ﬁ Sensors

Article

Fault Diagnosis for Reducers Based on a Digital Twin

Weimin Liu, Bin Han, Aiyun Zheng * and Zhi Zheng

check for
updates

Citation: Liu, W.; Han, B.; Zheng, A.;
Zheng, Z. Fault Diagnosis for
Reducers Based on a Digital Twin.
Sensors 2024, 24, 2575. https://
doi.org/10.3390/524082575

Academic Editor: Yi Qin

Received: 22 March 2024
Revised: 10 April 2024
Accepted: 15 April 2024
Published: 17 April 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China;
Izhjia@ncst.edu.cn (W.L.); 15613540530@163.com (B.H.); zhengzhi@ncst.edu.cn (Z.Z.)
* Correspondence: zay@ncst.edu.cn

Abstract: A new method based on a digital twin is proposed for fault diagnosis, in order to com-
pensate for the shortcomings of the existing methods for fault diagnosis modeling, including the
single fault type, low similarity, and poor visual effect of state monitoring. First, a fault diagnosis
test platform is established to analyze faults under constant and variable speed conditions. Then, the
obtained data are integrated into the Unity3D platform to realize online diagnosis and updated with
real-time working status data. Finally, an industrial test of the digital twin model is conducted, allow-
ing for its comparison with other advanced methods in order to verify its accuracy and application
feasibility. It was found that the accuracy of the proposed method for the entire reducer was 99.5%,
higher than that of other methods based on individual components (e.g., 93.5% for bearings, 96.3%
for gear shafts, and 92.6% for shells).

Keywords: digital twin; fault diagnosis; dynamics; reducer; human—computer interaction

1. Introduction

Reducers are commonly used in various transmission systems, such as robots [1-3],
cars, rolling mills, and so on. The condition monitoring and fault diagnosis of gearboxes
has been attracting considerable attention [4-6]. The existing fault diagnosis methods
mainly rely on machine learning algorithms [7] and deep learning models [8-11], where
Convolutional Neural Networks (CNNs) [12,13], Long Short-term Memory (LSTM) Net-
works [14], and Autoencoders [15] have shown good performance in terms of feature
extraction, although with application restrictions in some fields.

Facing challenges associated with the translation invariance principle, such as idle
neurons with slight image direction or position changes, CNN-based methods require an
overwhelming amount of data due to their reliance on backpropagation [16]. Additionally,
the pooling layers used in CNNs often result in the loss of valuable information and further
disregard the correlations. To overcome these defects, many scholars have made various
attempts in their works; for example, Lei et al. [17] conducted a comprehensive review of
fault diagnosis methodologies, providing insights into the structure of planetary gearboxes
and fixed shaft planetary gearboxes. The distinctive behaviors and fault characteristics
of planetary gear systems were also identified and analyzed. In another study, Moslem
Azamfar et al. [18] proposed a novel fault diagnosis approach grounded in motor current
characteristic analysis. A unique 2D CNN architecture was utilized to seamlessly integrate
data from multiple current sensors, enabling direct classification without the need for man-
ual feature extraction. Additionally, Ding et al. [19-21] introduced a framework for motor
fault diagnosis, addressing issues related to representation learning scalability and the
neglect of diverse working conditions. In the same year, a novel continuous learning frame-
work was introduced to address the low efficiency of manual fault detection. Additionally,
a method was devised to tackle the limitations of knowledge distillation, leveraging a
fusion model based on CNN-Gated Recurrent Units (CNN-GRUs) and incorporating a
channel attention mechanism.
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LSTM-based networks and their derivatives sequentially process data over time [22].
Considering their natural characteristics, they are susceptible to vanishing gradients, partic-
ularly when dealing with long sequences. For extremely long sequences, gradient vanishing
reduces the accuracy of the method, together with increasing the computational demand
and training time, as has been previously verified.

Regarding Autoencoders, they also demand extensive unlabeled data for effective
training [23]. Furthermore, the overfitting caused by noise or outliers in the training
data might comprise the generalization capability of the model, leading to potential false
alarms or missed detections [24]. Furthermore, the unintuitive high-dimensional hidden
representations complicate their interpretation in the troubleshooting process, as well as
their outputs. Apparently, their applicability is still limited by these inherent constraints.

Although more methods have been developed for the purpose of fault diagnosis, many
studies have arrived at a similar conclusion, focusing on the lack of condition monitoring
of parts, single working conditions, and/or analysis based on individual parts instead of
the whole system, leading to the possibility of a large deviation between virtual and real
signals. For example, a rolling bearing fault diagnosis method based on a digital twin
(DT) [25] has been proposed, which presents disadvantages for real-time online analysis
and diagnosis. A method leveraging CycleGAN [26] was introduced, and a gear DT model
for fault diagnosis was constructed; however, a successful individual gear fault diagnosis
might not facilitate further analysis of the whole gearbox. This phenomenon becomes
more significant when analyzing complex systems. Undoubtedly, those works have made
remarkable contributions in the field, but the proposed approaches often overlook the
complex relationships and diversity inherent to the system, resulting in subpar performance
in terms of capturing fault characteristics and achieving accurate classification [27]. In
addition, single modeling methods relying on a restricted data set may not encompass
sufficient integrated fault scenarios.

