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Abstract: The Advanced Geostationary Radiation Imager (AGRI) carried by the FengYun-4A (FY-
4A) satellite enables the continuous observation of local weather. However, FY-4A/AGRI infrared
satellite observations are strongly influenced by clouds, which complicates their use in all-sky data
assimilation. The presence of clouds leads to increased uncertainty, and the observation-minus-
background (O−B) differences can significantly deviate from the Gaussian distribution assumed
in the variational data assimilation theory. In this study, we introduce two cloud-affected (Ca)
indices to quantify the impact of cloud amount and establish dynamic observation error models
to address biases between O−B and Gaussian distributions when assimilating all-sky data from
FY-4A/AGRI observations. For each Ca index, we evaluate two dynamic observation error models: a
two-segment and a three-segment linear model. Our findings indicate that the three-segment linear
model we propose better conforms to the statistical characteristics of FY-4A/AGRI observations
and improves the Gaussianity of the O−B probability density function. Dynamic observation error
models developed in this study are capable of handling cloud-free or cloud-affected FY-4A/AGRI
observations in a uniform manner without cloud detection.

Keywords: observation error; cloud effect; assimilation; FY-4A/AGRI; infrared radiance

1. Introduction

Earth geostationary satellite observation data play a crucial role in regional-scale
numerical weather forecasting [1]. China’s geostationary satellite Fengyun-4A (FY-4A),
equipped with the Advanced Geostationary Radiation Imager (AGRI) [2], provides high
spatiotemporal resolution atmospheric information [3]. In the infrared (IR) band of FY-
4A/AGRI, radiation absorption and emission are highly sensitive to atmospheric tempera-
ture, humidity, and cloud precipitation [4]. Nonlinear impacts of clouds on FY-4A/AGRI
observations, along with systematic biases in assimilation models, pose significant chal-
lenges for all-sky data assimilation techniques [5]. These issues result in non-Gaussian
distributions of the observation-minus-background (O−B) differences and violate the fun-
damental assumptions of mainstream variational data assimilation methods [6]. Therefore,
it is essential to address observational errors in FY-4A/AGRI observations and enhance the
robustness and analysis quality of all-sky data assimilation systems.

The presence of clouds often profoundly affects the quality and assimilation effec-
tiveness of satellite observation [7]. Considering the significant challenges in assimilating
cloud-affected data, the most common approach currently is to preprocess satellite obser-
vation data, removing data influenced by cloud layers [1,8,9]. However, cloud-affected
satellite radiance data, unrestricted by space–time constraints, can rapidly capture the
occurrence, development, and dissipation of convection, making it one of the most valuable
sources of observational data for regional numerical forecasting, potentially significantly
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improving the accuracy of high-resolution numerical forecasts [10]. Therefore, many studies
continue to attempt various methods to assimilate this cloudy radiance data [11].

Currently, there are two main approaches to assimilate cloudy radiance data [9]. The
first approach involves using cloud detection algorithms to distinguish between clear-sky
and cloudy areas and then assimilating clear-sky and cloudy data separately, with the
latter typically including satellite-retrieved cloud products [11]. However, due to the high
uncertainty of retrieval algorithms, the statistical characteristics of satellite cloud product
observation errors are complex [12]. Another approach is to directly assimilate satellite
observation data with and without clouds within a unified framework, without the need
for cloud detection [13].

Cloud effect observation error models have been developed to improve the effective-
ness of all-sky data assimilation [8,14]. Geer et al. [15] proposed an observation error model
based on cloud fraction. Since the forward observation operator error of the assimilation
system is significant under cloudy conditions, the observation error tends to increase with
larger cloud fractions. By utilizing this basic concept and employing a cloud effect dynamic
observation error estimation method, an approximately Gaussian O−B distribution can
be obtained, simultaneously enhancing quality control and greatly improving the effec-
tiveness of all-sky satellite data assimilation. Particularly in the assimilation of infrared
satellite data, the application of cloud effect observation error models can enhance the
understanding of atmospheric states [16], leading to higher-precision short-term forecast
results [17]. Okamoto et al. [18] proposed cloud-affected (Ca) indices and a two-segment
linear observation error model for assimilating Advanced Himawari Imager (AHI) radiance
data under cloudy conditions. The probability density function of the infrared band O−B
exhibits a near-Gaussian distribution, improving the accuracy of rainfall forecasts [16,19].
Harnisch et al. [20] defined a new cloud effect parameter model using a threshold method
for assimilating Spinning Enhanced Visible and InfraRed Imager (SEVIRI) infrared observa-
tion data, obtaining more robust estimates of cloud impacts. Geer et al. (2019) [8] modified
the dynamic observation error model established by Okamoto et al. [18] and applied it to
all-sky assimilation using the Infrared Atmospheric Sounding Interferometer (IASI) data.
Although the aforementioned Ca index calculation methods have been applied to some
infrared satellite data assimilation systems, considering the lack of dedicated analysis on
the observation errors of FY-4A/AGRI observations, it is advisable to establish observation
error models tailored to FY-4A/AGRI observations.

