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Abstract: This paper presents an experimental evaluation of a wearable light-emitting diode (LED)
transmitter in an optical camera communications (OCC) system. The evaluation is conducted under
conditions of controlled user movement during indoor physical exercise, encompassing both mild
and intense exercise scenarios. We introduce an image processing algorithm designed to identify a
template signal transmitted by the LED and detected within the image. To enhance this process, we
utilize the dynamics of controlled exercise-induced motion to limit the tracking process to a smaller
region within the image. We demonstrate the feasibility of detecting the transmitting source within
the frames, and thus limit the tracking process to a smaller region within the image, achieving an
reduction of 87.3% for mild exercise and 79.0% for intense exercise.

Keywords: optical camera communications (OCC); wearable devices; image processing; exercise
analysis

1. Introduction

Optical wireless communications (OWC) stand as a significant area of exploration in
mobile communication, offering advantages such as cost effectiveness, high-speed capa-
bilities, and reliable data transmission [1]. Already acknowledged as a complementary or
sometimes viable alternative to radio-frequency (RF) technology, OWC includes promising
technologies such as optical camera communications (OCC). OCC employs a light-emitting
diode (LED) as the transmitter (Tx), an image sensor (IS) (i.e., camera) as the receiver (Rx),
and light as as the signal communication carrier. This approach boasts several valuable
attributes, including low cost, high security, low power consumption, and enhanced relia-
bility. Importantly, it is devoid of electromagnetic interference, ensuring complete safety
for human health [2]. The extensive deployment of smart devices, not only smartphones
that have built-in complementary metal oxide semiconductor (CMOS) cameras and are
all interconnected within the Internet, has paved the way for innovative applications of
OCC and serves as a cornerstone for the development of OWC-based Internet of Things,
termed optical IoT (OIoT) [3]. These applications include indoor positioning systems [4],
underwater [5], localization [6], and healthcare applications [2].

Smart devices, encompassing smartphones, smartwatches, and smart clothing, are
recognized as products that seamlessly incorporate wearable technologies to distinguish
human activities [7]. Wearable devices, designed to be lightweight and compact, offer
user convenience and integrate seamlessly into clothing or accessories or directly attached
to the body (like glucose sensor patches) without disrupting daily activities. Equipped
with sensors, processors, and communication capabilities, these devices aim to provide
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specific functionalities, such as monitoring health and fitness metrics [8]. Wearable health-
monitoring sensors have become ubiquitous in our daily lives [9,10], playing a crucial role
in healthcare systems for real-time and continuous patient health monitoring [10]. They
also serve as a cornerstone for the IoT [11]. Sensors measure parameters before the OCC
system collects the data, forwarding them to the camera through integrated light-emitting
diodes. With the emergence of 6G, the integration of wearables in healthcare is poised to
expand, signaling an era of intelligent healthcare [12] characterized by enhanced sensing,
processing, and communication capabilities.

To date, only a limited body of research has explored the integration of wearable
sensors with LEDs as transmitters. For instance, in [13], medical sensors and infrared
LEDs collaborate to transmit medical data for patient monitoring. Similarly, ref. [14]
employs this combination for indoor health monitoring, taking into account patient mobil-
ity. Additionally, ref. [15] introduces an all-optical bidirectional wireless communication
system that evaluates sensor mobility, variations in orientation, and placement on the
body. Furthermore, ref. [16] investigates the performance of optical code-division multiple
access in asynchronous mode, considering the impact of mobility and random transmit-
ter orientations. Moreover, [17] explores optoelectric sensors monitoring cardiovascular
vital signs.

The use of OWC technologies in healthcare tourism has been extensively studied
in [18], including the use of this technology for monitoring elder or impaired people with
special needs. The use of wearable devices, jointly with location techniques [19], allows
detecting whether the user is immobile for long periods, has suffered a fall or a sudden
change in vital signs, or is simply leaving a predefined safety zone, in which they can
remain without requiring constant attention from their caregiver. For this cases IR emitters
can be considered instead of the visible ones, to preserve user privacy in general-purpose
environments such as hotels, without loss of generality in this proposal as near-IR can be
detected by regular CMOS-Silicon based cameras [20].