As a supplement to the mentioned research on such integrated systems, the DT concept
was introduced in 2002 and has been developed since then. Compared with the traditional
methods, DT supports further systematic analyses due to its high compatibility, interactivity,
and convenience of application.

Among the milestones in DT, Grieves [28] first proposed the concept of DTs, which
involves creating a mirrored model of a physical entity. DT theory has grown rapidly in
recent years. Barricelli et al. [29] provided a summary of the definition of DTs and ana-
lyzed their differences. Wang et al. [30] developed a DT model for autoclave systems and
improved the prediction capabilities of autoclave failures using numerical data over actual
failure data. Aivaliotis et al. [31] integrated a physical model with a DT. Errandonea et al. [32]
conducted an in-depth study on the life cycle maintenance phase of DTs. Melesse et al. [33]
conducted a systematic literature review to evaluate the utility of DTs in industrial opera-
tions. Wright et al. [34] highlighted the differences between models and DT, outlined the
advantages of DTs, and suggested future research directions. Lechler et al. [35] explained the
relationship between the function and application of DTs. Rasheed et al. [36] summarized the
methods, techniques, and model construction of DTs. Bordleau et al. [37] summarized various
model-driven engineering techniques in the context of model construction for model solution.
Rios et al. [38] conducted a comprehensive review on the modeling of measurement uncer-
tainty in data transfer standards and its relationship to test data in DT models. Karve et al. [39]
proposed a construction method for DTs, in order to detect and predict uncertain crack growth
for damage detection. In the next year, Andronas et al. [40] discussed the limitations of DT
modeling with flexible materials. Matulis et al. [41] reported the development of a 3D printing
robotic arm and created a DT model in Unity3D. He et al. [42] applied a DT in intelligent
detection robots using multi-sensor data fusion technology. Using a DT model, the integration
of virtual and physical entities can be realized, where the collected data facilitate simulation,
health monitoring, diagnosis, and maintenance [43—46].

With the development of DT technology, replication technology presents significant
potential and promotes the expansion of technical concepts. DT technology is now widely
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used in online monitoring and intelligent device diagnosis. Tao et al. [47,48] proposed
a 5D-DT model based on the original 3D structure with an added service system and
communication connection for fault prediction and health management; however, this
model is still a long way from full implementation due to hardware and software limitations.
Zong et al. [49] developed a set of multi-robot monitoring systems based on DT technology,
which monitor the robot arm’s working state, but not the equipment’s operating state and does
not allow for deeper data analysis. Liu et al. [50] highlighted the process of offline data collection
for a ship structure bearing monitoring system but did not realize real-time monitoring and
diagnosis capabilities. Li et al. [51] presented a condition monitoring method for a gear test
bench-based DT using real-time data; however, this method only realizes condition monitoring
based on real-time data, and it cannot complete further data mining analysis.

As a supplement to the related research, an innovative method based on DTs was
proposed in this work for the considered system, with the expectation that a comprehensive
approach could be adopted to construct the reducer, including the effects of temperature
and noise. DT and Unity 3D technologies are applied for the online diagnosis and human-—
computer interaction. The main goals achieved by this work are as follows:

(1) DT technology was applied to model the overall reducer.

(2) A systematic fault diagnosis method was proposed to realize visual displays and
online diagnoses of the DT.

(3) The whole analysis under variable speed condition was realized and validated through
a practical application.

To supplement DT fault diagnosis, the processes used in this work are as follows:

(1) To achieve high accuracy, a whole model of a reducer is built, and a test platform is
established to acquire simulated and real signals under various operating conditions.

(2) Inorder to enable visualization and online diagnosis, field vibration data are subjected
to noise filtering and reduction techniques, thus eliminating interference in the middle
and low frequency ranges. The processed data are then integrated into the Unity3D
reducer DT fault diagnosis system.

(3) To further validate the method’s feasibility, collaboration with local enterprises is
carried out to test its practical implementation in production.

The remainder of this article is organized as follows. Section 2 introduces the con-
struction of the DT system. Section 3 provides an experimental example of the DT fault
diagnosis system. Section 4 explains the technical route of human—computer interactions
based on DTs. The feasibility of the proposed method is verified and compared with other
state-of-the-art methods. Section 5 provides the conclusions of the research.

2. Framework of Proposed Method

At present, the primary fault diagnosis categories include bearing issues (e.g., pitting,
inner and outer ring cracks, and faults in the rolling body) and gear-related problems (e.g.,
missing teeth, broken teeth, cracks, and pitting). The absence of teeth dominates in most
fields, which lowers transmission efficiency. Moreover, it induces additional vibration and
noise, gear movement dysfunction, and corruption of the device’s stability and reliability.
Furthermore, it increases gear wear under an uneven load distribution and may lead
to premature reducer failure. To address these fault types, after the initial comparison,
research on tooth absence faults under four working conditions was conducted with the
hope of supplementing the related contributions.

