%

The best average performance of the model was achieved with 4 hidden units in the
BiLSTM layer. Significantly, 30.5% of models with h = 4 were top-performing models,
while only 0.5% were among the worst performing models. Additionally, 60.1% of top-
performing models had h values of 2 or 4, whereas approximately 85.9% of the worst
performing models have more than h > 8.

4.2. Epistemic Uncertainty via MC Dropout and Calibration

Figure 9 illustrates examples of biogas collection rate prediction on the validation
set for various values of pMC, along with their corresponding epistemic and aleatoric
uncertainties. It is shown that excessive MC dropout during inference led to an overesti-
mation of uncertainty, which resulted in overly cautious predictions. On the other hand,
low MC dropout resulted in an underestimation of uncertainty, leading to potentially
overconfident predictions.

To analyse the differences in predictive means, various pMC values were compared
relative to no MC dropout (pMC = 0). As shown in Figure 9, the relative percentage
difference of the predictive mean increased as pMC increased. For pMC ≤ 0.10, there was a
relative percentage difference of less than 4.5%, with the exception of outliers. Significant
relative percentage differences were observed for pMC = 0.70 and 0.80, with median
differences of 9.62% and 12.94%, respectively, and quartile ranges from 4.58% to 18.54%
and from 6.1% to 26.1%, respectively. Furthermore, a decrease in the variation of the
predictive mean, indicating over-regularisation, is seen in Figures 9 and 10. Figure 10 also
demonstrated that as pMC increased, both the CV and its range increased, while the number
of outliers decreased as a result of larger CV values.
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Figure 9. Biogas collection rate predictions and their 95% confidence intervals showing both aleatoric
and epistemic uncertainties for different pMC values: (a) 0.01, (b) 0.20, and (c) 0.80.
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Referring to Figure 11, among optimised models with different pMC, a well-calibrated
model with pMC = 0.05 was indicated by the ECEs from all B values. However, exceeding
this pMC value led to increased model miscalibration. Furthermore, it was observed that
optimal models with pMC ≤ 0.20 had negligible effects on model performance, with the
difference in NLL relative to those of the optimal model with pMC = 0 being less than 1%.
By contrast, models with pMC ≥ 0.50 exhibited a relative NLL difference exceeding 5%.
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Figure 11. (a) ECE values and percentage NLL difference relative to optimised model with pMC = 0
for different pMC and B size; (b) Calibrated and optimised model with 95% confidence interval and
indicated extremities.

The total uncertainty of the calibrated model was predominantly composed of aleatoric
uncertainty, which accounted for 93.7% and was larger than the epistemic uncertainty. The
mean values of the aleatoric and epistemic uncertainties were 319.4 and 144.1, respectively.
In this model, approximately 1.2% of cases (seven extremities) exceeded the 95% confidence
interval. Of these, five cases were below the lower bound (less than the 2.2nd percentile)
and the remaining two exceeded the upper bound (more than the 97.7th percentile). Nev-
ertheless, it was shown that the model-identified outliers, which can indicate potential
anomalies, could serve as an early warning tool for critical infrastructure.

5. Discussion

The optimal input window size corresponded to the 7-day time lag based on the
autocorrelation found in the previous study [28]. The findings were consistent with prior
work on Bayesian LSTM networks, where aleatoric uncertainty was the least when the
optimal dropout probability p = 0.01. Additionally, it was also seen that high dropout
probabilities can underfit the model and deteriorate the model’s performance in its ability
to learn meaningful patterns due to the excessive masking of data [28].

Generally, increasing the number of Gaussian components in a GMM enhances its
ability to fit complex distributions, but an excessive number of components can cause
overfitting. To further investigate, the best performing model with five Gaussian com-
ponents revealed that the average ratios of the predicted two smallest mixture weights
to the corresponding maximum mixture weight ak

max(ak)
were 3.9% and 7.3%, respectively.

Furthermore, the mean values of the smallest mixture weight differed by an average of
3.34% compared to the means corresponding to the remaining mixture weights. This
suggested that at least one component in this best performing model captured nuances
that did not significantly improve the fit, thereby adding unnecessary complexity and
prolonging training time. While this indicated overfitting when exceeding the optimal
number of Gaussian components, such evidence was not apparent in the statistical analysis.
It is anticipated that incorporating an additional penalty term into the objective function
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can serve as a remedy to mitigate overfitting. However, this aspect is beyond the scope of
the current work.

In this study, it was found that increasing the number of hidden units or neurons
did not necessarily improve the model’s accuracy and may adversely affect performance.
The results suggested interdependencies among the hyperparameters, as evidenced by
the differences between the hyperparameters of the optimal model and those yielding
the highest average performances. The sensitivity of certain hyperparameters to model
performance is expected to vary depending on the specific application being considered.
Thus, it is crucial to optimise hyperparameters and to develop a well-tuned model that can
make accurate predictions tailored to the application.

