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Abstract: Human Activity Recognition (HAR) refers to a field that aims to identify human activities
by adopting multiple techniques. In this field, different applications, such as smart homes and
assistive robots, are introduced to support individuals in their Activities of Daily Living (ADL)
by analyzing data collected from various sensors. Apart from wearable sensors, the adoption of
camera frames to analyze and classify ADL has emerged as a promising trend for achieving the
identification and classification of ADL. To accomplish this, the existing approaches typically rely on
object classification with pose estimation using the image frames collected from cameras. Given the
existence of inherent correlations between human–object interactions and ADL, further efforts are
often needed to leverage these correlations for more effective and well justified decisions. To this end,
this work proposes a framework where Graph Neural Networks (GNN) are adopted to explicitly
analyze human–object interactions for more effectively recognizing daily activities. By automatically
encoding the correlations among various interactions detected through some collected relational data,
the framework infers the existence of different activities alongside their corresponding environmental
objects. As a case study, we use the Toyota Smart Home dataset to evaluate the proposed framework.
Compared with conventional feed-forward neural networks, the results demonstrate significantly
superior performance in identifying ADL, allowing for the classification of different daily activities
with an accuracy of 0.88. Furthermore, the incorporation of encoded information from relational data
enhances object-inference performance compared to the GNN without joint prediction, increasing
accuracy from 0.71 to 0.77.

Keywords: graph neural network; scene understanding; activities of daily living analysis

1. Introduction

Human Activity Recognition (HAR) involves multiple techniques to analyze sensory
data [1]. These sensory data constitute a basis for assessing and predicting human activities.
In the field of Human Activity Recognition (HAR), the applications of smart homes and
assistive robotic systems are paving the way to support individuals in performing their
Activities of Daily Living (ADL), therefore facilitating and monitoring their quality of life [2].
Various equipment collect operational conditions and human status by employing wearable
sensors like wrist-worn accelerometers [3] and non-wearable sensors like cameras [2,4]
to attain the recognition of ADL. Compared to wearable sensors, the adoption of camera
frames to analyze and classify Activities of Daily Living (ADL) presents a promising
solution due to the inherently multifarious features found in image data [5–7]. Most of
the approaches utilize image frames to detect ADL by combining pose estimation with
skeleton-based action recognition [8,9]. Methods based on Convolutional Neural Networks
(CNN) typically demand significant effort to identify key points and joints of human
bodies. As shown by [10,11], complex human motion capture systems can be used to
support annotating the key points through extensive data. With such data, a variety
of CNN architectures can be trained to estimate pose by formulating body joints and
extracting features [12,13]. Many Graph Neural Networks (GNN)-based solutions have
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been considered to be support for alleviating the need for deep architectures to extract
the features from the images, as such solutions capture the key points and joints with
graph models [14–17]. Through the analysis of graph models representing skeleton-based
human bodies, GNN can be used to estimate the likelihood of human actions. However,
the uncertainties stemming from the probabilistic nature of neural networks [18,19] often
necessitate extensive training data with high sensory resolution for accurately identifying
the human body parts [8,9,13,14,16]. These requirements restrict the applicability of cameras
for recognizing daily activities in the context of assisting at-home scenarios.

To address this issue, we propose a framework where GNN are adopted to explicitly
analyze human–object interactions for inferring human activities of daily living alongside
the corresponding environmental objects. Specifically, the framework first extracts the
relational data on the interactions between humans and environmental objects from the
collected image frames. Next, GNN automatically encodes the correlations among the
interactions indicated by the respective relational data and, therefore, detects the presence
of activities and their environmental objects, leading to a more effective analysis of ADL.
We present the contribution of this paper as follows:

• Designing a conceptual framework to construct graph-based data by image frames to
infer the ADL within assisting at-home applications.

• Proposing a GNN architecture to jointly predict environmental objects and ADL by
comprehending the relational data.

• Enhancing the prediction accuracy of ADL and environmental objects by aggregating
the encoded information from the semantics of relational data.

The rest of the paper is organized as follows: Section 2 presents prior work related to
GNN with environmental scene understanding. Section 3 describes the proposed frame-
work. Section 4 presents a case study by verifying the proposed framework with the Toyota
Smart Home dataset. Section 5 presents the conclusion of the proposed framework and
discusses the future work.