To begin, the finite element analysis transient dynamics module was applied to con-
struct simulation signals under different working conditions. Then, both real and simulated
signals were collected and fed into the human—-computer interaction window. In addition,
the applicability of the model under multiple working conditions was verified experimen-
tally. Finally, the accuracy of the model was judged according to the hash distance, and
further tests were carried out in the context of actual production applications. The overall
framework and fault diagnosis process of this work are shown in Figure 1.



Sensors 2024, 24, 2575

40f21

Condition

DT model architecture Experimental plan

Physical
model

Mpr
Ci] g
My Mg Test bench
! [ Test bench
Material
. -TE
asmgimem | thsical model I
Mesh Lubrication analysis
eneration
Parameter
setting Finite element Gap analysis
model
¥ Formal variable
Finite element analysis
analysis

acquisition

Structure | | Condition |Meshing| Vibration | Kinetic |
| J { J
L 2
| Finite element analysis I— 3D modeling

y

Y
II Virtual model |

‘Working condition

Simulated signal

Has

Frequency

Signal analysis

interference

Resonance
analysis

ransmission

of vibration

Database

A

=Human-computer interaction |

Human-computer interaction

Signal analysis

Time domain analysis

Probability distribution

v v _v 2
| Strike | | Rubbing | | Modulation | |Unbalanced loadl |N0nnal distributionl | Skew distribution |

| Normal | |_Breakdown |

Amplitude analysis

|No dimensional parameters |

Status information

‘ Sensor data ' Parameter of apparatus

Physical
space

Communication protocol Dynamic data

| Data transmission, Data analysis, Data processing |

Data

Running status |
| Speed reducer operating state Vibration signal speed reducer loading form |

[ c# seript cat |

Js language

Fault diagnosis data

SQL
sentence

Cloud database

Feedback|

e |

Virtual
space

Figure 1. Flowchart depicting the overall study framework.
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2.1. Physical Space of DT Model

The construction of physical models plays a crucial role in quality control, physical
property analysis, and prediction services. Physical models can be classified into static and
dynamic models, where a static physical model quantitatively describes the properties,
states, and behaviors, which are solely determined by the entity itself. On the other hand,
dynamic physical modeling extends a finite number of nodes in the time domain in order
to obtain the state distribution of dynamically changing physical systems.

The physical space parameters include the real-time operating status, parameter perfor-
mance, sensor information, data sample frequency, and measurement point configuration.
Geometric information encompasses shape, size, tolerance, coaxiality, and surface accu-
racy. Material data are determined according to the reducer material. The motion form
is determined based on the field working conditions and loading form. To collect gear
failure data, a gear failure test bench was established, which consists of a motor (YE2-90L-4),
reducer (JZQ200), magnetic powder brake (FZY400]), PLC, controller (HD800), transducer
(FS1000-2R2G/4P), and pump (DB-12A-40W), as depicted in Figure 2. The data were
collected using a B&K device with a sampling frequency of 2.56 kHz and a sampling time
of 0.2 s. A sensor was placed on the bearing end cover of the reducer to collect vibration
data during its operation.

Figure 2. The employed test bench for the reducer.

2.2. Virtual Space of DT Model

The virtual space consists of geometric data, along with external effects, where the
data are obtained from the output of the analysis model. The virtual model and test bench
are shown in Figure 3. The external data include environment, temperature, operating
conditions, and noise data. Expert knowledge, industry standards, inferences, equipment
maintenance rule bases, and fault diagnosis data can be included as other acknowledged
data; see Figure 4.

Figure 3. Virtual model of reducer.
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Virtual modeling encompasses several aspects. First, following the creation of the
model, it is saved as a STEP file. AutoCAD 2023 and SolidWorks 2023 software are utilized
to create virtual objects and simply simulate their physical properties and behavior. Second,
the model is simplified by removing overlapping or irrelevant surfaces, as well as deleting
unnecessary lines and structures. ANSYS Discovery 2023 R1 can be utilized to optimize the
grid layout and enhance simulation accuracy. Third, the model is imported into HyperMesh
2021 for further grid division. Finally, the data from the virtual sensors are combined to
form a convinced data pool. The interactive virtual data and database connection were
established using the Unity3D platform. The collected data were analyzed in order to
retrieve the data and their definitions.

The dimensions of the considered gear are listed in Table 1.

Table 1. Basic dimensions of high-speed shaft gear.

Code Meaning Value Code Meaning Value
V4 Number of teeth 22 C Radial clearance coefficient 0.25
Mn Normal module 2.5 a Center to center spacing 125
« Tooth profile angle 20 Tw Tooth width 30
ha Addendum coefficient 1 Ag Gear accuracy class 6

Following these steps, a virtual model of the reducer can be constructed. This method
is based on actual data, ensuring precise simulation results. Precise meshing is of high
importance, as it allows for accurately representation of geometric shapes and topologies
through covering more details and local features. This, in turn, facilitates more accurate
physical simulations and dynamic analyses. The completed meshing configuration is
shown in Figure 5.

Figure 5. Meshing configuration.