The current work used an exhaustive grid search method with the intent to analyse the
hyperparameters. However, cost-effective strategies for tuning hyperparameters in complex
models include the random search method [11] and Bayesian optimisation techniques,
which consider previously sampled hyperparameters by using a surrogate regression model
(i.e., Gaussian process and random forest) [12]. While this study focused on optimising
hyperparameters related to the model architecture (i.e., layers, number of neurons, etc.),
it is crucial for large, complex neural networks to also consider other hyperparameters
related to the learning process of the model, such as optimiser type and their learning
parameters. These should be optimised holistically to reduce the training time, particularly
for new problem domains, through the transfer of weights or architecture requiring model
re-tuning. Furthermore, additional considerations become imperative for larger neural
networks, particularly in terms of computational cost, processing and model training time,
and power consumption, as well as the intricacies involved in model deployment. However,
such challenges are absent in the context of the work and the current proposed neural
network architecture but will be considered in future work.

It was observed that MC dropout significantly impacted the uncertainty quantification
in the proposed probabilistic neural network. Despite the goodness-of-fit degradation
with increasing pMC, optimal models with pMC ≤ 0.2 showed negligible differences in
predictive mean, as previously stated. This suggested that these models had a reasonable
balance between the calibration of model uncertainty and acceptable model fit, making
them valid choices. While pMC can be tuned during hyperparameter optimisation, its
higher computational cost due to retraining with different pMC often necessitates post-hoc
tuning [19,21]. In this study, it was shown that performing post-hoc calibration is effective
since the optimal pMC has a negligible effect on the predictive mean of the model. However,
in scenarios where pMC or other hyperparameters significantly influence the predictions,
post-hoc calibration and tuning should not be employed. In such cases, incorporating
calibration methods into the model’s training process, for instance by modifying the loss
function with a penalty term, may offer a more effective and cohesive approach [20].

Considering the specifications of sensors or instrument devices is critical, as their
limitations may impact the effectiveness of the learning model. However, this work relied
on industry experts for the provision of the dataset, which underwent processing from its
initial raw state, including data reformatting and consolidation. It was therefore considered
to be of sufficiently high quality for analysis. Although the details of the data preparation
process are not specified in this paper, they should be recognised as important, particularly
for the ML process. Nevertheless, the primary emphasis of this research is on leveraging
data from a diverse range of disciplines, leading to insightful and actionable outcomes
using ML in practical applications.

One common challenge in training neural networks, as evident in this study, is the lack
of datasets, particularly due to limited real-life inspection. It is important to acknowledge
that the current inspection information may not adequately capture the spatial context
of the asset, particularly in areas with highly localised elevation or scum depth varia-
tions. Additionally, the exclusion of measurements from porthole locations may not be
appropriate, particularly in adaptive and reinforcement learning scenarios where models
must continuously learn and adapt to new and unseen real-time data. To overcome these
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limitations, future work will aim to address the dataset scarcity for scum variables by
utilising synthetically generated data to train deep learning neural networks in feature
extraction. Subsequently, a neural network will be developed in which the portions of
its architecture representing the feature extraction network are transferred. Nevertheless,
the study demonstrates the effectiveness of the proposed probabilistic neural network in
revealing that the inherent data are the primary source of uncertainty, as reflected in larger
aleatoric uncertainty estimates. This work establishes a foundational basis for prognostic
ML approaches that facilitate SHM and informed decision making in managing WTP
anaerobic lagoons.

6. Conclusions

In this study, a Bayesian MDN model for anaerobic biogas performance prediction in a
WTP was proposed, incorporating uncertainty quantifications from both inherent noise and
the model itself. The neural network architecture featured an attention-based mechanism
in a BiLSTM layer and a GMM distribution output layer for inherent noise variance. The
preprocessing approach simplified complex sensor data and other data types, enabling
effective model training and highlighting a critical aspect of developing predictive models
SHM. This approach effectively reduced the number of unique variables required for input
to eight. The grid search method was employed to determine the optimal model and to
investigate the influence of hyperparameters. The results emphasised the significance
of hyperparameter optimisation and model uncertainty calibration as essential steps for
ensuring accurate predictions. The optimal model achieved an accuracy that surpassed
the average model performance by approximately 9 times and significantly outperformed
the worst performing model by approximately 22 times. It was also found that the number
of hidden units in the BiLSTM layer and the input window size significantly impacted
performance, whereas the number of neurons in the FC layer showed no statistically signif-
icant difference. The MC dropout method was applied to quantify the model uncertainty,
and the post-hoc calibration method using ECE revealed that the model with pMC = 0.05
exhibited confidence levels that accurately encompassed the true biogas collection rates.
Furthermore, the model indicated that the overall uncertainty was largely due to the inher-
ent limitations of the data, revealing the need for additional high-quality data for learning.
It is anticipated that, due to the limitations of real-life inspections in describing the spatial
context of the asset, further work will be required to address data scarcity. In continuation
of our research, the results of this study lay the groundwork for the integration of deep
learning in managing and monitoring the entire complex system of anaerobic lagoons and
floating covers in WTPs with enhanced diagnostic and prognostic capabilities. Moreover,
the methodologies and findings of this study offer significant implications for SHM of
infrastructure, promising enhanced capabilities in the field.
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