2. Related Work

This section first provides background information on GNN. Next, we present previ-
ous work on GNN applied in the applications related to the topic. In addition, we exhibit
current efforts to apply image frames to relational data in scene understanding.

2.1. Background of GNN

GNN are specifically designed for processing non-Euclidean data, supporting the
analysis of graph-based data [20]. Such graph-based data structures usually consist of
nodes and edges to represent a set of objects and relations. Specifically, graphs can be
classified into heterogeneous graphs, which typically connect nodes with different types of
edges, and homogeneous graphs, where edges do not convey additional information [20].
A variety of GNN models are used to analyze these two graphs regarding their spatial and
temporal properties [21]. Spatial models support the transformation of graph-based data
into a spectrum space using Graph Laplacian [22,23] or encoding information from local
neighbors of specific nodes through aggregation operations [24] with Graph Convolutional
Networks (GCN). Building on the spatial models, the adoption of gate mechanisms from
RNN and LSTM is a common solution to enable temporal analysis of graph-based data [21].

2.2. GNN to Cope with HAR and ADL

Most GNN integrate different models to analyze human activities by synthesizing
spatial–temporal features. As mentioned earlier, some of them recognize the key points of
the human body by analyzing unstructured high-dimensional data such as video clips [9,25].
These high-dimensional data could either contain video clips with depth information as
3D data or solely rely on raw 2D images captured by cameras [26,27]. Depending on the
input data formats, these GNN can be roughly categorized into the following trends [9]:
(1) Spatio-temporal GCNs encode the key points of human bodies as nodes in graphs, while
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the evolution of human activities is usually interpreted as attributes of edges among the
nodes within the graphs [28]. This method usually requires the analysis of the graphs,
including all elements, such as edges and nodes, to identify human activities. However,
to accurately identify the key points of human bodies, such a method usually requires
high-resolution data or additional depth information. As an example in [29], the input
data requires annotating bones and joints within human bodies with depth information,
which decreases the generalization of the proposed framework. (2) Temporal-aware GCNs
focus on extracting contextual dependencies in sequential data by adopting and optimizing
attention mechanisms. This method typically analyzes contextual information across
video sequences with similar lengths. However, due to the diversity of activities within
video sequences, attention-based methods could become more time-consuming and less
efficient [30,31]. (3) Multi-stream GCN refers to an integration with different inputs for
identifying human activities. A typical example in [15,17] usually uses video clips and
skeleton-based data as two-stream input for GCN to extract features. This method aims to
identify human daily activities by aggregating image frames and incomplete skeleton-based
data, reducing the reliance on high-resolution and well-annotated datasets. While these
methods enhance the efficiency of detecting human activities, further efforts are needed
to understand the interaction between humans and environmental objects. Towards this
direction, we also investigate previous work on scene understanding through the utilization
of GNN.

2.3. Applying Relational Data to Scene Understanding

One common solution is to adopt GNN to analyze and understand scenes in image
frames. Such GNN support inferring common-sense relationships among objects within
scenes [32–34]. Therefore, a critical step in utilizing GNN for scene understanding is to
convert high-dimensional unstructured data (e.g., image frames) into relational context
within a graph-based structure. A basic process for constructing such graph-based data is to
extract objects within image frames as nodes. The edges between nodes represent pairwise
relations between the objects, depicting their spatial and temporal evolution. The semantics
of graph-based data are analyzed through the adoption of GCN. However, this imple-
mentation could be insufficient for understanding the task-specific scene. For example,
when a human detected to be overlapping with a motorcycle is represented in graph-based
data and analyzed by the GCN, their relationship is highly likely to be recognized as the
human riding the motorcycle in a public area. However, when this human is riding a mo-
torcycle without a helmet, these methods may not capture insights into unsafe behaviors.
Hence, combining task-specific scene understanding with certain prior knowledge aids in
achieving specific tasks. The presentation of such prior knowledge could be categorized as
follows: (1) Explicit rules refer to directly leveraging human knowledge imposed into the
graph-based data. In [35–37], objects from Bird’s-Eye Views (BEV) within dynamic driving
scenarios are converted into graph-based data to facilitate analysis by GCN, incorporating
specific traffic rules and common-sense knowledge. A typical human-understandable rule
is exemplified in [36], where the weighted edge within the node represents the relative
distance. GCN are used to analyze potential node pairs whose relative distance violates
specified rules. However, these methods usually require landmarks (e.g., static objects)
to annotate the relationships among objects, which limits their generalization for exten-
sion in ADL-related applications. (2) Encoded formal knowledge refers to the process of
interpreting human knowledge into machine-readable specifications. For example, in [38],
common-sense knowledge is converted into propositional logic to be incorporated with
GCN in the context of recommendation systems.