After grid meshing, the material properties were assigned. Accurate material pa-
rameters, such as elastic modulus, Poisson ratio, and density, are crucial when describing
material behaviors in finite element analysis. In this study, structural steel was used for the
reducer, and the parameters are listed in Table 2.
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Table 2. Structural steel material parameters.
Name Elasticity Modulus Poisson Ratio Density
Numerical value 206 GPa 0.3 7850 kg /m?3

The model was constructed based on the given parameters, and a missing tooth
fault was intentionally created; Figure 6a,b show real and modeled fault samples. To
perform a diagnostic analysis, four different working conditions were designed, which
were categorized into two loading modes: constant and variable speed.

-‘J

(a) Actual tooth failure o (b) Simulted toth failﬁre

Figure 6. Gear failure in both physical and 3D models.
2.3. Twin Space of DT Model

The twin space refers to a combination of physical and virtual spaces that encompass
the working conditions and other information of the reducer, in which, the relevant data
of the twin system can be optimized and updated. Furthermore, the system is designed
to simulate, test, and optimize various real-world conditions and faults. Through digital
modeling and simulation, it becomes possible to evaluate the performance of products
and obtain accurate predictions. This approach reduces resource consumption through the
effective utilization of virtual elements. The DT model depicted in Figure 1 was applied
to investigate the vibration patterns under various working conditions, and the modeling
process is detailed in the following.

The traditional DT model is shown in Equation (1).

MO ={I}, I, I3, P1} 1)

Here, MO and P; represent the traditional DT model of the reducer and effect of
the environment, and I, I, and I3 represent historical, behavioral data, and device
relationships, respectively.

The update model consists of online, update data, and running features, as established
in Equation (2).

MO¢yyy = {I4r 15/ MO, Plcurr} (2)

Here, MOy, is a dynamic update model driven by monitoring data, and I, Is, and Py
represent online data, updated data, and characteristics of the current device, respectively.
The DT model of the reducer was constructed as shown in Equation (3).

Mprt = {Mg, Ma, Mg} 3)

Here, Mg, My, and Mg represent the geometric, analytical, and environmental
models, respectively.
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Mg is employed for the object, encompassing both the dynamic P and mechanical
model Rg, and can be estimated using Equation (4).

Mg = {Pgr Rg} 4)

The DT model focuses on the vibration and excitation of gear meshing. The dynamic
model, Py, is defined in Equation (5).

Pg=Tior — G X Fpeqn +] x 0 5)

Here, ], 0, Ttor, G, and F,,.5, represent the gear moment of inertia, rotation angle, input
torque, transfer ratio, and meshing force, respectively. The gear meshing mechanics model
R in Equation (4) is defined in Equation (6).

Rg =K x (x1 — x2) + D X (01 — 02) + Fuuegh ©)

Here, K, x, D, and v denote the gear stiffness, displacement, damping coefficient, and
velocity, respectively.

The analytical model in Equation (7) is applied to solve the problem, outcome pre-
diction, and inference through the use of various techniques such as Hash algorithms and
Hamming distance for signal similarity, while using expert knowledge bases and historical
data for supplementary judgment.

My =1{A}, Djs, kg, hy} (7)

Here, A}, Djs, k;, and h; represent the algorithms, discriminator, knowledge bases, and
historical data, respectively.

The vibration of equipment could also be affected by environmental factors such as
temperature and noise; therefore, the environmental model in Equation (1) can be addressed
using Equation (8):

Mg ={Tg, Dg} 8)

Here, Tr and Df, represent the effects of temperature and noise.

The viscosity, friction, and load of lubricating oil can be influenced by temperature
variations, due to the deformation or damage caused by thermal expansion and contraction
of internal materials. Consequently, the temperature effect is shown in Equation (9).

Te=Cxexp(B/T)+ A x Ly x AT 9)

Here, C and B represent two empirical parameters; 77, T, L, and A represent the dynamic
viscosity, temperature, length, and linear thermal expansion coefficient, respectively.

Frequency interference, vibration transfer, and resonance are considered within the ef-
fects of noise. Resonance, in particular, potentially results in the amplification of amplitude
or destructive vibrations, and described by Equation (10):

Dg = Fo /2D (wh — w3) + /Ot G(t — T)an(T)dT + F/K\/(l —w?/wd)2+2(D x w/w3) (10)

where wy, , wy, and F.y represent the noise frequency, natural frequency, and external force,
respectively; a, (t) and G (t) denote the vibration acceleration under noise and the transfer
function; and w denotes the intrinsic angular velocity.

3. Experimental Verification of the Proposed Model
3.1. Experimental Scheme
In this experiment, four working conditions were designed to test the performance

of the reducer. First, a faultless constant speed test was conducted, where the reducer ran
smoothly at 120 rpm. The second was a faultless variable speed test, where the input speed
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gradually increased over time. The third involved a constant speed test with a missing
tooth on the high-speed shaft at 120 rpm. Finally, the simulation of the missing gear fault
was performed under a variable speed (which linearly increased with time). Although
the reducer works under various working conditions, the four conditions considered in
this experiment represent the possible issues encountered in daily operations. Obviously,
the faulty and normal states could be distinguished in the experiment. The experimental
scheme is shown in Figure 7.