In the field of OCC, few works have been done considering wearables as transmitters.
In our previous research, we showcased a wearable LED array [21] and a fiber attached on
T-shirt [22] as distributed transmitters. Recently, there has been notable development in
various medical applications that focus on using wearable sensors to measure individuals’
health conditions. For instance, in [2], a system has been implemented for real-time remote
monitoring of a patient’s heart rate and oxygen saturation data. Similarly, in [23], a system
facilitates the transmission of multiple clinical data types, including electrocardiogram,
photoplethysmogram, and respiration signals in a home-based rehabilitation system. In
addition, OCC has demonstrated its adaptability by being combined with other technolo-
gies, giving rise to hybrid systems that leverage the strengths of each technology, thereby
enhancing their robustness [24]. Specifically, in [25], OCC is integrated with Bluetooth Low
Energy (BLE) to enable efficient, remote, and real-time transmission of a patient’s electro-
cardiogram signal to a monitor. A similar combination is explored in [26] for real-time
health monitoring, where data from body sensors is transmitted to a central gateway. In
cases where node movement in OCC can disrupt the connection, BLE steps in to ensure
continuous communication.

Analysis of human exercise routine data can provide valuable insights. For instance,
in [27], a smart exercise bike was developed specifically for rehabilitation from Parkinson’s
disease. Another example is found in [28], where a camera-based monitoring system offers
indications for cardiovascular health and optimizes training protocols. Additionally, ref. [29]
introduces a video-based heart rate detection system to monitor people’s heart rates during
exercise. Moreover, ref. [30] introduces a monitoring system for elderly people is intro-
duced, capable of autonomously identifying significant deviations in their presence pattern.
Furthermore, in [31] the proposed system determines body posture and identifies the phys-
ical condition and health of the body. Moreover, ref. [32] presents a machine learning-based
analysis of the typing pattern analysis detects depressive disorder. Similarly, ref. [33]
explores the analysis of keyboard interactions recorded on an individual’s smartphone
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can offer valuable insights into the clinical status of multiple sclerosis. Lastly, ref. [34]
investigates keystroke dynamics for the early detection of loneliness and the development
of targeted interventions.

In this study, we conduct an experimental evaluation of an OCC system utilizing
a wearable LED transmitter. The evaluation assumes controlled user movement during
physical exercise in an indoor setting. The wearable LEDs are modulated in intensity to
transmit binary data, imperceptible to the human eye but detectable by a smartphone
camera operating at a specific frequency. The camera tracks the user’s movements and
captures the transmitted data.

Our focus is on addressing challenges related to transmitter detection and
tracking [35]. To achieve this, we propose employing a template signal transmitted by the
LED, denoted as Tx, and detected in the image through a correlation process. This informa-
tion will serve a dual purpose aligned with the Integrated Sensing And Communication
(ISAC) paradigm. The main hypothesis is that the user’s position (i.e., Tx’s detection) within
the frame correlates with factors such as exercise intensity, age, gender, etc. This correlation
may be even more profound, suggesting individual differences and the potential to detect
chronic conditions or even early signs of injuries. Further exploration of this hypothesis
will be conducted in subsequent phases of the research, utilizing the acquired data. To
simplify the Tx’s detection process within the frame, we leverage the characteristics of
controlled exercise-induced movement, confining the tracking process to a smaller area
within the image.

Our envisioned system is designed to monitor the activities of individuals who are
either in good health or those who face health problems. This monitoring can take place
in various environments such as homes, gyms, ambulances, hospitals, and intensive care
units [12,36]. Consequently, it has the potential to aid in rehabilitation, sports training,
elderly care [37], early detection of musculoskeletal or cognitive diseases, and evaluations
of falls and balance. The main innovation of this study revolves around employing widely
accessible and commercially available wearable devices, including LEDs, and integrating
them with smartphones for communication purposes.