Inspired by the aforementioned methods of understanding scenes, we introduce a
GNN-based framework designed to comprehend scenarios within ADL-related applica-
tions. Unlike the conventional approach of relying solely on pose estimation for daily
activities prediction [15,17], our proposed method achieves joint prediction by mapping the
interactions, alleviating the need for skeleton-based data as part of the input. Compared
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with existing methods adopted in [35–37], the proposed method interprets common-sense
knowledge into temporal logic specifications without relying on landmarks for further
annotating the relationships.

3. Methodology

In this section, we present the framework shown in Figure 1 to infer activities of daily
living. We describe the main workflow of the proposed work as follows:

Figure 1. An example to present the overall process of extracting and constructing relational data.
The edge types #a and #b refer to interactions with different features extracted from temporal
specifications, as defined by Equation (3).

3.1. Relational Data Construction

We construct relational data for GNN analysis by extracting interactions from image
frames. Specifically, the relational data in terms of graph-based data consists of nodes and
edges. The objects in the video clips are extracted as nodes in the graph models, while the
interactions within these objects are represented as edges. Therefore, the following steps
outline the process to obtain these graph models:

3.1.1. Node Extraction

At this step, we obtain the node information required for creating graph-based data.
We define the nodes based on the information presented in image frames. Specifically, we
formulate Dai for a video clip collected from a scenario ai as follows:

Dai = {dai
1 , dai

2 , . . . , dai
n } (1)

where n refers to the number of frames in the video clip Dai . ai refers to a specific daily
activity obtaining a label ya ∈ Ta. Ta represents a set of labels for daily activities collected
in the dataset.

An object-detection module Mn(·) is used to identify the nodes of the graph model
by extracting the objects in any frames dai

k of Dai . We formulate the process as follows:

Oai
k = Mn(d

ai
k ) (2)

where Oai
k = {ok

1, ok
2, . . . , ok

j } refers to the collection containing the objects extracted from

the video clips. Each ok
i from Oai

k is a vector denoting the features of an object, such as
its bounding box sizes and object types. Each detected object ok

i obtains a label yo ∈ To
indicating the types of object. To represents a set of labels for environmental objects collected
in the dataset.

3.1.2. Edge Extraction

To represent the relationships within the video clip Dai , it is critical to analyze the
spatial and temporal properties of human and environmental objects. We label these re-
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lationships via the edges across nodes. As mentioned earlier, existing studies typically
employ data-driven approaches, such as LSTM, to extract relationships by encoding input
features from extensive graphs [35–37]. However, the duration periods within different
daily activities could exhibit extreme variety [17]. For example, drinking water in the
kitchen could be captured in a few image frames, while recognizing activities like washing
dishes in the same place may require more images. Therefore, using data-driven methods
could be inefficient for encoding an entire video clip. In contrast, the knowledge could
enhance the efficiency of data-driven methods in task-specific scenarios (e.g., human action
reasoning [16,32] and recommendation systems [39]) that involve possible known relation-
ships. Since activities of daily living typically involve well-known interactions between
humans and environmental objects, we propose a rule-based method for extracting the
relationships of nodes. Similar rule-based methods also can be found in [16,37]. Specifically,
we formulate the rule to identify the interactions by temporal logic specifications:

