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Abstract: Intelligent compaction (IC) has emerged as a breakthrough technology that utilizes ad-
vanced sensing, data transmission, and control systems to optimize asphalt pavement compaction
quality and efficiency. However, accurate assessment of compaction status remains challenging under
real construction conditions. This paper reviewed recent progress and applications of smart sensors
and machine learning (ML) to address existing limitations in IC. The principles and components
of various advanced sensors deployed in IC systems were introduced, including SmartRock, fiber
Bragg grating, and integrated circuit piezoelectric acceleration sensors. Case studies on utilizing
these sensors for particle behavior monitoring, strain measurement, and impact data collection were
reviewed. Meanwhile, common ML algorithms including regression, classification, clustering, and
artificial neural networks were discussed. Practical examples of applying ML to estimate mechanical
properties, evaluate overall compaction quality, and predict soil firmness through supervised and
unsupervised models were examined. Results indicated smart sensors have enhanced compaction
monitoring capabilities but require robustness improvements. ML provides a data-driven approach
to complement traditional empirical methods but necessitates extensive field validation. Poten-
tial integration with digital construction technologies such as building information modeling and
augmented reality was also explored. In conclusion, leveraging emerging sensing and artificial
intelligence presents opportunities to optimize the IC process and address key challenges. However,
cooperation across disciplines will be vital to test and refine technologies under real-world conditions.
This study serves to advance understanding and highlight priority areas for future research toward
the realization of IC’s full potential.

Keywords: pavement engineering; intelligent compaction; quality evaluation; smart sensor;
machine learning

1. Introduction

In recent years, the rapid progress of highway construction in China has been propelled
by economic and societal advancements. The utilization of asphalt pavement has been
extensive in these highway construction projects due to its durability, cost-effectiveness,
and adaptability to various climates [1–3]. However, subjected to heavy traffic loads and
environmental factors, inadequately compacted asphalt pavement may develop defects
such as cracks, ruts, and pits over time [4]. These issues significantly affect both traffic
safety and driving comfort, making it imperative to address them to enhance the pavement
performance. Among the numerous factors contributing to the substandard quality of
asphalt pavement, non-compliance with compaction standards plays a crucial role [5]. As
the final phase of the construction process, compaction assumes paramount importance
in ensuring the compactness and performance of asphalt mixture [6]. Consequently, IC
technology has emerged as a viable solution that can improve the durability and compaction
quality of asphalt pavements. Moreover, it enables accurate quality monitoring and timely
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detection of defects, thus resulting in saved construction time. Although current research
in asphalt pavement has predominantly focused on exploring new materials, structures,
and design methods, the significance of IC research in paving technology should not
be overlooked.

Conventional compaction quality inspection methods for asphalt pavement, such
as sand filling and water filling, measure the mass and volume of the samples taken on
site, calculate the density, and then compare it with the standard maximum dry density
to obtain the compaction degree. However, there are limitations in terms of speed and
accuracy. The sand filling method is renowned for its slow operation, while the water
filling method lacks accuracy in determining compaction quality [7]. Moreover, compaction
quality management practices for asphalt pavement often rely on a post-event sampling
inspection approach, which presents challenges in promptly assessing the compaction
status and ensuring overall quality control [8]. Although traditional compaction equipment
and techniques have been instrumental in attaining the desired level of compaction in road
materials over the years, they encounter significant challenges. Firstly, risks for inspectors
are introduced and potential disruptions to subsequent construction operations may arise
due to the reliance on field measurements in traditional methods [9–11]. Secondly, the lim-
ited number of test samples fails to provide a comprehensive representation of compaction
quality across the entire area [12–14], thereby hindering accurate evaluation and uniformity
assurance [15]. In addition, the correlation between the pavement density and the device
reading is essential to be established before compaction, making it less convenient and less
applicable to different materials, especially the materials with different design and materials
sources. Lastly, the absence of real-time feedback capabilities in traditional pressure equip-
ment makes it difficult for operators to make timely adjustments, potentially resulting in
issues such as over-compaction or inadequate compaction [9,16]. The inherent flaws in con-
ventional compaction practices have various implications, including diminished efficiency,
increased costs, compromised pavement performance, shortened road service life, and
augmented expenses for maintenance and repair in road construction projects. Conversely,
IC technology emerges as a promising alternative. By incorporating advanced sensing,
control, and monitoring systems, IC offers several advantages over traditional compaction
methods. Real-time feedback enables operators to make precise adjustments, ensuring
optimal compaction while minimizing risks of over-compaction or inadequate compaction.
Additionally, the ability to collect comprehensive data on compaction uniformity enhances
quality control and leads to improved pavement performance and an extended service life.
Therefore, the adoption of IC technology represents a significant advancement in the field
of compaction quality management for asphalt pavement. By addressing the limitations of
traditional methods, improved efficiency and enhanced quality control are made possible
through IC.

In the era of Industry 4.0, IC technology has undergone a revolutionary transformation
with the introduction of advanced technologies including smart sensors and ML [17–21].
The integration of modern information technology, particularly artificial intelligence, with
the traditional construction industry has become an inevitable outcome [14,22,23]. The ben-
efits brought by Industry 4.0 and digitalization are harnessed, leading to the transformation
of the construction industry through IC technology. As defined by the Federal Highway
Administration (FHWA), IC technology is an advanced compaction that utilizes rollers
equipped with state-of-the-art measurement systems, including accelerometers, global
positioning systems (GPS), infrared thermometers, and on-board reporting systems [24].
By deploying these technologies, a comprehensive and data-driven compaction control
approach is achieved, shifting compaction quality management from post-inspection to a
proactive methodology [25–27]. Through the integration of compaction monitoring systems
and remote monitoring technologies, IC ensures the timely detection and mitigation of
issues including under-compaction and over-compaction, resulting in improved pavement
performance [28]. Additionally, the utilization of precise compaction cycles within the IC
system can enhance the quality of road construction and minimize energy consumption,
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thereby reflecting the positive influence of industrialization, informationization, and intel-
ligence on modern expressway development [29–31]. The convergence of IC technology
with Industry 4.0 principles and digitalization trends enables the comprehensive recording,
sharing, and analysis of valuable data related to paving materials, construction equipment,
and techniques [32]. This data-driven approach empowers pavement operations, man-
agement, maintenance, and repair by providing a solid foundation for informed decision
making and the implementation of proactive maintenance strategies [33]. Furthermore, IC
technology has ushered in a new era of real-time temperature detection and evaluation of
pavement quality and uniformity [30]. This capability has significantly contributed to the
widespread acceptance and adoption of IC throughout the pavement industry.

Consequently, IC holds great promise for development in pavement engineering. This
study conducted a comprehensive review to facilitate a deep understanding of IC tech-
nology. The principles, components, development, and application of IC technology were
introduced. It emphasized the significance of IC as a real-time and comprehensive quality
monitoring method that can effectively address the increasing demands and challenges
faced in the pavement construction industry. The findings of this study have the potential
to guide decision-making processes regarding the implementation and utilization of IC
technology. The knowledge gained from this research can drive further advancements in
pavement compaction, ultimately leading to enhanced construction processes, improved
quality management, and increased efficiency in the industry.

2. Technical Principle and Technical Characteristics of Intelligent Compaction

IC is a sophisticated technology that achieves automatic control and precise monitoring
of compaction machinery through integration of advanced sensing devices, communication
networks, and digital control systems. Compared to traditional practices reliant on manual
operation and periodic sampling, IC represents a paradigm shift toward continuous, real-
time management of the entire compaction process from start to finish. This section
provides an in-depth examination of IC’s underlying mechanisms, core components, and
distinguishing attributes that differentiate it from conventional techniques.

2.1. Proposition of Intelligent Compaction

Prior to 2000, the progress and widespread adoption of IC technology were hindered
by both societal and technical limitations, resulting in slow advancement [34]. However, in
2002, the FHWA and American Association of State Highway and Transportation Officials
(AASHTO) took proactive measures by dispatching a team to Europe to investigate the
development of IC technology [28]. This marked a significant turning point, leading to
the increased attention and practical application of IC research in the United States [35].
The National Intelligent Compaction Project was jointly launched by the FHWA and the
transportation departments of 12 states in the United States in 2007 [36]. This project focused
on a comprehensive study of IC technology for asphalt pavement. Each participating state
conducted demonstration projects, evaluated and analyzed IC technology, and formulated
IC standards and guidelines. The resulting systematic IC standards are presented in Table 1.
Since then, research on IC has steadily grown and garnered increasing attention, particularly
from 2010 onwards [37]. Notably, construction equipment manufacturers such as BOMAG
in Boppard, Germany, Dynapac in Stockholm, Sweden, Caterpillar in IL, USA, and Sakai in
Japan have made significant contributions to IC research [15,27].

Table 1. U.S. Intelligent compaction specifications.

Organization Standard Name

FHWA Intelligent Compaction Technology for Asphalt Application. 2014
AASHTO Standard Practice for Intelligent Compaction Technology for Embankment and Asphalt Applications
AASHTO Intelligent Compaction Technology for HMA Applications. Generic-IC Specification for HMA. June, 2011
AASHTO Intelligent Compaction Technology for Embankment and Asphalt Pavement Applications
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Although previous investigations into IC predominantly focused on soil compaction
and control of soil–rock mixtures, there has been relatively less emphasis on its application
in compacting asphalt pavements. While the study of soil compaction serves as a valu-
able reference for research on asphalt pavement compaction, it is crucial to acknowledge
the substantial disparities between the two regarding their structural composition and
performance requirements, necessitating dedicated attention.