This study quantifies the impact of clouds on FY-4A/AGRI observations to estab-
lish observation error models suitable for the all-sky data assimilation of FY-4A/AGRI
observations. There are a total of fourteen spectral bands in FY-4A/AGRI observations,
but our research primarily focuses on three infrared bands, including two water vapor
channels and one window channel (Band = 9, Band = 10, and Band = 14), with central
wavelengths of 6.25 µm, 7.1 µm, and 13.5 µm, respectively. In addition to the two-segment
linear model proposed by Okamoto et al. [18] and Harnisch et al. [20], we have developed a
new three-segment linear error model that better conforms to the O−B statistics specifically
for assimilating FY-4A/AGRI observations. A comparative analysis of those dynamic
observation error models was conducted to identify the most suitable error model for the
all-sky assimilation of FY-4A/AGRI observations.

2. Data and Methods
2.1. FY-4A/AGRI Observations

The FY-4 satellite marks a significant advancement in meteorological research and
technology [21]. Compared to similar international satellites, FY-4A is equipped with
14 imaging bands in its AGRI, on par with international standards. AGRI, as the primary
payload of FY-4, employs a sophisticated dual scanning mirror system to achieve pre-
cise and flexible two-dimensional pointing, enabling rapid regional scans at minute-level
intervals. It utilizes an off-axis three-mirror optical system to observe Earth images fre-
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quently across more than 14 spectral bands and utilizes onboard blackbody calibration for
high-frequency infrared calibration, ensuring the accuracy of observation data.

This study selected FY-4A/AGRI observations for June 2022 in southern China. The
coverage area mainly included the Pan-South China region, with a latitude range from
16◦ N to 28◦ N and a longitude range from 106◦ E to 126◦ E. Southern China, located at the
southernmost part of Chinese territory, belongs to a subtropical monsoon climate zone and
is one of the regions most severely affected by hazardous weather phenomena in China [22].
During the summer, Southern China experiences high temperatures and humidity, with
frequent occurrences of heavy rain, thunderstorms, and typhoons from May to September.
Over 80% of the annual rainfall occurs during this period, significantly impacting local
transportation, infrastructure, and agriculture [23]. Therefore, effectively utilizing FY-
4A satellite data to improve data assimilation and numerical forecasting capabilities in
Southern China is particularly important.

2.2. Variational Assimilation Methods and Observation Operators

This study conducts statistical analysis based on 60 datasets aggregated from two daily
samples in June 2022. The forecasting model relies on the Weather Research and Forecasting
Model (WRF), a mesoscale numerical weather prediction model. The assimilation system
is the WRF Data Assimilation (WRFDA) three-dimensional variational assimilation system,
which is compatible with the WRF model. The observation operator used for calculating
background radiances is the Radiative Transfer for TOVS (RTTOV) model version 13.0 [24].
Since the publicly released version 4.0.2 of WRFDA lacks the capability to assimilate cloud-
affected FY4A/AGRI radiance, this study extends the functionality of the publicly released
version, 4.0.2. This extension includes the simulation of RTTOV infrared cloud radiance.
Cloud scattering is based on a scaling approximation scheme, and cloud cover is based on
a flux scheme [25]. The assimilation background fields are derived from the 12 h forecast
fields of the WRF model. The WRF model forecast is driven by the analysis and forecast
fields of the Integrated Forecasting System (IFS) of the European Centre for Medium-
Range Weather Forecasts (ECMWF). After FY4A/AGRI radiance data enter the WRFDA
assimilation system, they undergo preprocessing steps such as quality control and bias
correction before entering the calculation of observation-minus-background differences.
The configurations of the WRF model, WRFDA quality control, and bias correction schemes
are detailed in Wu et al. [26].