♢(ϕ ∪ (T ∧ (¬ϕ ∪ ρ))) (3)

where T refers to the time duration, and ρ ::= (Occmij ≥ n), where Occmij refers to the
number of appearances in the video clip Dai , n refers to the threshold of occurrence number.
ϕ ::= (mij ≥ τ) denotes the condition when the interaction rate mij for objects ok

i , ok
j in a

single frame k exceeds a threshold τ.
We formulate the interaction rate mij as Equation (4), which is identified by the Intersec-

tion over Union (IoU) areas between a pair of objects with non-maximal suppression [32,33].

mij =
I(xyk

i , xyk
j )

U(xyk
i , xyk

j )
(4)

where xyk
i , xyk

j refer to the bounding box sizes of ok
i , ok

j . These sizes are obtained by the

object-detection module Mn(·). I(xyk
i , xyk

j ) refers to the intersection area within the objects,

while U(xyk
i , xyk

j ) refers to the union area within the objects. Once mij satisfy the rule

defined by Equation (3), we denote the interaction as < oai
i , rai

i,j, oai
j >, where rij ∈ Mai .

Mai denotes a set of identified interactions within detected objects from the video clip Dai .
Furthermore, we denote all interaction pairs in the context of a graph Gai as follows [24]:

Gai = {(oai
i , rai

i,j, oai
j )} (5)

Additionally, each generated graph Gai obtains a label ya ∈ Ta indicating the type of
daily activities. Ta refers to a set of labels for the daily activities.

3.2. Joint Prediction via GNN

After the relational data construction phase, we utilize Message-Passing Neural Net-
works (MPNN) [40] to integrate GNN models for the joint prediction (see Figure 1).

3.2.1. Message-Passing Phase

This step involves the computation for aggregating and updating information from
the neighbors of a specific node along with the edges of shared relationships. Specifically,
we model the message aggregating process in the layer l as follows:

ml+1
i = ∑

j∈N(i)
Ml(hl

i , hl
j, ri,j) (6)

where i, j are the same as Equation (5), ri,j ∈ tai
i,j refers to the edge types connecting from

oai
i to oai

j . We denote hl
i , hl

j as the encoded information of the node oai
i , oai

j in layer l. This
encoded information is dependent on the configuration of the message-passing network.
As an example, hl

i , hl
j are equivalent to the features within oai

i and oai
j , respectively, when
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l = 1. N(i) refers to the set of all neighboring nodes of the node oai
i whose example is

shown in Figure 1. Ml(·) refers to message-passing functions, such as concatenation and
multiplication operations. Equation (6) shows that by computing all the neighboring nodes
N(i) in terms of message passing, ml+1

i merges the information from the features of both
the target node and their contextual nodes.

To further encode the aggregated relational data, the network propagates the edge infor-
mation within the neighbors by creating an edge (vertex) updating function Ul as follows:

hl+1
i = Ul(hl

i , ml+1
i ) (7)

where Ul refers to a composition of non-linear functions, such as a ReLU function and
recurrent units.

3.2.2. Readout Phase

In this step, the readout operation approximates feature vectors z for the graph-based
data Gai . We use multiple embedding z ∈ {zai

a , zai
o } to encode the information of activities

ŷa and environmental objects ŷo within the context of the graph Gai . The embedding vectors
z are formulated as follows:

z = R({hL
i |i ∈ Gai}) (8)

where R ∈ {Ra,Ro}. Ra and Ro refer to readout functions, configurable with various
operations, such as a linear layer and sum operation, to generate zai

a and zai
o , respectively. L

refers to the running steps in the message-passing phase.
Considering daily activities involving interactions between humans and objects, the

predicted object classes are often correlated with these activities. For instance, eating in a
kitchen is a typical daily activity commonly associated with specific environmental objects
such as bowls [17]. However, detecting bowls in the kitchen is insufficient to confirm that
humans are eating. Therefore, we propose an aggregation operation A(·) to enhance the
performance of predicting environmental objects by synthesizing embeddings zai

a and zai
o

as follows:
zai

c = A(zai
a , zai

o ) (9)

zai
c refers to an aggregated embedding to predict environmental objects. To this end, we

model the output layers as follows:

ŷ = F (ze) (10)

where ze ∈ {zai
c , zai

a }, F (·) refers to the configuration of output functions to predict activities
and objects, where F ∈ {Fa,Fo}, ŷ refers to the predicted results, where ŷ ∈ {ŷa, ŷo}. ŷa
denotes the predicted activities of daily living using the output function Fa with embedding
zai

a , while ŷo represents the predicted classes of environmental objects using the output
function Fo with the aggregated embedding zai

c .