Simulation Simulation

Constant Constant
speed speed

Measure Missing tooth

fault

Measure

Fault free Reducer fault
Variable

diagnosis - )
Simulation g Simulation
speed

—— Variable —_—
speed
Measure Measure

Figure 7. The flow chart of the experiment.

3.2. Experimental Boundary Condition

The program for speed control was written using WPLSoft2.51. To select the PLC
mode, the memory address of the special registers (D1062, D1115) could be changed and
the mode was set to analog voltage output. After changing the memory address of the
special registers D1062 and D1115, the PLC mode was activated for voltage output. Then,
the time conversion and the maximum analog output were set in the specific order, with
their relationship illustrated in Figure 8. COM1 was selected as the connection port, which
was utilized as a mutual port between the laptop and PLC, whose VO0-AG and AI1-GND
ports enable internal communication. Inside the PLC, a control loop was formed through
connecting the self-locking Xy and self-resetting X; ports. Additionally, the inverter was set
to analog input control mode.

Speed loading diagram Speed loading diagram
T T

121

1208

120.6

1204

1202

60

b

119.8

Speed (rpm)
Speed (rpm)

119.6

1194

119.2F

L . . .
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Time (s) Time (s)

(a) Variable speed condition (b) Constant speed condition

Figure 8. Loading form of variable speed and constant speed.

To control the speed of the reducer, the frequency of the inverter was adjusted, where
30 Hz corresponds to 120 rpm. Next, the load was applied to the brake under the corre-
sponding conditions. Subsequently, a sensor was fixed onto the reducer to acquire data
with a sampling frequency of 2.56 kHz. Finally, the faultless and faulty drive shafts were
assembled consecutively, in order to collect various forms of data. A total of 32 experiments
were conducted, yielding 87 sets of valid data.

3.3. Result Analysis

The gear fault diagnosis can be partitioned into three parts. First, the fault is deter-
mined through time domain analysis. Second, the severity of the fault is identified based
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on the amplitude. Finally, the spectrum is used to locate the fault. The specific process is
illustrated in Figure 1.

3.3.1. Data Preprocessing

Preliminary data were collected from the individual eight-repetition experiments for
each of the four conditions, which are plotted as 3D bars in this section. Out of 96 sets, a
total of 87 sets of valid data were obtained, including X (7 and 8), Y (7 and 6), Z (8 and 7) for
faultless and fault constant speed, and X (7 and 7), Y (8 and 7), and Z (8 and 7) for faultless
and fault variable speeds. The distribution of the data is shown in Figure 9.

Data chart

7.200
7.000
6. 800
6. 600
6. 400

6. 200

. 6. 000

Figure 9. Data statistics.

3.3.2. Analysis of Time Domain Signal

Figure 10 depicts the comparison of the numerical and experimental vibration time
domain signals. Figure 10a illustrates the simulated and real vibration time domain compar-
ison of the faultless reducer at a constant working speed of 120 rpm, which demonstrates
a periodic change in vibration over time and the vibration state during meshing. The
subsequent Figure 10b presents a comparison between the simulated and real signals of the
reducer under fault constant speed conditions. Comparing Figure 10a,b, the difference was
significant where the missing tooth fault apparently increased the amplitude. Figure 10c
compares the simulated and real signals under faultless variable speed conditions. It can
be seen that, as the speed increased, the time interval of vibration in the mesh decreased.
Comparing Figure 10a,c indicates that the amplitude increases with the speed, aligning
with reality. Similarly, the comparison between Figure 10c,d can also be used to monitor
the abnormal state according to the change in amplitude.
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| ~— Real
Virtual

|
|
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Figure 10. Cont.
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3.3.3. Analysis of Frequency Spectrum Signal

The mechanical model of the gear is depicted in Figure 11. Fault diagnosis was
conducted by analyzing the meshing frequency, amplitude of the harmonic component
spectrum, amplitude of the side frequency component, main frequency, and distribution
difference. In its detailed implementation, a time domain diagram is useful for fault
prediction, while spectral domain analysis is popular for the determination of the fault

type and location.

Z M,
coced --*--.--. ............. - 7---
X1 fml M
Z VA

..... . &0l SET T3 CEY TETEET TR

X2 ﬁ,z

Zi

Figure 11. Gear transmission schematic. Here I, II, and III represent the high-speed, intermediate,

and output shaft, respectively.

The meshing frequency of the gear shaft, the rotation frequency of each gear shaft,
and the gear vibration were estimated using Equations (7)—(9), respectively. The obtained

values are provided in Table 3.

fe=m/60) x Z (11)
fm=fexXZ (12)
M xx"+D x x' +K(t) x [x —e(t)] =My — i x Mq)/1y (13)
Table 3. Calculation results of specific data.
Code fe (Hz) n (rpm) fm (Hz) Code fe (Hz) n (rpm) fm (Hz)
Zq 2 120 44 Z3 0.57 34.2 11
Zy 0.57 34.2 44 Zy 0.13 7.62 11
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Here, n is the speed of the gear shaft; f, and f;, represent the rotation frequency and
meshing frequency, respectively; and m is the mass of each gear shaft.