We utilized version 3.9.1 of the convection-allowing WRF-ARW model (3 km hori-
zontal resolution) for convection and precipitation forecasts [27]. The model configuration
consisted of a single domain with 702 × 503 horizontal grids and 57 vertical layers, reaching
a model peak at 10 hPa. We followed the physics option set recommended for 1–4 km
grid distances in the WRF model user’s guide (https://www2.mmm.ucar.edu/wrf/users/
docs/user_guide_V3.9/contents.html) (accessed on 2 December 2023), with adjustments
made to surface layer and boundary layer parameter schemes. Consequently, the physical
parameterizations utilized in this study included the WRF Single-Moment 6-Class Micro-
physics Scheme (WSM6) [28], the YSU boundary layer scheme [29], the RRTMG longwave
and shortwave radiation scheme [30], the unified Noah land surface scheme [31], and
the revised MM5 Monin–Obukhov surface layer scheme [32]. Cumulus parameterization
was deactivated.

2.3. Cloud-Affected Index and Error Modeling

One method to account for the impact of clouds on the O−B difference is to introduce
a predictor to quantify the cloudiness in the background field and observational data. The
study adopts a Ca index proposed by Okamoto et al. [18], which estimates the cloud effect
by simultaneously considering the observational and model-equivalent cloud effects. The
calculation formula is as follows:

Ca =
|O − Bclr|+ |B − Bclr|

2
(1)

https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/contents.html
https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/contents.html
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where O represents the brightness temperature observed by the FY-4A/AGRI; B represents
the brightness temperature simulated by the RTTOV model with WRF forecasts as input;
and Bclr represents the simulated radiance brightness temperature without considering
cloud scattering.

Harnisch et al. [20] did not use the simulated radiance brightness temperature directly
without considering cloud scattering, Bclr. Instead, they employed a threshold, Blim, to
estimate the impact of clouds on assimilation. Blim is estimated based on the difference
between brightness temperatures with and without clouds (B−Bclr). We obtained the Blim
for FY-4A/AGRI based on the method proposed by Harnisch et al. [20] (see Figure 1). In
this case, the Ca was defined as a function of the difference between O, B, and Blim, with the
calculation formula as follows:

Cx = max(0, Blim − B) (2)

Cy = max(0, Blim − (O − bias)) (3)

Ca =
Cx + Cy

2
(4)

where Ca is the symmetric cloud effect calculated as the average of the model-equivalent
cloud effect Cx and the observational cloud effect Cy with the systematic observational
bias removed.
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Since Ca describes the average cloud effect between background and observed clouds,
the point of maximum standard deviation (SDmax) corresponds to the maximum mismatch
between background and observed clouds, which we refer to as Camax. When Ca < Camax,
the SD of O−B increases with Ca, while when Ca > Camax, SD remains constant or decreases.
In existing studies, the fitting curve of O−B SD is often modeled as a two-segment linear
model. Specifically, beyond Camax, the fitting curve becomes a horizontal line [18,33]. The
two-segment linear model is as follows:

f (Ca) =
{

A ∗ Ca + B, Ca < Camax
SDmax, Ca ≥ Camax

(5)
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where A and B represent the slope and intercept, respectively, of a linear function fitted for
when Ca < Camax.

As a dynamic error model, f (Ca) can reflect the observational error characteristics
across the all-sky conditions, used to correct the background field and generate a more
reasonable assimilation analysis field. However, in actual assimilation processes, this
assumption may not align with the characteristics observed in real sample statistics, and
the actual variation in O−B SD with Ca may be more complex. When assimilating FY-
4A/AGRI observations, the SD reaches its maximum value, then begins to decline, and
gradually levels off at a value of SDcon (corresponding to Cacon). Based on the statistical
characteristics presented by samples from FY-4A/AGRI, we have established a three-
segment linear model to fit the relationship between O−B SD and Ca. The established
three-segment linear model is as follows:

f (Ca) =


A ∗ Ca + B, Ca < Camax

C ∗ Ca + D, Camax ≤ Ca < Cacon
SDcon, Ca ≥ Cacon

(6)

where C and D represent the slope and intercept, respectively, of a linear function fitted for
when Camax ≤ Ca < Cacon.

For each Ca, we have developed two dynamic observation error models: a two-segment
linear model and a three-segment linear model. In total, we have developed four types of
observation error models specifically for assimilating FY-4A/AGRI observations.