2.2. Technical Principle and Composition of Intelligent Compaction

IC technology employs vibratory rollers equipped with advanced features such as real-
time dynamic GPS, roller integrated measurement systems, feedback control mechanisms,
and on-board real-time display of all IC measurements. These rollers are utilized for
compacting various materials including soil, aggregates, and asphalt mixtures [38–40].
The integration of precision sensing technology, computer technology, and high-precision
positioning technology has given rise to a groundbreaking compaction technology, as
illustrated in Figure 1. This technology enables seamless control of compaction equipment
and facilitates instantaneous transmission of real-time information to operators [41].
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Figure 1. IC and continuous detection technology based on GPS System.

IC technology lies in the meticulous monitoring of compaction machinery through
a comprehensive information supervision system. This system utilizes a self-established
positioning reference base station to deliver position differential signals to the mobile station
installed on the compaction machinery, thereby achieving positioning accuracy at the
centimeter level. Moreover, the compaction quality is enhanced by evaluating the material’s
compaction state using parameters such as rolling speed, rolling temperature, rolling times,
and compaction degree detection value [42,43]. Figure 2 presents the fundamental principle
of the IC information supervision system.

Sensors 2024, 24, x FOR PEER REVIEW  5  of  34 
 

 

 

Figure 2. Information supervision system of IC. 

To establish an integrated management mechanism for information sharing and col-

laboration among operators, contractors, supervisors, and owners, IC technology adopts 

the architecture depicted in Figure 3. This designed system streamlines the workflow and 

ensures optimal work efficiency, while simultaneously meeting the stringent quality con-

trol requirements of construction projects [13]. 

 

Figure 3. IC technology architecture. 

The concept of IC encompasses a broad spectrum of components and functionalities. 

While compacting machines and tools like road rollers and pavers are central to the pro-

cess, IC extends beyond them. Even equipment without autonomous control over-com-

paction parameters can participate in IC. However, the key driving force behind IC is the 

advanced control system. This system enables the transmission of precise feedback control 

instructions to operators and facilitates automated regulation and control of compacting 

machines and tools. The intelligence exhibited by the control system is crucial for the suc-

cess of  IC.  It enables  the harmonious  fusion and comprehensive performance resulting 

from the interaction among the filling body, compaction tool, and control system, as de-

picted in Figure 4. The control system’s ability to adapt and optimize compaction param-

eters in real time is of utmost importance. It ensures efficient compaction processes and 

helps achieve the desired level of compaction uniformity and density [34]. 

Figure 2. Information supervision system of IC.



Sensors 2024, 24, 2777 5 of 32

To establish an integrated management mechanism for information sharing and col-
laboration among operators, contractors, supervisors, and owners, IC technology adopts
the architecture depicted in Figure 3. This designed system streamlines the workflow and
ensures optimal work efficiency, while simultaneously meeting the stringent quality control
requirements of construction projects [13].
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The concept of IC encompasses a broad spectrum of components and functionalities.
While compacting machines and tools like road rollers and pavers are central to the process,
IC extends beyond them. Even equipment without autonomous control over-compaction
parameters can participate in IC. However, the key driving force behind IC is the advanced
control system. This system enables the transmission of precise feedback control instruc-
tions to operators and facilitates automated regulation and control of compacting machines
and tools. The intelligence exhibited by the control system is crucial for the success of
IC. It enables the harmonious fusion and comprehensive performance resulting from the
interaction among the filling body, compaction tool, and control system, as depicted in
Figure 4. The control system’s ability to adapt and optimize compaction parameters in real
time is of utmost importance. It ensures efficient compaction processes and helps achieve
the desired level of compaction uniformity and density [34].
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Figure 4. Interaction of filling body–roller–control system.

2.3. Main Technical Characteristics of Intelligent Compaction

IC is distinguished by several key technical features. The vibratory roller is equipped
with an accelerometer and infrared temperature sensor on the drum, while high-precision
global positioning system equipment is utilized to map position data, which is then dis-
played to the roller operator in real time on the vehicle [44]. The measurement results of IC
are presented as a color-coded map (Red indicates Compaction Measurement Value (CMV)
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below 20, yellow indicates CMV between 20–40, green indicates CMV between 40–80, and
blue indicates CMV above 80) as depicted in Figure 5.
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2.3.1. Comparison between IC and Traditional Compaction Technology

In contrast to conventional compaction methods, the IC technology for pavement con-
struction demonstrates notable distinctions in terms of intelligent control, data recording,
and construction cost, as indicated in Table 2. IC technology is significantly superior to
traditional techniques in ensuring compaction quality and record management, and it can
provide more accurate and timely data support. The main advantage of this technology
is its real-time control capability throughout the entire process, including more precise
layer thickness control and dynamic data monitoring, which help improve road quality
and extend road life. However, when ultimately deciding which compaction technology to
use, comprehensive considerations must be made based on the specific needs, budget, and
long-term maintenance costs of the project.

Table 2. Comparison results of different compaction techniques.

Compare Options Traditional Compaction Technology IC Technology

Quality control

Relying on manual inspection and laboratory
testing, relying on a few sample points, cannot
fully represent the compaction situation of the

entire construction area.

Equipped with sensors and real-time feedback, it can
monitor the compaction status of the entire construction

surface, provide continuous quality control and
real-time optimization suggestions.

Rolling thickness
Unable to record the starting pile number,

manual control, inaccurate recording of layered
rolling thickness.

Accurately records the starting pile number and roll
thickness of each layer, and precisely controls the

compaction work. The system will consider soil type,
humidity, and other variables to obtain the best results.

Data recording

Manual operation is prone to errors, and the
recorded data may be incomplete, which cannot

meet the recording requirements of the entire
construction process data.

Capable of real-time recording and archiving of data
such as rolling frequency and quality, optimizing

construction record management.

Data display The data display lags behind and cannot display
the current compaction degree in real time.

Records and displays data in real time throughout the
entire process, and promptly identifies and marks

unqualified construction areas.

Construction cost Low cost and stable price. The cost of a single project may be 3% to 5% higher, but in
the long run, improving efficiency may offset the high costs.
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2.3.2. Main Technical Features

IC is well-suited for a variety of materials, ensuring optimal compaction during
construction—prominently for non-cohesive granular soils, fine-grained soils, crushed base
materials, and asphalt mixes. IC offers the following advantages [33,45–47]:

(1) Enhanced control and accuracy: IC systems allow operators to monitor real-time
compaction from the cab’s control box, enhancing visibility and reducing human
error. This leads to fewer instances of under or over-compaction. Additionally, data
records enable precise identification and rework of weakly compacted areas, ensuring
a uniform compaction quality.

(2) Long-term benefits: Materials exhibiting low variability contribute to improved pave-
ment performance and reduced maintenance costs in the future. The IC detection tech-
nology enhances compactness, flatness, and compaction uniformity of the subgrade
and pavement, while also closely monitoring material rigidity during re-compaction,
thus mitigating material variability.

(3) Holistic data utilization: IC systems, equipped with a suite of sensors, gather numerous
quality metrics throughout compaction, facilitating immediate operative adjustments
and long-term digital records. These parameters are valuable not only for real-time
operator utilization but also for digital storage, serving as a foundation for road
operation and maintenance in the subsequent life cycle.

(4) Enhanced construction quality and efficiency: The measured data parameters from IC
can significantly improve road construction quality. The system also enables process
control during compaction, resulting in reduced construction costs and improved
efficiency. The luffing control system automatically adjusts the amplitude based on
material compactness variations during compaction, thereby achieving a more even,
rapid, and thorough pavement material compaction.

(5) Optimized compaction energy: The roller can automatically adjust the vibration
compaction energy in accordance with soil compactness. This allows the pavement
material to be compacted efficiently with fewer compaction cycles.

2.4. Process and Key Technology of Intelligent Compaction

The IC technology, as one of the core components in the construction phase of fill-
ing engineering, is experiencing rapid development and is considered the most mature
technology in this field. The process of IC is not complex due to the automation of the
machines involved. This approach aligns with the principle that the more intelligent a
system becomes, the simpler its operation should be. However, the underlying technology
behind IC is intricate and encompasses various disciplines [15,33,43,48–52].

The IC process involves six stages (Figure 6): construction preparation, equipment inspec-
tion, correlation testing, process control, quality inspection, and settlement observation [48].
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Figure 6. IC procedure.

(1) Construction preparation

Perform an exhaustive assessment of the site to pinpoint prospective challenges in-
cluding the intricacies of the landscape, the properties of the soil, the presence of subsurface
infrastructure, and additional unique obstacles pertinent to the location. Additionally,
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material testing should be conducted to ensure compliance with specifications and stan-
dards. This includes testing the aggregate gradation, asphalt binder properties, and mixture
proportions to optimize the asphalt mixture for IC.