The frequency spectrum diagram of the reducer in Section 3.3.3 was also analyzed, as
shown in Table 3, to validate the correctness of the DT model. First, the faultless and fault
constant speed cases are compared in Figure 12a. In the spectrum diagram at 1550-1570 Hz,
(fm — fe, fm + fe) can be observed on both sides of the 1562 Hz point. The spectrum reveals
that the frequency conversion band had a low amplitude and a relatively flat distribution,
suggesting that the reducer had a concentrated defect. The introduction of the missing
tooth fault intensified the amplitude of the reducer at the same frequency. The comparison
between faultless and fault variable speed conditions is illustrated in Figure 12¢, where the
amplitude under the fault condition was significantly higher. Finally, the simulation signals
of the DT model are displayed in Figure 12b,d. The analysis focused on the mid-frequency
band, where the meshing frequency and frequency doubling are clearly visible.

Frequency domain comparison Frequency domain comparison diagram
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Figure 12. Spectral correlation.

3.4. Similarity Test of Time and Frequency Results

To assess the similarity between real and simulated data, the Differential Hash and
Hamming distance methods were utilized. First, the Hash algorithm was employed to
obtain the Hash values H; and H,. Next, the Hamming distance D was obtained according
to Hy and Hj. Finally, the similarity was evaluated through a comparison between D and a
predetermined threshold. If D is less than or equal to 5, then S; and S, were considered to
be similar.

Through employing this approach, the comparison of real and simulated data was
brief and efficient. The Hash algorithm provides a concise representation of the data, while
the Hamming distance calculation quantifies the dissimilarity between the Hash values.
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Through comparison with a threshold, the data similarity could be assessed. The Hamming
distance threshold is defined by Equation (14).

d=(1/2) x (ne — kpy + 1) (14)

Here, d, n., and ky;; represent the minimum Hamming distance, code word length,
and number of information bits, respectively. This formula assumes that the code word
is constructed from binary symbols, and that each symbol is independent with equal
probability. The results are listed in Table 4.

Table 4. Similarity test results.

Code Hamming Distance Similarity
Faultless constant speed 1 99.9%
Faultless variable speed 1 99.7%
Fault constant speed 2 99.6%
Fault variable speed 4 99.3%
Average 2 99.5%

The results showed that the Hamming distance was 1 and similarity was 99.9% and
99.7% under faultless constant and variable speeds. The fault constant speed Hamming
distance was 2, with a similarity of 99.6%, and the fault variable speed Hamming distance
was 4, with a similarity of 99.3%. The results of four tests were averaged, and the final
accuracy was 99.5%. The similarity test results are provided in Table 4.

3.5. Result Conclusion and Comparison with Other Fault Diagnosis Methods

The existing fault diagnosis methods for DT reducers primarily rely on the monitoring
of an individual component, such as bearings (93.5%), gear shafts (96.3%), or shells (92.6%).
To complement the related research, a fault diagnosis approach based on a holistic model
was proposed in this study, which obtained an average accuracy rate of 99.5%, providing
an alternative for the characterization of the reducer failure state.

3.5.1. Comparison of Image Generation Methods

Many scholars have made outstanding contributions in the field of image genera-
tion [52]. Therefore, to further illustrate the efficiency of the proposed method in the
domain of virtual signal generation, the obtained results were compared with those of
CACGAN [10], ML1D-GAN [13], ACGAN [53], and CycleGAN [54]. In this study, data
sets consisting of 200 and 400 points were utilized for time domain signals. The results for
the various image generation methods are shown in Figure 13.

CACGAN ML1D-GAN
100

90¢|
80F|
708 MW % b
60f| @ CACGAN
50K Il ML1D-GAN
o] S ACGAN CycleGAN
30| M Proposed
20F7 |
Sl -««QM sl || et || e

ol

400 200

Figure 13. Comparison of image generation methods.
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Subsequently, the method detailed in Section 3.4 was employed to assess the similarity
of the generated signals. The accuracy results are listed in Table 5.

Table 5. Comparison of proposed method with other methods based on image generation.

Method Measured Data Accuracy (%)
“
MLID-GAN 200 7568
“ 5
CyeeGAN 200 7
Proposed ggg 79 69 75 4

As depicted in Table 5, when the number of training samples reached 400, the proposed
method demonstrated advantages over the alternative approaches. However, with a limited
number of data samples (200), there was a gap in diagnostic accuracy when compared to
CACGAN and ACGAN. While CACGAN effectively extracted prominent features from the
source image, it struggled with capturing subtle features present in low-amplitude regions.
This inconsistency primarily stems from a mismatch between the signal-to-noise ratio and
the source image. Similarly, ACGAN, CycleGAN, and ML1D-GAN failed to accurately
replicate the signal distribution observed in the original image, thereby inadequately
reflecting the mesh and normal signal-to-noise ratio characteristics.

3.5.2. Comparison of DT Methods
1.  Comparison of the gear fault

This section provides a comparative analysis of fault diagnosis methods leveraging DT
modeling [21]. At present, such approaches primarily focus on the individual modeling and

analysis of components such as bearings, gears, and gear shafts. The relevant parameters
of the objects and the results are provided in Table 6 and Figure 14.

Table 6. Basic dimensions of gear.