3. Results and Discussion
3.1. Statistical Analysis of O−B

Figure 2 depicts the distributions of O−B for three infrared bands (Band = 9, Band = 10,
and Band = 14) with central wavelengths of 6.25 µm, 7.1 µm, and 13.5 µm, respectively.
While the O−B distributions for the three infrared bands exhibit similar overall charac-
teristics, there are differences in detail. For most regions, high positive biases in O−B are
rare, with more occurrences of high negative biases. This indicates that in the background
field, there is a tendency for cloud top forecasts to be underestimated (i.e., cloud tops are
predicted to be lower than they actually are), with the likelihood of underestimation being
greater than that of overestimation. As a result, the probability distribution of O−B may
exhibit asymmetrical features.

Statistical analysis reveals that the mean O−B values for the three infrared bands are
−3.6 K, −5.7 K, and −9.23 K, respectively, with standard deviations of 7.8 K, 10.9 K, and
14.6 K. The mean and standard deviation of the three infrared bands increase successively,
related to the severity of cloud influence on each band. The 6.25 µm water vapor band
primarily detects upper tropospheric water vapor and clouds whose cloud tops are located
above the upper tropospheric water vapor. The 7.1 µm water vapor band primarily detects
mid-tropospheric water vapor and clouds whose cloud tops are located above the mid-
tropospheric water vapor. The 13.5 µm band primarily detects near-surface temperatures
and clouds at various altitudes. Therefore, the degree of cloud influence increases succes-
sively across the three bands. The greater the impact of clouds and the more complex the
cloud types, the greater the difficulty in correcting the distribution of O−B to a Gaussian
distribution, leading to increased assimilation challenges.
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Figure 2. The observation-minus-background (O−B) distributions for three infrared water vapor
bands on 30 June 2022 at 00:00 UTC. (a) Band = 9, (b) Band = 10, and (c) Band = 14. Their center
wavelengths are 6.25 µm, 7.1 µm, and 13.5 µm, respectively.

3.2. Cloud Effect Index and Error Modeling

To evaluate cloud impacts on the three infrared bands, this study selected two Ca
indices, one based on the method proposed by Okamoto et al. [18] and the other based
on the method by Harnisch et al. [20] (Figure 3). Based on the relationship between Ca
and O−B, observation error models were established to correct the distribution of O−B to
better fit a Gaussian distribution. Combining Figures 2 and 3, it can be generally observed
that when O−B exhibits high biases, both Ca indices tend to increase simultaneously.
The horizontal distribution of the two Ca indices shows a high degree of consistency,
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effectively indicating positions with significant cloud influence, i.e., locations with large
absolute values of O−B biases. Statistical analysis revealed that for the three infrared
bands, the mean Ca values based on the method by Harnisch et al. [20] were 4.6 K, 7.3 K,
and 10.5 K, with standard deviations of 5.4 K, 8.4 K, and 11.5 K, respectively. Meanwhile,
the mean Ca values based on the method by Okamoto et al. [18] were 3.8 K, 5.8 K, and
9.8 K, with standard deviations of 4.2 K, 7.0 K, and 10.9 K, respectively. The mean and
standard deviation of the two Ca indices for the three infrared bands increased successively,
following a similar pattern to the changes in O−B for the three infrared bands. It can be
concluded that clouds are an important factor influencing the distribution of O−B.
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Figure 3. Cloud impacts in the three infrared water vapor bands are assessed based on two cloud-
affected indices (Ca). Rows 1 to 3 denote bands 9, 10, and 14. Panel (a–c) show the error models
obtained using the Okamoto et al. method [18]. Panel (d–f) show the error models obtained using the
Harnisch et al. method [20].

Based on the two Ca indices, observation error models were established for the three
infrared bands. Figure 4 illustrates the relationship between Ca and O−B under the
two methods, where the mean and variance of O−B are statistically computed within
intervals of Ca of 1 K. It can be observed that for Band 14, the distributions of Ca and
O−B are relatively close under both methods (Figure 4c,f), while for the other two wa-
ter vapor bands, there are certain differences between the two indices. Ca distributions
based on the method by Harnisch et al. [20] are more concentrated towards the edges.
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Statistical analysis revealed that for the three infrared bands, the minimum values of O−B
SD based on the method by Harnisch et al. [20] were 1.7 K, 1.3 K, and 1.3 K, while the
maximum values of SD were 11.1 K, 19.2 K, and 26.2 K, respectively. Meanwhile, for the
method by Okamoto et al. [18], the minimum values of O−B SD for the three infrared
bands were 1.4 K, 2.1 K, and 1.7 K, while the maximum values of SD were 11.6 K, 18.8 K,
and 23.8 K, respectively.
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From the statistical results in Figure 4, it is evident that the SD of O−B increases with
Ca until it reaches a certain threshold, after which it starts to decrease before eventually
leveling off. Therefore, the two-segment linear model fails to accurately reflect the statistical
characteristics observed in the actual samples. Additionally, since Ca is based on a spectral
cloud-affected index, it may not fully represent the actual magnitude of cloud influence.
Consequently, the actual variation in O−B SD becomes complex as Ca increases. Building
upon these observations, the study establishes a three-segment linear model to fit the
relationship between O−B SD and Ca based on the statistical characteristics observed in
the actual samples (Figure 4).