The structure of the paper is outlined as follows. Section 2 describes the system de-
signed, with the equipment employed in both the transmitting and receiving nodes and the
experimental setup. Section 3 examines the methodology, including the image processing
and the analysis of the user’s exercise. Section 4 discusses the experimental results obtained.
Ultimately, Section 5 presents the conclusions drawn from this work.

2. System Design

In this section, we provide an overview of the equipment utilized in both transmitting
and receiving nodes of the proposed system. Additionally, we provide a detailed descrip-
tion of the experimental setup. The block diagram of the proposed OCC link is shown in
Figure 1.

The system utilized for the envisioned experiment included digital signal processing
hardware and optical front-ends. The Tx consisted of a standard LED device linked to
the digital output of a micro-controller unit (MCU) (Seeeduino Xiao [38]). The devise
is comprised of 30 white LEDs, rechargeable batteries of 5 V, and a diffuser. The LED’s
transmitted illuminance at 0 cm measured with testo 545 lux meter, is 17,443 lux, while the
received illuminance at 25 cm is 105 lux.

The proposed OCC system utilizes the non-return-to-zero on-off keying (NRZ-OOK)
modulation technique for transmitting data wirelessly across a free-space channel. Employ-
ing the digital switching outputs of the micro-controller unit (MCU), the system facilitates
NRZ-OOK modulation [39]. The Tx device is modified accordingly in order to drive the
LEDs with a transistor powered directly from the battery terminals. The MCU generates
a 6-bit data packet [110100] at a rate of 0.4 ms per bit, corresponding to a modulation
frequency of 2.5 kHz per bit. This data packet is transformed into a voltage signal, directly
driving the LEDs. To overcome the MCU’s maximum current limit, a transistor is connected
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to the power source for LED driving. To enhance link performance, a repeat-packet strategy
is implemented.
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Figure 1. Block diagram of the transmitting and receiving node.

On the other hand, the Rx was a smartphone [40] camera which captures video in
rolling shutter (RS) mode. The RS-based cameras can capture the image row-by-row of
pixels, which means that different lines of the image array are exposed at various times
to read the light intensity through the sensor enabling multiple states of LEDs (ON and
OFF) can be obtained in a single frame [41]. The smartphone camera captures video from
a distance of 20–30 cm. The smartphone camera captures a 30 fps frame-rate video, with
exposure time of 83 µs, and ISO 125 [42], using resolution (7680 × 4320 px). The exposure
time is the time the camera is exposed to light and the ISO number refers to to the amount
of light the camera lets on the sensor. The most relevant parameters of the proposed system
are summarized in Table 1. It is important to note that all measurements were performed
under indoor ambient lighting conditions.

Table 1. Parameters of the system and their values.

Module Parameter Value

Tx

Light source LED array
Device dimensions 11 × 6.5 × 3.5 cm

Power supply 5 V

Microcontroller Seeeduino XIAO
(Shenzhen, China)

Illuminance 105 lux

Modulation Modulation time 0.4 ms
Data packet size 6b/packet [110100]

Rx

Smartphone camera Samsung Galaxy S23
(Suwon, Republic of Korea)

Image sensor S5KGN3
Exposure time 83 µs

Frame rate 30 fps
ISO 125

Resolution 7680 × 4320 px

Channel Link distance d 20–30 cm
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For the evaluation of the OCC system, the person wearing the Tx participated in a
controlled exercise session on a stationary bicycle. The experimental setup featuring the
wearable Tx and the Rx attached on the bicycle, is illustrated in Figure 2.

The recorded video undergoes offline processing, with the main objective being the
detection and tracking of the Tx. To achieve this, we use a template signal emitted by the
LED, which is then identified within the image through a correlation procedure, as shown
in Process 1 in Figure 1. To simplify Process 1, we leverage the characteristics of controlled
exercise-induced movement in Process 2, thereby limiting the tracking process to a smaller
area within the image. Both processes will explained in the next section.

For the exercise scenario we replaced the LED Tx, with a smartphone, and employed
an accelerometer application to measure acceleration data during the exercise. Two types
of measurements were conducted, involving the user performing mild and intense exercise
routines. Our reference system is depicted in Figure 2b.