(2) Equipment inspection

Ascertain that the apparatus employed for densification is precisely adjusted, incorpo-
rating instrumentation such as accelerometers and navigational frameworks to meticulously
oversee the compaction process. Fine-tune the apparatus to conform to the distinctive
vibratory frequency and amplitude prerequisites of the asphalt amalgam, and authenticate
the veracity of all gauging implements to guarantee the exactitude of the collected data.
The compaction equipment should also be adjusted to the appropriate vibration frequency
and amplitude for the specific asphalt mixture. Thorough inspections of the loading and
measuring equipment should be conducted to ensure data authenticity and accuracy.

(3) Correlation test

This test establishes the relationship between the compaction control index and tradi-
tional quality indices. Through the densification of distinct test segments to varying degrees,
quantifications are recorded to establish a concordance with the pre-established norms of
excellence. Should the coefficient of correlation (r) attain or surpass the value of 0.7, such
concordance is considered adequate for the establishment of compaction objectives.

(4) Process control

During the compaction process, it is crucial to control the compaction degree, unifor-
mity, and stability. Communication technology is utilized to control the number of rolling
times and the rolling track. The IC curve, recorded during the compaction process, is
commonly used to evaluate the uniformity of subgrade compaction.

(5) Quality inspection

Self-inspection should be conducted after completing each layer, and inspections
should be carried out once the construction meets the required standards. This process
should be conducted layer by layer, section by section, and segment by segment.

(6) Settlement observation

The automatic settlement monitoring system is an unattended automated system that
utilizes embedded sensors, data acquisition systems, transmission systems, and a control
center to monitor settlement. Regular management and analysis of the collected data are
performed within this system to track and assess settlement patterns.

In summary, IC optimally leverages sensing, computation, communications and
control through its distinguishing properties. Continuous feedback control yields more
consistent outcomes versus batch-style verification. However, while progress has been
substantial, further validation under varied real-world conditions remains essential to
unlock IC’s full potential [53–55]. The following findings can be drawn:

(1) IC technologies have progressed considerably in recent decades through innovations
in sensing, data transmission, and control automation. At the core of IC systems lies
the continuous acquisition of quantitative metrics capturing a pavement material’s
compaction response through strategically positioned instruments like accelerometers,
pressure sensors, thermometers, and GNSS receivers [56].

(2) Mechanically, modern IC rollers are equipped with vibratory drums, adjustable oscilla-
tors and automatic steering to uniformly impart controlled pressures [31]. At the helm
of autonomous operations are intelligent control modules running real-time operating
systems alongside specialized microcontrollers and high-performance computing re-
sources. Accurate sub-decimeter positioning across job sites is enabled by integrated
GNSS/IMU solutions along with range finding sensors. These core hardware and
software constituents are networked through short-/long-range wireless and satellite
links to facilitate distributed edge/cloud processing and visualization.
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(3) Distinguishing IC from manual methods is its abilities to continuously monitor com-
paction in real time, directly feeding back diagnostics to operators [57]. Servo drives
automatically regulate excitation levels according to current stiffness readings in-
ferred from sophisticated measurement systems. Pervasive spatial coverage fur-
nishes location-tagged data across entire construction extents, identifying weak zones
for remediation.

3. Application of Advanced Sensors in Intelligent Compaction

Smart sensors play a crucial role in acquiring and transmitting information, making
them essential tools in modern industrial processes, as shown in Figure 7. A sensor is
a device that can detect and measure specific physical quantities and convert them into
usable output signals according to a defined rule [58]. It typically consists of a sensitive
element and a conversion element, as illustrated in Figure 8. The widespread use of sensors
can be observed in various fields, including industry, agriculture, transportation, aerospace,
national defense, resource exploration, marine development, environmental monitoring,
security protection, medical diagnosis, bioengineering, household appliances, and more.
In IC, the evolution of sensor technology is inextricably linked with the forward march of
innovation. The IC system relies on the installation of various sensors on road rollers, along
with microwave communication antennas, satellite positioning, and other technologies.
Through wireless digital transmission via the internet, the system enables visual monitoring
of subgrade compaction quality by project owners, supervisors, and construction personnel
on computer and mobile devices.
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By utilizing sensors, the IC system can achieve accurate positioning of road rollers, col-
lect real-time data on compaction parameters, and provide valuable feedback to operators.
The sensors measure and analyze factors such as vibration, temperature, and compaction
effort, allowing for precise control of the compaction process. The continuous development
of sensor technology, along with advancements in communication and data processing, has
greatly contributed to the progress of IC.

3.1. Technical Principle of Sensors

The purpose of sensors is to convert the measured physical quantities into output
signals (such as voltage, current, light wavelength, etc.) that can be utilized for informa-
tion transmission, processing, storage, display, recording, and control. Sensors provide
fundamental and intuitive signals during the compaction process, serving as a crucial
hardware component for the entire IC system. Figure 9 illustrates a conventional sensor,
which can be divided into four parts: (1) sensing element, (2) signal conditioning and
processing equipment, (3) signal processing equipment, and (4) A/D converter and sensor
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interface [55]. The key distinction between smart sensors and traditional sensors lies in
their intelligent capabilities, specifically the inclusion of an onboard microprocessor [59].
Figure 10 illustrates the components and principles of smart sensors.
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3.2. Advanced Sensors in Intelligent Compaction

In the field of IC, several advanced sensors are commonly used to enhance the moni-
toring and control of the compaction process. These sensors include SmartRock sensors,
FBG sensors, and integrated circuits piezoelectric (ICP) acceleration sensors [51,60–63].

3.2.1. SmartRock Sensors

SmartRock sensors are compact devices, typically 27 mm in size, that are fully embed-
ded in a cubic enclosure [64,65]. Figure 11 illustrates its specific form and the received data.
These sensors utilize various sensing elements such as gyroscopes, accelerometers, magne-
tometers, and stress meters to collect real-time data on parameters like time, acceleration,
quaternion, and temperature. The collected data is wirelessly transmitted in real time using
low-power Bluetooth technology and can be uploaded to cloud storage [66]. SmartRock
sensors are designed to withstand high temperatures up to 150 ◦C, making them suitable
for use in high-temperature compaction environments [67,68].
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Figure 11. SmartRock System: (a) appearance (b) SmartRock received data. (The gray vertical dotted
line is the boundary line for the monitoring stage).

SmartRock sensors have unique capabilities in studying particle movement and kine-
matics of basic materials [64,68]. Through built-in acceleration sensors, temperature sen-
sors, and Bluetooth modules, SmartRock sensors can collect real-time and wireless data
related to stress, vibration acceleration, and rotation angle of asphalt pavement under
external loads, quantitatively analyze particle migration and motion during the vibration
compaction process of graded crushed stones, and contribute to the study of vibration
compaction from macro to micro mechanical levels. Originally used for monitoring the
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stability of railway ballast, SmartRock sensors have also found applications in studying
asphalt mixtures [46,69,70]. Their high integration, functionality, durability, stability, and
ease of use make them advantageous compared to many traditional sensors used in asphalt
pavements [60].

3.2.2. Fiber Bragg Grating Sensors

FBG sensors have gained popularity in the evaluation of asphalt mixture performance
and monitoring its reaction [71,72]. FBG sensors are a type of sensor that rapidly developed
in recent decades. They offer advantages such as resistance to electromagnetic interference,
good electrical insulation, high sensitivity, embed ability, and high frequency response.
These sensors are widely used in health monitoring of critical infrastructure projects and
have significant application potential [73,74].

Fiber optics undergo deformation under external forces, temperatures, and other
loads, which can cause changes in the optical characteristics of the light transmitted within
the fiber, such as intensity, wavelength, polarization state, etc. [75]. By using detectors
such as spectroscopic analysis to measure the changes in these optical characteristics, the
deformation of the optical fiber can be calculated based on its corresponding relationship
with deformation, and then the load on the optical fiber can be calculated. The FBG sensors
operate based on the principle of measuring changes in strain and temperature by monitor-
ing the shift in the Bragg reflection center wavelength [76–78]. They typically consist of
four parts: the compression end, detection end, fixed end, and legs, as shown in Figure 12.
Different FBG sensors may exhibit variations in sensing sensitivity due to differences in
fiber and grating writing techniques, as well as fabrication errors. Calibration is neces-
sary before using FBG sensors for measurements, as materials, packaging technology, and
temperature can affect their sensing performance [79].
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3.2.3. Integrated Circuits Piezoelectric Acceleration Sensor

ICP accelerometers are widely used in various vibration testing applications due to
their small size, low susceptibility to interference, high sensitivity, cost-effectiveness, and
ease of installation. The output of the ICP accelerometer is a voltage signal, so the size of
the collected voltage signal indirectly reflects the changes in the vibration acceleration of
the vibrating wheel. The two are in a linear relationship. After analyzing the data through
self-spectrum (power spectrum) analysis, it was found that as the number of compaction
passes increases, the ratio of the second harmonic amplitude to the fundamental amplitude
gradually increases, and the compaction degree also gradually increases. In this way,
the variation of this ratio can be compared with the compaction degree measured by the
sand filling method, and a database can be established to form a built-in expert system.
Then, direct reading of the compaction degree value can be achieved through software
programming [80].
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In different application scenarios, ICP acceleration sensors, FBG sensors, and SmartRock
sensors have their own unique advantages and disadvantages. Therefore, when choosing
the right sensor, it is necessary to make a comprehensive consideration based on the specific
application needs and budget. The strengths and weaknesses of the three different sensors
are summarized in Table 3.