4. Case Study

In this section, we elaborate on the implementation of the proposed framework. First,
we provide a brief introduction along with an explanation for selecting the Toyota Smart
Home dataset. Next, we present the configuration of relational data construction and
joint prediction based on this dataset. Finally, we present the results in comparison with
baseline methods.

4.1. Overview of Toyota Dataset

The Toyota Smart Home dataset [17] is a set of video clips collected from different
locations of an apartment whose Bird Eye View (BEV) is shown in Figure 2. The reasons for
selecting this dataset to evaluate the proposed methods are as follows: (1) It contains over
10,000 video clips captured from different locations in the apartment, providing diversity
to record various daily activities. (2) The resolution of video clips captured by cameras is



Sensors 2024, 24, 2567 7 of 12

640 × 480, challenging the identification of human body parts. In this case, understanding
between humans and environmental objects provides a promising solution for detecting
daily activities.

Figure 2. Bird Eye View (BEV) of the apartment. The numbers in the figure refer to the location
of the camera installation. 1⃝, 2⃝, and 3⃝ refer to the camera locations used to capture video clips
of activities.

Specifically, we choose three camera views shown in Figure 2 recording from the dining
room, living room, and kitchen. To evaluate the proposed framework, we particularly
selected 8 daily activities, including eating meals, calling phones, and using laptops. These
activities commonly involve the interaction between humans and environmental objects.
To reduce the correlation between the daily activities and locations, these activities could
occur in multiple locations. Additionally, we select video clips that feature multiple types
of daily activities occurring in the same location, as well as the same activity taking place
in different locations. For example, a person could use a cell phone in both locations shown
in Figure 2 while also engaging in cooking and cleaning in the kitchen.

4.2. Constructing Relational Data

Existing deep neural networks designed for object detection could be employed in the
object-detection module Mn. In this paper, we adopt a pre-trained Fast-RCNN model to
detect objects in the video clips [41]. Every node consists of the types and bounding box
sizes from the detected objects. Moreover, we assign an ID to each detected object to prevent
duplicating the same types of objects occurring in the images. To extract relationships
from the video clips, we set the IoU threshold to τ = 0.4. If mij exceeds the threshold
until more than n = 20 instances or appears continuously for more than T = 0.2 length in
the image sequences throughout the entire video clips, we annotate that the relationships
between objects i and j are engaged in interaction. In particular, we annotate relationships
between people and environmental objects when constructing graph-based relational data.
Furthermore, we incorporate the location information of the video clips to enrich these
data and facilitate the GNN in aggregating node features.

As a result, we extract 33 different types of environmental objects. The following
daily activities are extracted from the dataset: cleaning, cooking, watching TV, eating
food, reading books, using the telephone, using a laptop, and drinking water. Except
for cleaning, cooking, and watching TV, the rest of the activities could occur in multiple
locations. As illustrated in Figure 3, we present the graph-based relational data of daily
activities extracted from various locations. From Figure 3, we note that even though the
person is cleaning and cooking in the same location, the edges in the graph for these two
daily activities still depict different connections. Specifically, when the person is cooking,
there is more interaction between the person and the bowls and the refrigerator. In contrast,
when the person is cleaning, the edges are more connected to the person, bottles, and sink.
Moreover, the remaining activities also manifest significant features within the context of
relational data. For instance, during eating, interactions typically occur with items such
as tables, chairs, and dishes. Similarly, when watching TV, interactions involve remotes
and humans.



Sensors 2024, 24, 2567 8 of 12

Figure 3. Samples of graph-based relational data generation based on the image frames.

4.3. Implementing Joint Prediction via GNN

We adopt two-layer message-passing networks whose layout is shown in Figure 1
to encode the information from input graphs. We use GraphSAGE in the first layer to
attain encoding the features of the edges and nodes [40,42]. Specifically, We use a mean
aggregator shown in Equation (11) as the message-passing function Ml .

ml+1
i =

⊕
j∈N(i)

(hl
i , hl

j, ri,j) (11)

where
⊕

refers to approximate element-wise mean value from the encoded information
hi, hj with their edge type ri,j.