Meaning Numerical Value Meaning Numerical Value
Number of teeth 36 Gear accuracy class 6
Normal module 1.5 Elasticity modulus 206 GPa

Tooth profile angle 20 Poisson ratio 0.3
Tooth width 30 Density 7850 kg/m?

(a) Real gear (b) Virtual gear (c) Deformation result (d) Stress result
Figure 14. Contrast gear modeling.

A DT model was applied to investigate the planetary reducer gear operating at a
speed of 45 rpm. Our methodology entails modeling and simulating the gear system,
subsequently evaluating it to generate virtual signals. These signals can then be compared
against real data for validation.
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Figure 14a,b represent the virtual signal generated with the DT and the original signal,
respectively. Upon calculating the Hamming distance, values of 2 for Figures 4 and 14a,b
were obtained. This comparison highlights the ability of the DT modeling approach to
accurately represent real signals, as well as exhibiting its improved signal-to-noise ratio
(SNR) and distribution characteristics. (See Figure 15).

0.03 Real 0.03 Real
- M =T~ Virtual
0.02f 002
. 001 ; 001 ~ | . ] '
g 2 ' "
E oo ‘\
3 8
< - 0.01f < -0 01 '
Al
- 0.0211% —0.02 | |
-0.03 -0.03
opal— og—
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Data point Data point
(a) DT result comparison of gear (b) Traditional method of gear

Figure 15. Comparison of gear results.

2. Comparison of the bearing fault

To expand the fault types and assess the efficacy of the DT model for bearing fault
diagnosis, we compared it with the traditional method [55] using the HRB6205 bearing as
the basis. The pertinent parameters are elaborated in Table 7.

Table 7. Basic dimensions of bearing.

Meaning Numerical Value Meaning Numerical Value
Diameter of outer ring 46.98 Pitch diameter 39.04
Diameter of inner ring 31.10 Ball diameter 7.94

The DT model was utilized to construct the bearing fault model, with the operational
condition set at 1005 rpm, and the fault type simulated as a crack in the bearing’s inner
ring. The outcomes are depicted in Figure 16.

(a) Real bearing (b) Virtual bearing (c) Deformation result (d) Stress result

Figure 16. Contrast bearing modeling. Fault is marked by red frame.

The comparison between the proposed and original methods is shown in Figure 17a,b.
Through the Hamming distance, the similarity of (a) was found to be 97.3%. This method
captures the time-frequency characteristics of the original signal, and highlights its effec-
tiveness in bearing fault diagnosis.
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Figure 17. Comparison of bearing results.

The accuracy of DT models can be significantly enhanced through methods such
as data acquisition and integration, dynamic real-time simulation, multi-dimensional
optimization, and interactive feedback loops. An accurate representation of entities can
be achieved with the DT model, with high-quality data being collected from sensors,
operational histories, and environmental conditions. The integrity and accuracy of these
data are ensured through sophisticated acquisition and integration techniques, providing
essential input for the model. Through dynamic simulation, the capability to monitor and
predict faults in real time is enabled for the DT model. It is not confined to optimizing
a single objective or function; instead, considerations are made comprehensively across
multiple dimensions. The support for human-computer interactions allows for adjustments
and optimizations based on insights derived from the model. Moreover, the results from
actual operations are fed back into the model, facilitating continuous calibration and
optimization. This process forms a closed-loop system that fosters continuous improvement.
In essence, these attributes collectively enhance the precision and application effectiveness
of the model, showcasing its immense potential for managing, optimizing, and predicting
complex systems.

3.6. Industrial Trial of the DT Model

The DT was applied in the context of industrial production for collaboration with
enterprises to test and diagnose faults under real working conditions. In this research, we
focused on the DL0O509Y reducer. Its specific working conditions are as follows: a maximum
input speed of 1200 rpm, noise levels not exceeding 70 dB at a distance of 1.5 m from the
box, a reversal time of at least 15 min, and operation duration of 4 h. The results are shown
in Figure 18, and the similarity test was carried out using the Differential Hash algorithm
and Hamming distance, and the accuracy was 98.95%.

Frequency domain comparison

0.11F —rFaultless
—Fault

o la A bl J
100 200 300 400 500 600 700 800 900
Frequency (HZ)

Figure 18. Data comparison.
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4. Human—-Computer Interactions

The industrial DT system is a complex system that involves the integration of humans,
machines, and the environment, thus presenting various challenges in terms of human—
computer interactions. Ensuring safety, facilitating cooperation between humans and
machines, and adhering to environment rules are crucial aspects of remote control in human-
machine interactions. To achieve virtual-real interactions, it is essential to accurately model
the state of the object so that its virtual representation can simulate real-world responses,
allowing the virtual and physical worlds to maintain synchronization.

In addition, based on condition monitoring research, the interactions between the
equipment were added [56]. First, physical entities are connected to virtual models through
Universal Asynchronous Transceiver (UART) serial ports. The collected dynamic informa-
tion is then transmitted in real time to the Unity3D platform, thus reflecting the reducer’s
operational state. The status of the virtual model is continuously updated and the data are
stored in a MySQL cloud database. To interact with the database, the js language is used to
read and write information. Additionally, front-end HTML files are utilized for description
in E-Charts. Finally, a URL link is created in Unity3D to seamlessly integrate the web chart
into the platform.