Table 3. Comparison of three sensors.

Sensor Advantage Disadvantages

SmartRock sensors

Real-time monitoring.
No need to dismantle or destroy the structure.
Accurate data.
Cost saving.

Dependent technology: users may need specific skills
and knowledge to operate and understand data.
Limited monitoring scope and depth.
Power supply required.

FBG sensors

High precision.
Strong anti-interference ability.
Multi parameter measurement.
Miniaturization and lightweight.
Long-term stability.

High cost.
Require special equipment: additional incentives and
measuring equipment are required.
Temperature bias problem.

ICP acceleration sensor

High sensitivity.
Wide frequency response range.
Simplified measurement system.
High measurement accuracy.

Power dependent.
More complex to deploy and maintain.
High cost.

3.3. Application of Sensors in Intelligent Compaction

For IC systems, the task of accurately collecting relevant data information is mainly
achieved through sensor devices installed in the roller equipment. During the compaction
operation, the amplitude on the rolling wheel will undergo significant changes due to the
influence of changes in the compaction degree of the road surface material. By scientifically
analyzing key features, compaction detection values can be generated. Then these values
can be compared with the expected compaction degree to determine the state of the
compacted material.

Yu and Shen [67] conducted a study using SmartRock sensors (STRDAL Intelligent
Technology Co., LTD, Nanjing, China), a wireless particle size sensor, to investigate the com-
paction performance of asphalt mixtures. They embedded SmartRock sensors in eleven as-
phalt mixtures and monitored the compaction process. This study aimed to understand the
compaction characteristics of particles in relation to the overall compaction performance.

Han et al. [51] developed an IC technology system based on BIM and Internet of
Things (IoT) technology. They created a prototype system for real-time monitoring and
management of the compaction process, as shown in Figure 13. The system utilizes high-
precision sensors such as acceleration sensors, speed sensors, and temperature sensors to
collect construction data during the compaction process.
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Tan et al. [81] proposed the application framework of FBG sensing technology in
quality control for asphalt pavement compaction. They embedded FBG sensors in asphalt
pavements to identify areas with weak compaction based on the response values of the
sensors. Additionally, the FBG sensors can be used for long-term monitoring of pavement
structural performance.

Wang, et al. [82] utilized the function that SmartRock sensors can continuously monitor
the stress, rotation, and acceleration changes of aggregates under the action of gyratory
compaction to evaluate and monitor the compaction status of asphalt mixtures in real
time. It provided a solution to optimize the compaction process and improve the quality
of construction.

Tang et al. [63] designed and developed an impact construction acceleration infor-
mation collection device based on ICP acceleration sensors and satellite positioning mea-
surement technology. They conducted compaction analysis on road rollers, determined
compaction quality, and promptly reworked unsatisfactory road sections to ensure con-
struction quality.

In 2020, the Zoomlion ZRS322E single drum IC roller, used in the construction of a
cement stabilized macadam base road in Shandong Province, was equipped with an accel-
eration sensor [56]. This sensor collected data on the vibration acceleration in the vertical di-
rection of the vibrating wheel, enabling the assessment of the subgrade compaction degree.

These examples demonstrate the application of advanced sensors such as SmartRock,
FBG sensors, and acceleration sensors in the field of IC. These sensors provide valuable
data for monitoring and controlling the compaction process, improving the efficiency and
quality of compaction operations.

Accurate sensing lies at the core of IC systems, and recent innovations have aimed to
enhance IC monitoring capabilities. SmartRock sensors, FBG sensors, and ICP acceleration
sensors are several commonly used advanced sensors in the field of IC, each with its unique
advantages and application scenarios. The following findings can be drawn:

(1) SmartRocks are compact, durable devices that incorporate MEMS gyroscopes, ac-
celerometers, and Bluetooth to wirelessly transmit real-time data on stress, rotation,
and acceleration from within mixtures under compaction. This allows quantitative
analysis of particle migration mechanics. FBG sensors embed fiber optics to detect
strain and temperature changes through Bragg wavelength shifts, finding use in pave-
ment response and performance monitoring. ICP sensors are well-suited for vibration
measurement applications given their small size, stability, and cost-effectiveness.

(2) Each sensor type presents unique strengths—SmartRocks probe internal material
behavior while FBG and ICP devices assess external responses. However, protecting
sensors from jobsite hazards and maintaining calibration stability over the long run
remain challenges.

(3) In practice, most sensors are installed on rollers to collect pressure, vibration, and ther-
mal parameters through positioning systems, guiding compaction control, and quality
evaluation. Recent studies explored utilizing SmartRocks to investigate mixture com-
paction characteristics and FBG networks to localize weak zones requiring remediation.

Overall, advanced sensing is pivotal for IC, yet further improvements in robustness
under harsh conditions are still needed. Future research must also focus on validating
sensing techniques using extensive field data to ensure reliability under diverse scenarios.
Their integration into larger digital construction frameworks also shows potential.

4. Intelligent Compaction Evaluation

In recent years, significant progress has been made in the field of IC, particularly in the
context of highway construction. Researchers have dedicated their efforts to developing
techniques and technologies that enhance the compaction process and ensure improved
compaction quality. This focus is crucial because compaction plays a vital role in the
long-term durability and performance of road pavements. As modern control technology
progresses, vibratory compaction parameters can now be automatically fine-tuned. Never-
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theless, identifying the suitable adjustments and their optimal values poses a persistent
challenge. Extensive vibration compaction test findings indicate that distinct fillers, or even
the same filler with varying gradations, necessitate specific combinations of vibration com-
paction process parameters (including exciting force, vibration quality, vibration frequency,
amplitude, etc.) to attain the most effective compaction outcome.

To evaluate the compaction quality of the subgrade in real time and meet specified
requirements, various compaction quality evaluation indices are utilized. These indices
include the CMV, Compaction Control Value (CCV), Mechanical Driving Power (MDP),
Accelerated Intelligent Compaction Value (AICV), Intelligent Compaction Measurement
Value (ICMV), Vibration Compaction Value (VCV), acceleration amplitude, and other
relevant metrics [26,33,83–88]. In particular, CMV is widely employed to assess the stiffness
of the compacted material during the compaction process.

Furthermore, Liu et al. [89] introduced the concept of the compaction value to represent
the overall compaction effect of the subgrade. Building upon this concept, they established
a rapid evaluation method for assessing the compaction quality of the entire construction
site based on the compaction value. This approach enables a comprehensive evaluation of
compaction quality and facilitates timely adjustments to the compaction process to meet
specific requirements.

(1) Compaction Measurement Value

The CMV is determined by considering the mechanical interaction between the vibrat-
ing drum and the compacted layer, providing an indication of the soil’s stiffness to a certain
extent. To calculate the CMV, the vertical acceleration time spectrum signal is collected
using an acceleration sensor during the compaction process. This signal is then subjected to
a discrete Fourier transform (DFT) to obtain the frequency spectrum signal of the vibration
acceleration. The frequency spectrum signal represents the distribution of frequencies and
their corresponding magnitudes within the vibration acceleration. By analyzing this signal,
the CMV is derived, serving as a valuable metric for assessing the compaction quality of the
material being compacted. It is important to note that this calculation method for CMV is
just one of several techniques employed in IC to evaluate compaction quality, and ongoing
research aims to enhance the accuracy and efficiency of compaction assessment methods.
The calculation equation is shown in Equation (1) [90].

CMV = C
A1

A0
(1)

where C is a constant, and the vibration frequency, amplitude, type of vibratory roller,
and other factors shall be selected according to the actual situation; A1 is the acceleration
amplitude of the first-order harmonic component of vibration; and A0 is the acceleration
amplitude of the basic component of vibration.

(2) Compaction Control Value

The CCV is a relative index that reflects the stiffness of the material being compacted
and serves as an enhanced version of the CMV by considering subharmonic components.
The CCV takes into account the Compaction Control Value of the underlying basement
layer, exhibiting a consistent change trend with it. The calculation of the CCV involves the
utilization of acceleration data for the first harmonic, fundamental, and higher harmonic
amplitudes, as shown in Equation (2) [91].

CCV = 100
A0.5Ω + A1.5Ω + A2Ω + A2.5Ω + A3Ω

AΩ + A0.5Ω
(2)

where A3Ω is the acceleration amplitude of the second harmonic component, AΩ is the
first harmonic corresponding to the amplitude, A0.5Ω, A1.5Ω, A2.5Ω, and A3.5Ω are the
acceleration amplitudes of the fundamental frequencies of 0.5, 1.5, 2.5, and 3.5, respectively.
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(3) Mechanical Driving Power

The MDP is a significant indicator used to assess the compaction quality of materials.
It measures the power required by the compactor’s drive system to achieve the desired
compaction level. The MDP is calculated by monitoring the power consumption of the
compactor during the compaction process. However, the current evaluation of this index
lacks rigorous theoretical derivation and relies on empirical estimates.