We adopt graph convolutional operators (GCNConv) with Laplacian-based methods
based on [23] to attain message-passing functions in the embedding layers. Specifically, we
model the message function as follows:

ml+1
i = D

1
2 AD− 1

2 hlW l (12)

D refers to the degree matrix. A refers to the adjacency matrix. W l refers to layer-wise
learnable parameters in the l-th layer [23,40].

This layer consists of two parallel GCNConv, which are used to separately generate
the embedding zai

a and zai
o from a video clip ai. We use tanh functions as the edge updating

function Ul in each layer. We propose an element-wise multiplication operation as A(·)
to aggregate the correlated features within zai

a , zai
o and generate zai

c . To this end, we use
SoftMax classifiers as the output layers to generate the likelihood of prediction results ŷa, ŷo
from zai

a , zai
c , respectively. Sequentially, we define the loss function L as follows:

L = Lc(ŷa, ya) + Lc(ŷo, yo) (13)

We train the parameters in the network by optimizing the loss function L, where
Lc refers to the cross-entropy between the predicted results and the ground-truth label.
To this end, we develop a GNN-based framework to classify the graph-based content ŷa
under-recognized nodes and edges and to predict nodes ŷo within a given graph. This
framework synthesizes human–object interaction to infer activities of daily living.

4.4. Ablation Study

The training platform is configured with an AMD Ryzen 7 5800 and NVIDIA RTX-
3070. During the training of the proposed methods, we collect all these daily activities,
with each activity containing 600 graphs. We configure the training ratio to 0.8, and the
training epoch is 800. We select multiple baseline methods to evaluate the proposed
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method. Specifically, we employ an MLP with two hidden layers to infer activities and
objects by solely analyzing the features of nodes. This MLP configuration is equivalent
to concatenating the intermediate embeddings from Fast-RCNN in Equation (2) to dense
layers. In addition, we introduce two GCN designs, GNN with Split Prediction (S-GNN)
and Attention-based GNN (Att-GNN), to evaluate their performance using the same dataset
as the comparison. S-GNN shares the same network topology in [28] to analyze spatial
properties of the graph-based data. This S-GNN adopts graph convolutional and dense
layers to concatenate the features within the nodes from graphs. Att-GNN identifies
correlations by modeling an energy function and attention distributions within spatial and
temporal properties, enabling the analysis of graph and node patterns. In our case, we
implement a similar network architecture used in [37], wherein a self-attention layer is
connected behind the graph convolutional layers by replacing the multiplication operation
A(·). As an ablation test, we additionally construct a Joint-Prediction Network (JP-GNN)
by removing the operation A(·) and directly predicting the data.

The final results are shown in Table 1, where we conclude that the proposed method
demonstrates significantly superior performance compared with MLP. Such results indicate
that the relationships within the nodes empower the capability to infer daily activities and
objects. Unlike GNN-based approaches, the inference process of MLP does not explicitly
incorporate semantic context within graphs, owing to the inherent properties of feed-
forward networks. Among GNN-based approaches trained for the same number of epochs,
our proposed method achieves higher accuracy compared to the attention-based method,
which also analyzes correlations within the embeddings. The possible reason for this
situation could be that the attention-based method requires more time to attain convergence
in the attention mechanism (e.g., learnable parameters in score functions). Compared with
the JP-GNN which does not include the aggregation function, our proposed method
shows significant improvement in object inference. These results indicate that the activity
classification embedding aids in inferring objects. Additionally, the embeddings of activities
and objects share the same layer, therefore affecting the convergence of the network. As a
result, the TOP-1 accuracy of activities classification of JP-GNN is lower than that of our
methods and the S-GNN which infers objects and activities separately. We also observe
that the TOP-1 accuracy of activity inference from the proposed method is slightly higher
than those of S-GNN. We believe that the reason could be the implementation of multiple
embeddings serving as regularization to optimize networks. Similar situations also could
be observed in prior studies, such as [22,39]. To further evaluate the performance of the
proposed method, we also utilize the F1-score in Equation (14) by leveraging the Confusion
Matrix in multi-classification cases [43,44].