LED Tx

Camera Rx

(a)

x

y

z

(b)
Figure 2. Experimental setup with the wearable transmitter device and the smartphone camera
receiver. (a) The user engages in physical exercise on a stationary bicycle. (b) 3D reference dimensions
of the system.

3. Methodology

In this section, we elaborate on the methodology employed for this experimental setup.
Firstly, we analyze the image processing, along with demodulation and data acquisition.
Following that, we provide a detailed analysis of exercise-related data within the context of
our experimental setup.

3.1. Image Processing

In the image processing procedure in Figure 1 (Process 1), the video is first segmented
into frames, and a single frame is chosen while a template is generated. This template
comprises three consecutive packets, each containing a sequence of [110100] bits. Due to the
RS effect, the data rate of the OCC using a CMOS camera can be significantly increased [43].

Afterward, the image frames are converted to grayscale, facilitating the extraction of
the pixel intensity profile. The correlation process involves sliding the template image over
the frame, akin to a 2D convolution, to pinpoint the 2D position of the signal captured
from the transmitting source. The blue lines within the inset of the Rx section of the block
diagram represent the average row value, while the orange line depicts the template signal,
and the red line illustrates the binarization threshold. In Figure 3, the region of interest
(ROI) in the frame, where the correlation attains the maximum value, is highlighted. This
process is carried out iteratively for all frames. The identified ROI is then used for data
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decoding. Through the application of thresholding and binarization to the acquired data,
the received signal is effectively decoded, as shown in Figure 4.
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Figure 3. Frame showing values obtained from the correlation coefficient between a random frame
and the template. The region of interest (ROI) is highlighted in red.
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Figure 4. Received grayscale signal, decoded signal, and threshold.

3.2. Exercise Analysis

For the exercise scenario mentioned above, our aim is to gain insight into the dynamics
of the exercise and capture the exercise routine. To achieve this, we make two assumptions.
Firstly, it is assumed that the individual’s average position ⟨⃗r(t)⟩ during the workout
corresponds to the initial position r⃗0 as shown in Equation (1), simplifying the analysis by
considering the average position as the starting point.

⟨⃗r(t)⟩ = r⃗0 (1)

Secondly, the analysis acknowledges the presence of inertial measurement unit (IMU)
error and accounts for cumulative errors in Equation (2) that may cause a drift in position
data over time. Despite controlled movement, factors such as sensor inaccuracies can
introduce cumulative errors, which are considered in the analysis.

⟨⃗r(t)⟩ ∼ N (⃗r0 + µ⃗N · t, σ⃗N · t) (2)

where µ⃗N and σ⃗N are the vectors derived from the IMU’s uncertainties with respect to drift
and noise, respectively. Analyzing the acceleration data a⃗(t), we obtain the position of the
user in Equation (3) by double integrating the acceleration, where v⃗0 is the initial velocity
(assumed in 0⃗ at the beginning of the routine).
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r⃗(t) =
∫ t

0

∫ t

0
a⃗(t)dtdT =

∫ t

0
(⃗v(t)− v⃗0)dt (3)

The velocity v⃗(t) at discrete time intervals j∆t in Equation (4) is a sum of acceleration
ax(i) and ay(i) with the time interval ∆t along the x and y directions, respectively. We
focus on the XY plane since it is the camera’s plane and no additional information is
needed a paior for extracting information in the sensing pathway of the ISAC-enabled
reception routines.

v⃗(j∆t) = ∆t
j

∑
i=0

ax(i∆t) · n⃗x + ay(i∆t) · n⃗y (4)

Similarly, the position r⃗ at discrete time intervals k∆t in Equation (5) is a sum of
velocity vx(j) and vy(j) with the time interval ∆t along the x and y directions, respectively.

r⃗(k∆t) = ∆t
k

∑
j=0

vx(j∆t) · n⃗x + vy(j∆t) · n⃗y (5)

Using Equation (5), the drift behavior of the IMU was analyzed after capturing 25 s of
calibrated acceleration data (removing gravity). This behavior can be observed in Figure 5,
suggesting that any analysis should be carried out within a sliding window. In addition,
the duration of that window should be lower than a few seconds to avoid any disruption
due to cumulative errors.
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V
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Drift Z

Figure 5. Drift in position data in 3D direction in axis x, y and z.