The MDP serves as a valuable metric for evaluating the compaction process and
ensuring the desired compaction level is achieved. It can be used to optimize compaction
operations by adjusting the compactor’s parameters, such as frequency and amplitude, to
achieve the desired compaction energy. Monitoring the MDP during compaction allows
for real-time assessment of the compaction quality and enables adjustments to be made if
necessary to achieve the desired compaction specifications.

(4) Accelerated Intelligent Compaction Value

The AICV is a calculation that focuses specifically on the third harmonic during the
compaction process. It is used as an index to evaluate the compaction quality of materials, as
shown in Equation (3) [47]. The AICV provides valuable information about the compaction
quality by specifically considering the contribution of the third harmonic. This harmonic
is associated with certain characteristics of the material’s response to compaction forces.
By focusing on the third harmonic, the AICV offers a more targeted assessment of the
material’s compaction behavior.

AICV = C
A2Ω + A3Ω

AΩ
(3)

where C is a constant, 100, ∆2Ω is the amplitude corresponding to the second harmonic,
∆Ω is the first harmonic corresponding to the amplitude, and ∆3Ω is the amplitude of the
third harmonic.

Monitoring the AICV during the compaction process allows for real-time evaluation
of the compaction quality and enables adjustments to be made if necessary. It serves as a
useful tool for optimizing compaction operations and ensuring that the desired compaction
specifications are met.

Compaction quality evaluation indices have the advantage of objectivity and simplicity
in evaluating problems, which can facilitate the comparison of different systems or methods.
However, we should also be aware of its limitations, and it is necessary to consider multiple
indicators in a comprehensive way and to select appropriate evaluation metrics on a case-
by-case basis to obtain more comprehensive and accurate results. Table 4 summarizes the
advantages and disadvantages of different compaction quality evaluation indices.

IC evaluation indexes play an important role in quantifying compaction quality in
real time. To assess the quality of subgrade compaction in real time, researchers utilize
various evaluation indices including the CMV, CCV, MDP, AICV, and ICMV. The following
findings can be drawn:

(1) The CMV utilizes acceleration signals derived from vibratory drum motions using
Fourier transform analysis. The CCV builds upon the CMV by incorporating ad-
ditional subharmonic components. The MDP gauges the mechanical work input
required by compactors, though its theoretical basis requires further development.
The AICV focuses analysis on the critical third harmonic component. The ICMV
integrates data from multiple sensors into a standardized metric.

(2) While these metrics provide an objective means for evaluation, each indicator presents
limitations that may be overcome by using multiple metrics comprehensively. For
example, CMV/CCV/AICV metrics require establishing baseline correlations, and
discrete test samples may not fully represent whole construction areas.

(3) Future work should continue refining theoretical underpinnings and validation of
evaluation methods considering project-specific conditions. Overall, IC evaluation
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indexes streamline quality control but balancing individual strengths and weaknesses
remains important.

Table 4. Advantages and disadvantages of different compaction quality evaluation indicators.

Compaction Quality
Evaluation Index Advantage Disadvantages

CMV

Can intuitively reflect the soil compaction degree.
Quantitative comparison.
Simple operation, do not need sophisticated
instruments and equipment.

Lack of comprehensiveness: it can only reflect
the hardness of the soil to a certain extent.
Affected by external factors.
Not suitable for different compression scenarios.

CCV

Rapid and economic.
Quantitative indicators, evaluation is more objective
and systematic.
Can be used for comparative analysis.

Depends on the maximum dry density.
Cannot reflect the engineering properties
of materials.

MDP
High reliability.
Real-time measurement during actual compaction.
Wide application.

High equipment cost.
Need a specific device and sensors.
Cannot fully reflect the compaction situation.
Affected by terrain.

AICV

Comprehensive: can comprehensively evaluate the
compaction quality.
Real-time monitoring with timely feedback
and adjustment.
Has certain adaptability.
Increased safety.

High cost.
Technical complexity.
Special or complex terrain conditions, need
human intervention.
Generate a certain amount of energy
consumption and emissions.
Accuracy depends on the precision and
reliability of the sensors used.

5. Machine Learning in Intelligent Compaction

ML plays a significant role in IC evaluation for asphalt pavements. It serves as the
core of data analysis algorithms, which process and analyze sensor data using techniques
like ML, statistics, and model prediction to assess compaction quality. By applying ML
methods, the accuracy of compaction prediction can be enhanced, leading to optimized
construction processes and improved quality control. The ML algorithms are capable of
constructing intricate models that learn from and analyze extensive datasets to predict
compaction quality.

In comparison to traditional empirical formulas and rules, ML models offer more
precise predictions of the properties and behavior of soil or rock materials under various
compaction conditions. Additionally, these models can detect potential quality issues and
risks at an early stage, enabling construction workers to take prompt measures to prevent
accidents and ensure quality standards.

5.1. Machine Learning

ML has emerged as a powerful tool for enhancing data processing efficiency. In the
field of IC, researchers have utilized ML techniques, particularly artificial neural network
models, to address geotechnical engineering challenges [92,93]. For instance, Isik and Oz-
den [94] developed an artificial neural network model to estimate compaction parameters
for a wide range of soil mixtures, demonstrating the applicability and effectiveness of their
approach. In recent years, ML algorithms have found extensive applications in various
areas of pavement engineering, including distress classification, performance prediction,
and dynamic modulus back-calculation [95,96]. Leveraging sensor data in conjunction with
ML technology has proven to be an effective method for predicting the compaction state
of asphalt mixtures [67]. As shown in Figure 14, the prediction model framework based
on ML highlights its powerful functionality and prospects in practical operations in this
application field.
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Figure 14. ML-based prediction model framework. (a) ML-based framework for predicting embedded
locking points; (b) Optimization process of PSO–ML hybrid model. (w1 and b1 represent the input
speed and position, while w2 and b2 represent the output speed and position, ξi* represents the
dispersion between real data and linear fitting).

However, future research in this field should focus on evaluating the algorithms using
field compaction data to ensure their practicality and reliability. Additionally, efforts should
be made to advance intelligent sensing technology, enabling real-time monitoring and
feedback during the compaction process. This would facilitate continuous improvement in
compaction quality and enhance the overall performance of asphalt pavements.

5.2. Common Machine Learning Algorithms

ML emerged as a scientific topic in the 1980s after being proposed in the 1950s [97].
Reasoning, knowledge, formation, and wealth have characterized its development. There
are many ML classification methods. Output results classify it as classification or regres-
sion. Supervised, semi-supervised, and unsupervised learning depend on whether the
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training dataset needs annotation. The amount of tasks handled determines single-task or
multi-task learning.

5.2.1. Regression Model

Common regression models include multiple linear regression (MLR), ridge regression
(RR), and Lasso regression (LR). Below is a brief introduction to each model.

(1) MLR is a type of linear regression model that has a larger number of features
compared to traditional linear regression [98]. Its general form is

Y = β0 + β1X1 + β2X2 + . . . + βnXn (4)

where Y is the output variable; Xi is the corresponding variable; and βi is the slope
coefficient of the corresponding variable. MLR is commonly used in linear multivariate
analysis, and the factors are independent of each other.

(2) RR is an improved least squares algorithm. When the regularization factor is
chosen as the binomial of the model parameters, the regression method is called RR [99],
which can solve the problem of data features being larger than the number of samples. The
solution of ridge regression is

ω = argmin
ω (∥y − Xω∥2

2 + λ∥ω∥2
2) (5)

where X is the input feature matrix; Y is the output matrix; ω is the parameter vector of the
model; and λ is the ridge regression parameters.

(3) LR is a type of compressed estimation. By adding L1 norm penalty as a penalty
function to the loss function, a more refined model is obtained that can compress some
coefficients to zero [100]. The loss function formula is

arg min
β

1
N

i=1

∑
N

(yi −
p=1

∑
m

βpxn
p)

2

+ λ
p=1

∑
m

|αp| (6)

where β is the parameter vector to be optimized; yi is the dependent variable value of
sample i; N is the number of samples; M is the number of feature parameters; xn

p is the p-th
feature of the nth sample; αP is the regression coefficient of the p-th feature; and λ is the
hyper parameters. LR has the advantage of subset contraction and can handle data with
multicollinearity, which refers to data with a greater number of sample features than the
number of samples.

5.2.2. Classification Model

Classification models play a significant role in ML algorithms and have a greater
number of practical applications compared to regression models. Typical classification
models comprise decision trees (DTs), Bayesian classifiers, support vector machines (SVMs),
and ensemble learning.

(1) A DT is a model approach in which non-leaf nodes represent feature attributes, branch
edges reflect the output of the feature attribute within a specific value range, and leaf
nodes represent the final category [101]. The classification path is the route from the
root node to the leaf node, and only samples that satisfy the different criteria along the
classification path will be assigned to that category.

(2) A Bayesian classifier is a technique for classifying data based on the Bayesian theorem
and the assumption that attribute features are independent. It calculates the likelihood
of a sample belonging to a specific class [102]. The Bayesian classifiers algorithm
is characterized by its straightforward algorithm logic and ease of implementation,
distinguishing it from other classification algorithms. The classification method incurs
a reduced spatial overhead. Nevertheless, in real-world scenarios, achieving perfect
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independence across all attributes is challenging, leading to subpar classification
performance of the Bayesian approach.