Pr@yk
a =

TP@yk
a

TP@yk
a + FP@yk

a

Re@yk
a =

TP@yk
a

TP@yk
a + FN@yk

a

F1@yk
a =

2 × Re@yk
a × Pr@yk

a
Re@yk

a + Pr@yk
a

(14)

where TP@yk
a, TN@yk

a, FP@yk
a, FN@yk

a refer to True Positive, True Negative, False Positive,
and False Negative in the Confusion Matrix. Pr@yk

a, Re@yk
a, F1@yk

a refer to the precision,
recall and F1-Score at any activities ya with label k. Table 2 presents the overall results
with Equation (14). Compared to the other activities, the proposed method shows poorer
performance in identifying cooking and cleaning. This situation could be implied by the
presence of common interacting objects in these two activities. For instance, both cooking
and cleaning involve bowls and dishes in the same location. Additionally, the location
of the camera in the kitchen, as shown in Figure 2, may introduce some uncertainty in
efficiently detecting interactions between cookstoves and humans during cooking. This
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situation could be improved by utilizing image frames from multiple camera views with
different locations.

Table 1. TOP-1 Accuracy of Different Methods.

MLP
GNN-Based Methods

Our Method Att-GNN JP-GNN S-GNN

Activities Inference 0.49 0.88 0.82 0.83 0.86

Objects Inference 0.56 0.77 0.65 0.71 0.68

Table 2. Precision, Recall and F1-Score Comparison.

Reading Cooking Cleaning Eating Drinking Using
Laptop Calling Wathcing

TV Average

Precision 0.94 0.71 0.75 0.89 0.78 0.95 0.90 0.92 0.86

Recall 0.66 0.63 0.67 0.72 0.84 0.91 0.91 0.83 0.77

F1-Score 0.77 0.67 0.71 0.85 0.81 0.93 0.90 0.87 0.81

Additionally, we evaluate the time consumption of training each method. With the
same hyper-parameters (e.g., training epoch, batch sizes), S-GNN takes approximately
9 and 33 min to train the network to attain stable performance, respectively. Att-GNN
requires more than 25 min to train the joint prediction. The proposed method takes around
21 min. These results indicate that compared with baseline methods, the proposed method
spends less time to attain better performance.

5. Discussion and Future Work

This paper presents a framework to jointly infer the daily activities and environmental
objects. Specifically, compared to the baseline methods, our framework demonstrates
competitive performance in terms of TOP-1 accuracy and training efficiency. The proposed
method supports incorporating semantic content within relational data rather than directly
relying on high-dimensional data. This approach offers an explicit solution for inferring
human daily activities and environmental objects. Compared to prior work on GCN
related to the identification of human daily activities, the proposed method avoids the
need for skeleton-based data and reduces reliance on complex training data. However, the
proposed work relies on the semantics in the context of interaction between humans and
the environment to identify the objects and daily activities. Such a mechanism could be
inefficient in specific scenarios (e.g., entering and leaving).

Therefore, the following aspects could be future works: (1) Combining knowledge-
aware approaches (e.g., knowledge graphs) with embedding to enhance the explainability
and performance of the proposed networks. In contrast to the temporal logic constraints
imposed in the proposed framework, domain knowledge can be encoded within the GCN-
based framework to offer flexible constraints. (2) Utilizing recurrent units (e.g., LSTM)
to reduce the labeling data and improve the generalization by encoding the temporal
evolution. The proposed method can integrate various embeddings to encode and analyze
temporal correlations. This encoded evolution is expected to enhance the granularity of
daily activities, enabling the decomposition of activities (e.g., entering can be decomposed
into opening doors and walking). (3) Extending the proposed framework to diverse
datasets with complicated scenarios such as dynamic driving scenarios. In such scenarios,
environmental objects exhibit various correlated behaviors, posing challenges in modeling
and analyzing relational data in terms of their relationships and types. An extension of
the proposed work targeting heterogeneous graphs with weighted edges could address
these scenarios.
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