The expected value of the position can be calculated as shown in Equation (6), intro-
ducing Equation (5) into Equation (4)

E[⃗r(k∆t)] = ∆t2
k

∑
j=0

j

∑
i=0

E[ax(i∆t)] · n⃗x + E[ay(i∆t)] · n⃗y (6)

Using a moving average of the window size M, it yields Equation (7).

EM [⃗r(k∆t)] =
∆t2

M

k

∑
l=k−(M−1)

l

∑
j=0

j

∑
i=0

a⃗(i) (7)

Some additional assumptions have been made in order to simplify the process. Firstly,
reverse to the mean is considered to happen within a given window. Thereby, the averaged
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position inside that sliding window will be conserved during all the process. This statement
holds statistically given the nature of the experimental situation (static cycling). In addition,
it has been assumed that it is possible to define the size of the sliding window based on
a frequency-domain analysis of the deviation with respect to the average. This analysis,
depicted in Figure 6 and mathematically described in Equation (8), suggested that most of
the energy is concentrated in the first 47 Hz of the spectrum. This leads to a sliding window
length M of 47.
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200

100
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100
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300

400

500

600
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tu

de

Figure 6. Frequency-domain analysis of the deviation in the XY plane. Data obtained from the IMU.

Rz(τ) = F−1(F ((ax(t)) · conj(F (ax(t)))) (8)

Following the above calculations and the Process 2 in Figure 1, we determined the
frequency of the user’s position in pixels within one frame for both mild and intense
exercise scenarios. The results are presented in the following section.

4. Results

In this section, we provide a summary of the outcomes derived from applying the
image processing algorithm to the video frames obtained, as well as from the analysis of
the user’s exercise, during the previously described experiment.

The frequency of the user’s position in pixels within one frame for both mild and
intense exercise scenarios is illustrated in Figure 7a and Figure 7b, respectively. Conse-
quently, the user’s position in pixels within one frame can be depicted as the circle’s radius
in Figure 8a for mild exercise and in Figure 8b for intense exercise.
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(b)
Figure 7. Histograms representing the frequency of a user’s position in pixels within a single frame.
Each bin corresponding to the frequency of one position. (a) Mild exercise. (b) Intense exercise.
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(b)
Figure 8. Rings representing the distribution of user’s position within a single frame. Each circle’s
radius corresponding to the frequency of the user’s position. (a) Mild exercise. (b) Intense exercise.

Then, these data, combined with the data obtained from the LED Tx, provide informa-
tion about the percentage of the position data we can consider. Considering only the center
of the LED Tx from previous measurements, we determined the frequency of the center of
the LED Tx within one frame, represented by the dots in Figure 9a for mild exercise and in
Figure 9b for intense exercise. In the same figures, the circles represent the percentage of
position data (obtained from the accelerometer), spanning from 100% down to 95%.
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(b)
Figure 9. Dots representing the distribution of the LED transmitter’s center within a single frame.
Each dot corresponding to the frequency of the LED transmitter’s center. The circles representing the
percentage of the position data. (a) Mild exercise. (b) Intense exercise.

From the image processing on the video frames captured with the LED Tx, we suc-
cessfully identify the ROI and decode the received signal in all frames, despite the user’s
movement within the frame.

By combining these data with the data obtained from the accelerometer, we aim to
improve the process of ROI identification by reducing the scanning area in the frame. All the
relevant results are presented in Table 2 for mild exercise and in Table 3 for intense exercise.

Table 2. Mild exercise. Percentage of position data considered, their corresponding radius in pixels,
data included and lost from the LED transmitter and the percentage of reduction of the scanning area
in the frame.