(3) A SVM is a supervised binary classification model that uses a sum function to train and
construct a hyperplane [103]. This hyperplane allows the SVM to accurately classify
most samples in the sample set and maximize the distance between the samples and
the hyperplane. As a result, the SVM achieves strong generalization ability.

(4) Ensemble learning refers to a strategy of constructing multiple learners to complete
classification tasks, which can combine the advantages of each learner and improve
classification performance. Common ensemble learning methods include Boosting,
Bagging, and Stacking [104]. Boosting focuses more on the portion of samples with
training errors during training, and constructs a new classifier by strengthening atten-
tion to errors to improve classification performance. Bagging constructs a classifier
structure through random resampling of data and uses the bootstrap method to obtain
N datasets from the overall sample set through put back sampling. Basic learners are
trained separately on each dataset, and the final prediction result is obtained by voting
on the output of N models. Stacking is a type of stacked ensemble model, in which the
training results of each layer will be used as input for the next layer, and ultimately the
final layer’s learner will perform comprehensive training as the output of the model.

5.2.3. Artificial Neural Network

An artificial neural network (ANN) imitates biological neural networks for function
fitting and is the foundation of various popular neural networks [105]. It has strong parallel
processing ability, fault tolerance, and automated intelligent learning ability. An ANN
is composed of a large number of interconnected nodes, each representing an activation
function, and the connections between nodes represent the weights passing through the
path. The output result of a network is determined by the overall structure of the network,
the connection method of network nodes, the activation function, and the weights.

According to different network structures or implementations, an ANN can derive
various models, such as a Multi-Layer Perceptron, Extreme Learning Machine, Generalized
Regression Neural Network, and Backpropagation Neural Network.

5.3. Application of ML in Intelligent Compaction

The combination of ML technology and IC technology can improve efficiency, ensure
quality, and reduce resource waste in compaction operations of soil, asphalt, and other
building materials. IC technology uses various sensors (such as accelerometers, GPS,
pressure sensors, etc.) to collect data on the compaction process, such as the speed of
compaction machinery, vibration frequency, rolling frequency, density and hardness of soil
or materials, etc. These data can be used to monitor and optimize the compaction process.
The ML models can assess the compactness and uniformity of the ground and provide real-
time feedback on quality. By monitoring and analyzing compactor sensor data in real time,
ML models can detect abnormal patterns and predict potential failures. This predictive
maintenance approach helps reduce equipment downtime and maintenance costs, while
improving the reliability and stability of construction projects. The application of ML in IC
can be categorized into two main aspects: data acquisition and predictive modeling.

5.3.1. Data Collection

Data acquisition serves as the foundation of IC. Through sensor networks and data
acquisition devices, real-time collection of various parameters such as pressure, vibration,
temperature, etc., from the soil and road can be achieved. This data is then transmit-
ted to ML algorithms for analysis and processing. By learning from large datasets, ML
can identify characteristic patterns of soil and roads and correlate them with successful
compaction outcomes.

There are several common methods for data collection, including the following:
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(1) Sensor Data: Various sensors, such as accelerometers, pressure sensors, wireless
sensors, and displacement sensors, are used to monitor the state and behavior of the
compactor during construction [51,67,106]. These sensors record information such as
vibration, pressure, displacement, etc., providing valuable data for ML algorithms.
However, significant practical operations concerns remain. First, sensor placement
must be sensible to cover essential measurement locations and offer useful data.
Meanwhile, in hard construction conditions, protecting sensors from damage and
maintaining calibration to ensure long-term data correctness is a question. In addition,
sensor data demands a lot of storage space, and processing it for ML algorithm analysis
requires powerful computing power and advanced data analysis.

(2) Image and Video Data: Cameras or other vision sensors capture image and video data
of the compactor and the construction site [107,108]. These data can be used to analyze
the physical properties of the soil, the position and trajectory of the compactor, and
other relevant information. The ML algorithms can extract features from images and
videos to predict and control the compaction process. However, the data in images and
videos not only requires complex preprocessing steps to ensure they can be effectively
analyzed (such as filtering out noise, lighting changes, and other interfering factors),
but they also require advanced methods for processing these data, such as computer
vision and deep learning techniques.

Therefore, in order to optimize data quality and analysis accuracy, it is usually nec-
essary to comprehensively apply multiple data sources and conduct intelligent analysis.
The comprehensive use of these data collection methods can greatly enhance the learning
effectiveness of ML algorithms and improve the intelligent monitoring and control level of
compaction. However, this also presents new challenges, including how to efficiently inte-
grate large amounts of data from multiple sources, and how to ensure the cost-effectiveness
and sustainability of the data collection process. With the continuous development and op-
timization of technology, these challenges will gradually be overcome, providing stronger
support for IC and precise engineering management.

5.3.2. Predictive Modeling

ML can build predictive models that estimate the mechanical properties of soil and
roads based on real-time collected data. These models can be adjusted according to different
construction conditions and parameters to achieve optimal compaction effects. Predictive
models provide real-time feedback and guidance to construction personnel, assisting them
in making informed operational decisions [48].

Predictive modeling plays a crucial role in the field of IC by utilizing ML algorithms
to analyze and interpret data, constructing models to predict the best practices for soil and
road construction, and further improving construction quality and efficiency. However,
in practical applications, predictive modeling is not just about building and running a
model. It involves a series of complex steps, each of which is crucial and requires precise
processing to ensure the successful application of the model.

(1) Data collection and preparation: This is the first step in modeling and a crucial part of
the entire process [51]. Sufficient quantity and quality of data need to be collected to
train and validate the model. In addition, data preparation not only needs to consider
the diversity and comprehensiveness of the data, but also ensures the accuracy and
completeness of the data. In the field of IC, this may mean collecting data from
multiple sensors and data sources (including image and video data, sound data,
sensors, etc.) and ensuring that these data can accurately reflect the actual situation of
the construction site.

(2) Data preprocessing: The collected data often contains noise, missing values, or in-
consistencies, which need to be cleaned and standardized through preprocessing
steps [50]. This may include filtering out noise, filling in missing values, data normal-
ization, etc., with the aim of making the data more suitable for model training and
accurate prediction.
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(3) Feature extraction and selection: This step involves extracting useful features from
preprocessed data and selecting the most helpful features for the prediction model.
Feature selection can not only improve the performance of the model, but also reduce
the complexity and computation time of the model.

(4) Tagged data: Tagged data is necessary for supervised learning. This process involves
assigning a correct output label to each sample in the dataset, so that the model can
learn how to predict the performance of roads.

(5) Model selection and training: Choose a suitable ML model to train data, which may
include regression models, neural networks, decision trees, etc. After selecting the
model, use the training data to train the model until it can accurately predict or classify.

(6) Model evaluation and optimization: After the model training is completed, a series of
evaluation indicators (such as accuracy, recall, F1 score, etc.) need to be used to test
the performance of the model. Based on the evaluation results, it may be necessary
to further adjust the model parameters for optimization to improve the accuracy of
the prediction.

(7) Prediction and application: The evaluated and optimized model is ready to predict
new data. The prediction results of the model can provide real-time feedback and
guidance for construction personnel, helping them adjust construction strategies and
achieve better compaction effects.

In summary, predictive modeling is a dynamic and iterative process that requires
continuous feedback and optimization to adapt to new data and environmental changes.
With the advancement of technology and the improvement of data collection technology,
the accuracy and application scope of predictive models will continue to expand, providing
stronger support for IC and construction management.

5.3.3. Practical Applications of Machine Learning

Researchers have made practical advancements in combining ML methods with IC
techniques. For example, Fathi et al. [109] combined ML methods with IC and modulus-
based field testing to estimate the mechanical properties of compacted geotechnical ma-
terials. This approach served as a local calibration process. Pereira et al. [110] proposed
using soil clay content, soil sand content, soil silt content, soil density, and soil volumetric
moisture to predict soil firmness. They established prediction models using SVM and
ANN, respectively, and compared them to find that SVM has a more stable comprehensive
prediction performance. Wang et al. [111] developed a PSO–BP–NN model to predict the
shear strength and compactness of subgrade soil within a range of mechanical properties
and compaction force. This model improved the accuracy of IC by estimating compactness
based on material properties.

Chen et al. [112] combined time domain and frequency domain characteristics with ar-
tificial neural networks to accurately evaluate overall soil compaction quality. This method
effectively classified soil compaction quality into under-compaction, optimal compaction,
and over-compaction. Xu et al. [93] established a numerical model to simulate the interac-
tion between a vibrating drum and underground soil. The model measured soil stiffness in
real time and estimated the degree of compaction, allowing for evaluation of construction
effectiveness and adjustment of vibration parameters to achieve better compaction results.
The model also provided predictions of land deformation and stress distribution, enabling
construction personnel to identify potential quality problems and risks in a timely manner
and take appropriate measures. Wang et al. [113] proposed a self-defined kernel support
vector regression model for compaction quality evaluation based on an intelligent bacterial
foraging algorithm. They adopted an enhanced probabilistic neural network for real-time
compaction quality control. The model formulated effective feedback control measures and
demonstrated its effectiveness and superiority in practical applications. These practical
applications highlight the potential of ML in IC, paving the way for improved compaction
quality control and construction efficiency.
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ML has emerged as a powerful tool to enhance data-driven decision making in con-
struction through intelligent analysis, pattern recognition, and predictive modeling. It
revolutionizes the way compaction quality is assessed and controlled in IC applications.
The following findings can be drawn:

(1) ML algorithms construct comprehensive models by training on vast amounts of
historical sensor recordings and associated construction attributes. They can then
generalize learnings to new scenarios, overcoming limitations of isolated experiments.