The fault identification model’s calling function is compiled into a C# dynamic link
library in MATLAB using the deploy tool toolkit. In Unity3D, the C# language is used to call
the dynamic link library and import the collected real-time data. The virtual model displays
the operating status and fault alarm signal of the reducer system in real time, transmitting
the information to the operator. The sensor provides feedback on the amplitude at the
measuring point to the user. The state detection part is connected to an external camera
device, enabling real-time monitoring of the fault test platform in the real world. The status
information bar displays the feedback result after diagnosis and prediction. The measured
data in the system platform could be displayed using E-Charts. The process is shown in
Figure 1.

The integration of DT technology for condition monitoring and fault diagnosis has
been marked by a pivotal advancement towards intelligent and precise industrial main-
tenance. Through the creation of a virtual model that mirrors operational states and
behavioral traits in real time, fresh insights and approaches are provided for the health
assessment and malfunction identification of equipment. In the domain of condition mon-
itoring, the analysis of various parameters such as temperature, noise, and vibration is
conducted in real time, accurately reflecting the health of the machinery. This not only
increases the monitoring efficiency and precision, but also allows for the anticipation of
potential failures.

In the realm of fault diagnosis, good results can be achieved with DT technology
through the construction of a precise virtual counterpart that simulates performance across
different scenarios. In this way, anomalies can be pinpointed, fault origins can be swiftly
traced, and pre-emptive warnings can potentially be offered. Essentially, significant re-
finement in the processes of condition monitoring and fault diagnosis across industries
has been enabled through the use of DT models, ensuring real-time synchronization be-
tween the virtual and actual systems, thereby enabling more accurate state evaluation and
fault detection.

The reducer DT system based on Unity3D is depicted in Figure 19. The functional area
and control button are located in the upper left corner, next to the loading speed setting
interface. In the lower left corner, a real-time interface of the experimental platform is used
for state monitoring of the reducer. The real-time vibration signal is displayed in the upper
right corner, while the simulation operation module is located beneath it.
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Figure 19. Digital twin system diagram.

5. Conclusions

In this research, DT technology was utilized to construct a comprehensive model that
compensates for the shortcomings of traditional dynamic modeling and single-part analysis,
allowing the issues associated with real-time condition monitoring and fault diagnosis in
reducers to be solved. Through incorporating external factors (e.g., environmental and
noise), a DT fault diagnosis system was established. Human—computer interaction and
online diagnosis were also enabled through the use of Internet of Things (IoT) technology.

With the proposed approach, the limitations of idealized factors in modeling and the
lack of 3D visualization in traditional system were overcome, resulting in a more thorough
description of the operating state and working conditions. The DT model was integrated
with fault diagnosis for real-time condition monitoring and diagnosis of the reducer. Then,
its feasibility and accuracy regarding fault diagnosis were verified experimentally. Finally,
the DT model was validated through a test in the industrial field and compared with other
advanced methods, fulfilling our initial expectations of high accuracy, 3D visualization,
and human-machine interaction. The main conclusions of this study are as follows:

(1) The fault diagnosis of the reducer achieved in this work suggests the applicability of
DT models for the synchronization of operations in both virtual and real worlds.

(2) The experimental results show that the proposed method can ensure that the error
remains within 1%, thus achieving accurate fault diagnosis. Furthermore, the accuracy
was 99.5%, providing a reliable foundation for fault diagnosis.

(38) The diagnostic rate in the industrial application under rough working conditions
was 98.95%—indisputably lower than that obtained in the laboratory. These results
may inspire confidence in DT models for online fault diagnosis of reducers to a
certain extent.
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Nomenclature

MO The traditional DT model of a reducer D, Noise effect

I Historical data C Empirical parameters

I Behavioral data B Empirical parameters

I3 Morphological data 7 Dynamic viscosity

Py Device relationship L Length

MO¢yrr Monitor data-driven dynamic update models A Linear thermal expansion coefficient

Iy Online data W Noise frequency

Is Updated data wy Natural frequency

pycrr Current characteristics Fox External force

Mpr Reducer DT model ay(t) The vibration acceleration under noise

Mg Geometric model G(t) Transfer function

My Analytical model w Angular velocity

Mg Environmental model ¢ Damping coefficient of the reducer

Pq Dynamic model V4 Number of teeth

Re Mechanical model Mn Normal module

J The gear moment of inertia o Tooth profile angle

0 Rotation angle ha * Addendum coefficient

Ttor Input torque ca* Radial clearance coefficient

G Transfer ratio a Center to center spacing

Foesh Meshing force Tw Tooth width

K Gear stiffness Ag Gear accuracy class

x Displacement n Speed of the gear shaft

D Damping coefficient fe Rotation frequency

v Velocity fm Meshing frequency

A Algorithms m Mass of each gear shaft

Djq Discriminator d Minimum Hamming distance

ky Knowledge bases e Code word length

hy Historical data kpit Number of information bits

T, Temperature effect
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