Position Data Radius [px] Data Included Data Lost Reduction

100% 1609 100% 0% 52.9%
99% 832 97% 3% 82.6%
98% 706 92% 8% 86.1%
97% 656 85% 15% 87.3%
96% 606 82% 18% 88.6%
95% 556 65% 35% 89.7%
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Table 3. Intense exercise. Percentage of position data considered, their corresponding radius in pixels,
data included and lost from the LED transmitter and the percentage of reduction of the scanning area
in the frame.

Position Data Radius [px] Data Included Data Lost Reduction

100% 1841 100% 0% 41.2%
99% 1036 98% 2% 76.2%
98% 950 86% 14% 79.0%
97% 864 74% 26% 81.7%
96% 807 64% 36% 83.4%
95% 778 62% 38% 84.2%

The first columns of the tables display the percentage of position data considered
along with their corresponding radius in pixels in one frame, as illustrated in Figure 9.
Subsequently, the third and fourth columns present the percentage of data included within
the radius of the LED Tx, as well as the percentage of data lost. Finally, the last column
summarizes the percentage of reduction of the scanning area in the frame, depicted in
Figure 10. In general, during intense exercise, the Tx’s wider range within the frame leads
to an expansion of the scanning area.

It is evident that when all position-related data are considered, we do not lose any
LED position in the frame, resulting in a reduction in the scanning area by 52.9% for
mild exercise and 41.2% for intense exercise. On the contrary, when only 95% of the
position data are considered, 35% and 38% of the data are lost for mild and intense exercise,
respectively, despite the significant reduction in the scanning area, reaching 89.7% and
84.2%, respectively. By imposing a limitation on including 85% of the LED data to achieve a
good accuracy in our system, we observe a reduction of 87.3% for mild exercise and 79.0%
for intense exercise.
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(b)
Figure 10. Random frame with the LED transmitter. The rectangles represent the percentage reduction
of the scanning area in the frame. (a) Mild exercise. (b) Intense exercise.

5. Conclusions

In this paper, we experimentally evaluate an OCC system utilizing a wearable LED
transmitter. Evaluation is carried out under controlled user movement during physical
exercise in an indoor setting. We demonstrate the feasibility of detecting the transmitting
source within the frames. Finally, by analyzing the characteristics of controlled exercise-
induced movement, we confine the tracking process to a smaller area within the image.

Our system is intended to oversee the activities of individuals, whether they are
healthy or facing health issues, at sports training, elderly care, or rehabilitation. The
obtained results highlight the significance of our system, as detecting the user’s position
within the frame could offer valuable insights into their exercise intensity, age, gender,
and uncover individual differences. Additionally, it has the potential to identify chronic
conditions or detect early signs of injuries.

Although the proposed system has numerous advantages, there are various challenges
that need further research to improve the effectiveness of the monitoring system. Primarily,



Sensors 2024, 24, 2766 11 of 13

there is a need to improve the hardware design of the wearable device to be light in
weight, compact, user-friendly, waterproof and effortlessly incorporated into clothing
or accessories, all without causing disruptions to user’s regular activities. Online video
monitoring of individuals or multiple users in care units, gyms, or homes presents an
additional challenge. However, it could offer people a sense of safety while engaging in
their daily activities, knowing that they are being supervised in real time. Considerations
for eye sensitivity with regard to light intensity must also be taken into account, especially
in healthcare environments.

Future research will explore the relationship of the user’s position within the frame
with factors such as exercise intensity, age, or gender. This exploration will involve compre-
hensive data analysis to uncover potential correlations and implications for personalized
health monitoring. Additionally, we will investigate the efficacy of different transmitter
technologies, including LED strips and fiber optics, to determine their suitability and per-
formance in various scenarios. Moreover, understanding the influence of user movement
on data transmission and reception will be a central point, as it can significantly impact the
system’s reliability and accuracy. Furthermore, we plan to extend our experimental setup
to encompass longer distances, enabling the evaluation of the system’s performance and
robustness across larger spatial domains. This expansion will open up new possibilities for
remote monitoring applications, promoting advancements in healthcare and beyond.
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