(2) Data collection serves as ML’s foundation, requiring representative, high-quality
inputs. Section 5.3.1 reviewed common data sourcing techniques in IC like sen-
sors, imagery, and acoustic signals. However, reliably obtaining data under field
conditions presents difficulties from environmental influences, intensive work dura-
tions, and obstructions to discrete sensor deployments. Emerging wireless technolo-
gies may strengthen robustness and seamless integration of diverse modalities for
well-rounded characterization.

(3) Multi-step procedures involving data preprocessing, feature selection, labeling, model
selection/training, evaluation/optimization, and application in various domains were
discussed. Standardization efforts could expedite sharing and cross-project learning.
Simulations may supplement limited physical testing beds for model development
and hypothesis validation.

(4) Regression, classification, and artificial neural network algorithms have proven useful
in geotechnical scenarios, for instance, when estimating mechanical properties like
strength and stiffness, evaluating compaction quality levels, and predicting moisture
contents and densities based on material attributes. Hybridizing swarm optimization
with deep networks has potential for further accuracy gains.

(5) Promising applications included estimating properties from field modulus tests, soil
firmness prediction through support vector machines, shear strength/compactness
forecasting using particle swarm-backpropagation neural networks, overall quality
assessment integrating time/frequency domain learning, and numerical solvers sim-
ulating drum–soil interactions. Future work must perform exhaustive testing on
pavement jobsites.

In summary, ML’s self-learning nature addresses gaps in empirical construction knowl-
edge while massive online data resources fuel its potential. Notwithstanding ML’s demon-
strated impacts, field-based research remains crucial before commercialization. Collabora-
tion between experts from ML, geotechnical engineering and construction management
will help maximally leverage data-driven technology for the IC domain. Concerted efforts
validating diverse algorithms through live demonstrations can then establish ML-IC as a
standardized precision construction solution.

6. Practical Application of Intelligent Compactor

The convergence of advanced sensing, computing, and control technologies has en-
abled the development of sophisticated IC machinery well suited for asphalt pavement
and soil applications [114]. This section examined representative intelligent roller systems
and case studies where IC yielded benefits.

6.1. Development and Application of Intelligent Rollers Abroad

IC technology originated in the 1970s, evolving through the 1980s as a sustainable con-
struction practice, with Europe leading its development in the late 1970s. The first decade
of the 21st century witnessed rapid development in intelligent rolling technology, with ad-
vancements in compaction control, precision, and automation by major manufacturers such
as BOMAG, Caterpillar, and HAMM [15,27,115–117]. These innovations have contributed
to improved compaction efficiency and quality in road construction projects. Tables 5 and 6
summarize the main manufacturers and key technical parameters of intelligent road rollers
for soil compaction and asphalt concrete pavement compaction.
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Table 5. Manufacturers and technical parameters of intelligent road roller for soil compaction.

Manufacturer Case BOMAG Caterpillar Dynapac Sakai

Technology
Compaction
experts and

dynamic analyzers

Automatic
amplitude

modulation
compaction

Numerical
analyzer

Digital
communications
analyzer, global

positioning system

Exact compact

Automatic feedback
system Yes Yes Yes Yes Yes

Measuring system Yes Yes Yes Yes Yes

Measurement (units) Stiffness (MN/m) Vibration modulus
(MN/m2) Compactness (/) Compactness (/) Compact

control (/)
Global positioning

capability Yes Yes Yes Yes Yes

Storage system
Compaction
experts and

dynamic analyzers

Compaction
management system

and hard disk

Laser control
system

Digital
communication

analyzer

Numerical
analyzer

Table 6. Manufacturers and technical parameters of intelligent roller for asphalt concrete compaction.

Manufacturer Case BOMAG Caterpillar Dynapac Sakai Volvo

Technology Numerical analyzer Asphalt manager Laser control
system

Digital
communication

analyzer

Exact
compact TBA

Automatic
feedback system Numerical analyzer Yes / Yes. / TBA

Measuring system Numerical analyzer Yes Yes Yes Yes Yes
Measurement

(units) / Vibration modulus
(MN/m2)

Temperature
(◦C)

Compactness
(/)

Compactness
(/) TBA

Global positioning
capability Numerical analyzer Yes Yes Yes Yes Yes

Storage system Numerical analyzer
Compaction

management system
and hard disk

Laser control
system

Digital
communication

analyzer

Aithon
MT-R

system
TBA

6.2. Intelligent Compaction System
6.2.1. BOMAG VARIOCONTROL (BVC)

The BVC system is an automated IC system that offers variable amplitude capabilities.
It employs an advanced excitation system capable of generating precise directional vibra-
tions, effectively transmitting the vibratory compaction force to the ground. By intelligently
detecting the required vibration energy at different compaction stages, the system can
dynamically adjust the vibratory compaction force in real time [118]. The BVC system
demonstrates exceptional responsiveness, with adjustment times from vertical to horizontal
orientations taking no longer than one second. This remarkable adaptability plays a crucial
role in mitigating the potential risks associated with wheel jumping or tumbling caused by
excessive compaction force. Furthermore, the user interface provides a graphical representa-
tion of the compaction zone, clearly distinguishing between standard and non-standard areas.
The system allows for the recording of compaction zone values in the form of curves [83].

6.2.2. AMMANN Compaction Expert (ACE)

The ACE system finds application in vibratory rollers, where it is employed for
soil compaction purposes. Its function involves compacting paving materials until a
specific stiffness threshold is attained. Once the desired stiffness level is reached, the
roller transitions into a measurement mode, wherein it continues to assess the stiffness of
pavement without engaging in further compaction. Notably, the continuous compaction
control computer system is responsible for recording and storing both the pavement data
and its corresponding location at the job site [45,119].
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6.2.3. DYNAPAC Single Drum Vibratory Roller Online Compaction Management System

The DYNAPAC compaction management system designed for single drum vibratory
rollers offers multiple levels of configuration. The basic configuration includes a com-
pactness meter, while the next level combines a compactness meter with a compactness
analyzer. The most advanced configuration integrates a compactness meter, compactness
analyzer, and GPS for comprehensive compaction management [14]. This system is capa-
ble of automatically adjusting the compaction parameters based on the condition of the
compaction surface. It continuously measures the hardness of the compaction surface and
alerts the operator to issues such as double jumping or over-compaction.

6.2.4. Other Intelligent Compaction Technologies

HAMMTRONIC, developed by HAMM, is an IC control system that precisely man-
ages the walking system and compaction vibration system of the equipment. It incorporates
features such as constant speed cruise, constant vibration frequency, and automatic vibra-
tion start and stop. By reducing operator difficulties and minimizing errors, this system
mitigates quality risks associated with human control.

Ingersoll Rand has introduced a compactness test system that includes a vibration step
frequency meter on the instrument panel. This system assists operators in accurately con-
trolling the ratio of vibration frequency to walking speed. It utilizes a compactness detection
system to manage road surface compactness and enables real-time adjustment of roller working
parameters based on the compactness data, thereby achieving optimal compaction and flatness.

These IC technologies, including BVC, AMMANN compaction expert, DYNAPAC
compaction management system, HAMMTRONIC, and Ingersoll Rand compactness test
system, offer advanced features and automation to enhance compaction efficiency and
quality control in road construction projects.

The IC systems provide efficient and precise control, but they come with high invest-
ment and operating costs. Therefore, it is important to select the appropriate system based
on project requirements and budget. Table 7 provides a summary of the advantages and
disadvantages of different compaction systems.

Table 7. Advantages and disadvantages of different compaction systems.

Intelligent
Compaction System Advantages Disadvantages

BOMAG
VARIOCONTROL

Automatic amplitude variation.
High working efficiency.
Precision compaction.

Higher costs.
Complex operation.
Professional training required, there
is a risk of technical failure.

AMMANN
compaction expert

Efficient, real-time monitoring and analysis of the
compaction process.
Ability to precisely control compaction parameters.
Automation, reducing the need for manual intervention and
the possibility of human error.
Real-time recording and storage of data from the
compaction process.

High investment and operating costs
Technical malfunctions may
cause interruptions.

DYNAPAC single drum
vibratory roller online

compaction
management system

Real-time monitoring and analysis of compaction data.
Real-time data collection.
Advance warning of mechanical faults.

High cost, higher investment.
Technical complexity.
High equipment dependency.

HAMMTRONIC

Highly automated.
Ensures uniform compaction on different sections.
Real-time data monitoring.
Reduced labor dependency.

High investment costs.
High technical requirements.
Fault maintenance issues may
occur frequently.

Ingersoll Rand
compactness test system

Provides reliable performance and excellent
compaction results.
Equipped with advanced technology and features to
improve construction efficiency.