3.3. Statistical Analysis of O−B

Based on the two Ca indices, two two-segment linear observation error models were
established, correcting the probability density distribution of O−B in FY-4A/AGRI obser-
vations assimilation, as shown in Figure 5. The red line represents the original probability
density distribution of O−B, the blue line represents the probability density distribution
of O−B corrected based on the observation error model, and the dashed line represents
the standard Gaussian distribution. It can be observed that the correction effect of the
two-segment linear observation error model established based on Okamoto et al. [18]’s
method is not very satisfactory (Figure 5d–f). In this case, dynamic error estimation
leads to O−B deviating from the Gaussian distribution and exhibiting sharp edges. Some
other two-segment linear observation error models established using Okamoto et al.’s
method [18] have encountered similar issues, leading to the introduction of a minimum er-
ror estimation for data with smaller Ca mean values, but still prone to bimodal distributions
in O−B [20]. The correction of the probability density distribution by the two-segment
linear observation error model established based on Harnisch et al.’s method [20] does not
exhibit obvious bimodal distributions, and the distribution curves are relatively smooth.
The two two-segment linear observation error models established based on the two Ca in-
dices do not strongly adhere to Gaussianity in the corrected probability density distribution
of O−B. Particularly for Band 14 (Figure 5c,f), the distribution notably deviates from the
Gaussian distribution.

Subsequently, two three-segment linear observation error models were established
based on the two Ca indices, correcting the probability density distribution of O−B in FY-
4A/AGRI observation assimilation, as shown in Figure 6. Compared to the two-segment
linear observation error model based on Okamoto et al. [18]’s method (Figure 5d–f), al-
though there is still a bimodal distribution structure, the Gaussianity of the probability
density distribution of the three-segment linear observation error model (Figure 6d–f)
has been significantly improved. Compared to the two-segment linear observation error
model based on Harnisch et al.’s method [20] (Figure 5a–c), the Gaussianity of the prob-
ability density distribution of the three-segment linear observation error model has also
been comparatively improved. The three-segment linear observation error model fits the
actual relationship between SD and Ca better, resulting in a more effective observation
error model.
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4. Conclusions

This study analyzed the observation errors of the FY-4A/AGRI infrared channels dur-
ing all-sky data assimilation, focusing on three infrared bands: Band 9 (center wavelength
6.25 µm), Band 10 (center wavelength 7.1 µm), and Band 14 (center wavelength 13.5 µm).
Four dynamic observation error models were developed to provide more accurate error
estimates for assimilating the brightness temperature of the FY-4A/AGRI infrared channels.
Experimental results showed that the observation errors of these three bands exhibited sim-
ilar distribution characteristics, mainly characterized by high negative biases. Specifically,
the mean O−B values were −3.6 K, −5.7 K, and −9.23 K, respectively. When correcting the
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O−B probability density distribution of FY-4A/AGRI observation assimilation based on
two different Ca, the two-segment linear model based on the Okamoto et al. method [18]
exhibited sharp edges and bimodal distributions, while the Gaussianity of the O−B proba-
bility density distribution corrected by the two-segment linear model based on the Harnisch
et al. method [20] was not strong, especially for Band 14. Subsequently, the three-segment
linear observation error model made progress in correcting the O−B probability density
distribution of FY-4A/AGRI observation assimilation. Compared to the two-segment linear
model, the Gaussianity of the probability density distribution of the three-segment linear
model was significantly improved. This indicates that the three-segment linear model is
closer to the actual relationship between SD and Ca, thereby more effectively correcting
observation errors and improving the accuracy of data assimilation. This finding is of great
significance for improving the assimilation of FY-4A/AGRI observations under all-sky
conditions, contributing to the accuracy and reliability of weather forecasting.
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