High investment costs.
High technical threshold.
There is a risk of maintenance
and malfunction.
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6.3. Application Cases of Intelligent Compaction

IC technology has been effectively employed in numerous road construction projects,
exemplifying its efficacy in enhancing the quality and efficiency of construction endeavors.
As shown in Figure 15, the intelligent system can continuously measure the hardness of
the compacted surface, warning the operator of double jumping or over-compaction. For
instance, the Nanning–Zhanjiang Expressway project employed the Vogele Super 2100-3L
paver in conjunction with Hamm HD series rollers, resulting in improved construction
quality through the utilization of the BOMAG compaction measurement and documenta-
tion system. Similarly, the New Cologne–Rhine/Main Line project utilized a BW219PDH-3
pedal roller (BOMAG, Boppard, Germany) for double pressing, coupled with a BW219DH-3
smooth oscillating roller (BOMAG, Boppard, Germany), and reaped the benefits of IC tech-
nology [120]. In the TH14 Project, Ammann and Caterpillar rollers, equipped with the ACE
measurement system, automatically adjusted the compaction energy based on in-situ soil
stiffness measurements, leading to enhanced compaction efficiency [121]. Furthermore, the
BVC intelligent roller was employed on the Kansas highway to enable real-time measure-
ment of the stiffness of compacted soil, facilitating precise compaction control [122]. These
instances of implementation underscore the pragmatic utilization and positive impact of IC
technology in road construction projects.
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The practical deployment of intelligent compaction technology over the past few
decades has validated its capabilities for enhancing quality and efficiency in road construc-
tion. The following findings in this section can be drawn:

(1) Pioneering manufacturers like BOMAG, Caterpillar, Dynapac, Hamm, and Sakai have
developed specialized rollers integrating precise instrumentation, automation, and
connectivity solutions. Vibratory drum and padfoot variations suited different material
types, achieving compaction through adjustable frequency/amplitude control. Satel-
lite positioning, accelerometers, and thermal sensors provided real-time monitoring.

(2) Notable IC systems profiled in Section 6.2 included BOMAG’s VarioControl with
rapid variable amplitude modulation and precise transmission of forces. The Am-
mann compaction expert ceased compaction upon reaching stiffness thresholds while
documenting spatial data. Dynapac’s online management system incorporated com-
pactness meters and analyzers with GPS integration. Meanwhile, Hammtronics and
Ingersoll Rand introduced intelligent walking/excitation management and continuous
density evaluation.

(3) Case studies reviewed in Section 6.3 demonstrated IC’s field-proven capabilities. For
example, the Nanning–Zhanjiang Expressway project leveraged rollers integrated
with the BOMAG documentation platform. Similarly, the New Cologne–Rhine/Main
Line employed pedal and smooth drum machines. The TH14 Project utilized Ammann
and Caterpillar rollers fitted with ACE sensors automatically adjusting energy. A
Kansas highway project also featured a BOMAG intelligent system for real-time
stiffness readings.

(4) While IC presents many technical advantages, its high costs and sophistication have
posed barriers to widespread uptake, as discussed in Section 6.2.4. Cost–benefit
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analyses considering whole-lifecycle savings are therefore prudent when selecting IC
solutions. Standardization efforts and larger demonstration projects can help establish
code compliance procedures and specification guidelines.

(5) Some limitations encountered in IC applications include jobsite constraints hindering
continuous tracking, difficult terrain disrupting positioning signals, scarce techni-
cal expertise at smaller contractor levels, and long learning curves for new tech-
nologies. Future work must address these challenges to streamline integration into
mainstream practices.

In summary, IC standards and intelligent rollers have elevated compaction from labor-
intensive to precisely controlled via feedback-based automation. Case applications confirm
improved quality/throughput over periodic check-ups alone. Though high costs initially
deter small projects, demonstrated safety/durability payoffs argue for considering IC as a
preventative investment against life-cycle expenditures.

7. Summary and Conclusions

Over the past two decades, IC has transformed from an emerging concept into an
established precision construction practice, especially within highway sectors worldwide.
Driven by technological progress in areas such as sensing, communications, and control au-
tomation, IC represents a paradigm shift toward continuous, real-time management of the
entire asphalt pavement compaction process. This paper provides a comprehensive review
of the principles, components, developmental progress, and applications of IC technology.

The integration of specialized instrumentation like accelerometers, thermal sensors,
and GNSS receivers atop modern vibratory rollers facilitates constant acquisition of quanti-
tative metrics reflecting an asphalt mixture’s compaction response in real time. Advanced
smart sensors such as SmartRock sensors, FBG sensors, and ICP acceleration sensors are
also widely used in the field compaction evaluation of asphalt pavement. Through trans-
mission over network infrastructures, perceptive data from rollers and smart sensors fuels
analytical frameworks infused with ML algorithms that decode subtle indications of den-
sity, moisture, and uniformity. In turn, ML model-based controllers enforcing targeted
compaction outcomes continuously modulate excitation levels automatically according to
instantaneous stiffness readings inferred non-invasively.

However, in its practical implementation for asphalt pavement compaction, IC technol-
ogy still encounters significant challenges that warrant focused attention from the research
community. Primarily, there is a need to enhance the accuracy and reliability of data
collected from pavement job sites. Environmental factors and complex terrain make it
challenging to precisely assess compaction quality using current sensing and positioning
techniques. Additionally, limitations in data transmission methods restrict the sharing of
information between construction machinery, thereby reducing equipment flexibility and
efficiency. Furthermore, the transformation of large volumes of raw data into actionable in-
sights through processing and modeling is a complex undertaking, necessitating advanced
algorithms and computing power. Lastly, expanding the application of IC to encompass
diverse materials and construction scenarios also presents obstacles.

To overcome these challenges and maximize the value that IC brings to the pavement
industry, concerted efforts must be devoted to the following key areas in future research:

(1) Developing Reliable Sensing and Evaluation Systems

The accuracy and reliability of sensing data serves as the cornerstone for IC’s success.
Limitations of traditional sensor types highlight an urgent need for innovative sensing tech-
nology capable of withstanding harsh job site conditions. Promising solutions encompass
the integration of multi-modal sensors, advanced positioning methods resistant to signal in-
terference, and self-calibration techniques to uphold measurement accuracy over extended
periods. Equally crucial is the establishment of a standardized compaction quality rating
system that impartially evaluates pavement uniformity and aligns with specifications. A
user-friendly rating interface would streamline quality control and optimization endeavors.
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(2) Enhancing Data Collection and Transmission

The volume and diversity of data that modern sensing capacity enables far surpasses
traditional practices. However, continuously collecting representative datasets remains
a challenge, considering environmental variations, equipment mobility, and restrictions
on sensor deployment. Emerging wireless technologies presenting opportunities, such
as 5G, Bluetooth, and Wi-Fi mesh networking, could strengthen transmission robustness,
coverage, and throughput to support advanced analysis. Satellite navigation backup may
also boost positioning reliability. On the analysis front, edge and fog computing paradigms
can distribute load and latency for real-time feedback.

(3) Advancing Data Analytics and Predictive Modeling

Vast amounts of data possess significant inherent value when subjected to thorough
analysis. ML and deep learning algorithms have brought about transformative changes in
numerous sectors, with their impact on the construction industry still in its early stages
but potentially far-reaching. The creation of self-learning models customized for asphalt
pavement compaction necessitates comprehensive field testing to guarantee predictive
precision and applicability across different scenarios. Simulation methodologies could
complement constrained physical testing endeavors. The establishment of standardized
open formats and application programming interfaces would facilitate the swift exchange
of data across projects. Progress in natural language processing and computer vision could
extract valuable insights from non-numeric resources as well.

(4) Integrating with Digital Construction Technologies

The construction ecosystem consists of multiple stakeholders with diverse informa-
tion needs. BIM provides a unifying framework for digital representation, coordination,
simulation, and communication across disciplines and project phases. Integrating IC data
seamlessly into BIM would empower authorities with a comprehensive virtual environ-
ment for planning, cost estimation, scheduling, quality control, facility management, and
more. Augmented and mixed reality applications of real-time paving monitoring also show
promise. Harmonizing IC with technologies like drones, robotics, IoT, and digital twins
could optimize pavement workflows end-to-end.

(5) Validating Models and Systems through Field Projects

Field testing and validation remain essential to bridge the gap between lab research
and implementation challenges in diverse real-world settings. Larger-scale demonstration
projects provide opportunities for stakeholders to experience IC’s usefulness firsthand, es-
tablish code and specification standards, and provide feedback for continual enhancements.
Developing an open testbed network would facilitate benchmark evaluations and cross-
fertilization of ideas. Public–private partnerships can also sponsor pilot implementations
and deployment pathways. Ultimately, strengthening industry–academia collaborations
will be instrumental in addressing complex practical challenges through joint knowledge
dissemination and problem solving.

In conclusion, IC represents a transformative paradigm that upgrades asphalt pave-
ment construction to meet the precision demands of sustainable infrastructure development.
While significant milestones have been achieved, numerous technical and performance
barriers still necessitate multidisciplinary cooperation. With concerted efforts channeled
towards reliable sensing, ubiquitous connectivity, predictive analytics, digital integration,
as well as validation, verification, and demonstration, IC’s full potential to revolutionize
quality control practices and reshape our road networks can be realized.
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