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Abstract: Biomechanical assessments of running typically take place inside motion capture labora-
tories. However, it is unclear whether data from these in-lab gait assessments are representative
of gait during real-world running. This study sought to test how well real-world gait patterns are
represented by in-lab gait data in two cohorts of runners equipped with consumer-grade wearable
sensors measuring speed, step length, vertical oscillation, stance time, and leg stiffness. Cohort 1
(N = 49) completed an in-lab treadmill run plus five real-world runs of self-selected distances on
self-selected courses. Cohort 2 (N = 19) completed a 2.4 km outdoor run on a known course plus five
real-world runs of self-selected distances on self-selected courses. The degree to which in-lab gait
reflected real-world gait was quantified using univariate overlap and multivariate depth overlap
statistics, both for all real-world running and for real-world running on flat, straight segments only.
When comparing in-lab and real-world data from the same subject, univariate overlap ranged from
65.7% (leg stiffness) to 95.2% (speed). When considering all gait metrics together, only 32.5% of
real-world data were well-represented by in-lab data from the same subject. Pooling in-lab gait
data across multiple subjects led to greater distributional overlap between in-lab and real-world
data (depth overlap 89.3–90.3%) due to the broader variability in gait seen across (as opposed to
within) subjects. Stratifying real-world running to only include flat, straight segments did not mean-
ingfully increase the overlap between in-lab and real-world running (changes of <1%). Individual
gait patterns during real-world running, as characterized by consumer-grade wearable sensors, are
not well-represented by the same runner’s in-lab data. Researchers and clinicians should consider
“borrowing” information from a pool of many runners to predict individual gait behavior when using
biomechanical data to make clinical or sports performance decisions.

Keywords: wearable technology; depth statistics; unsupervised learning; free-living gait; biomechanics

1. Introduction

Individual differences in running biomechanics have been associated with both injury
and performance [1–4]. Running gait has traditionally been assessed during in-lab motion
capture sessions, but data collected under these conditions are only useful for real-world
clinical and sporting applications if the in-lab data are well-representative of gait patterns
adopted during real-world training. Since virtually all training takes place outside of the
lab, the generalizability of models or inferences based on in-lab biomechanical data to real-
world running is of paramount importance for both clinicians and researchers. Likewise,
generalizability of in-lab data presents challenges in professional sport, for similar reasons:
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gait characteristics in matches or competitions may not reflect those seen during in-lab
evaluations conducted as part of training or injury rehabilitation.

While a recent systematic review found only minor biomechanical changes when
comparing gait patterns during treadmill versus overground running [5], other work that
more directly compares in-lab to real-world running has noted changes in various aspects
of running gait. Lafferty et al. report that video-based gait analysis showed differences
in gait variables including footstrike angle, tibial inclination, and pelvic drop when com-
paring indoor treadmill versus outdoor track running [6], and Benson et al. developed a
classifier based on sensor-measured gait features that could differentiate between tread-
mill and sidewalk running with ~80% accuracy, suggesting distinctive differences in the
characteristics of gait in the lab versus in the real world [7]. To date, though, the previous
literature has focused on differences in the mean value of individual gait metrics, and
has not considered how overall gait patterns are distributed during in-lab and real-world
running. Moreover, whether differences seen in real-world running can be ascribed to
changes in the environment (e.g., turns, inclines, declines) remains unclear.

Consumer-grade sensors are particularly attractive for real-world gait assessment
because of their low cost, wide usage, and ability to synchronize data with cloud-based
training platforms, which allows researchers and clinicians to remotely collect and monitor
gait data on hundreds or thousands of runners at once [8]. Recent work has explored using
both research-grade and consumer-grade wearable sensors to characterize gait patterns
during real-world running, due to the ease with which wearable sensors can be used
outside of the lab [9,10].

Measuring a runner’s full gait pattern during real-world running is challenging despite
the utility of wearable sensors. Both consumer-grade and research-grade wearable sensors
measure only a limited number of gait metrics compared with what is possible with in-lab
motion capture equipment, and not all devices measure the same gait metrics. However,
using multiple devices together can capture gait metrics such as speed, stride length,
vertical oscillation, ground contact time, and leg stiffness. Many of these same gait metrics
are used in simplified biomechanical models of running, such as the well-studied mass-
spring model, which explains many key aspects of running biomechanics [11]. Combining
these gait metrics gives rise to the idea of a “gait pattern”—a set of gait metrics that
jointly represent the body’s movement. Comparing sensor-measured gait patterns between
runners or between different conditions (e.g., in-lab versus real-world) is a straightforward
way to quantify similarities or differences in gait.

To this end, the primary goal of this study was to compare the distribution of gait
patterns during in-lab and real-world running. Three related questions are relevant when
considering whether gait patterns during in-lab running are representative of gait patterns
during real-world running.

First, is a runner’s gait pattern during an in-lab gait analysis a good representation
of that same runner’s real-world gait pattern? This question is relevant to in-lab biome-
chanical analyses and in-lab gait retraining interventions, which are done with the aim of
generalizing from in-lab running to real-world running in the same individual.

Second, is a set of in-lab gait data from a large pool of runners a good representation
of the real-world gait pattern that might be observed in a new runner from the same
population? This question is relevant when constructing predictive models based on
in-lab data that aim to generalize to real-world running data from new, unseen runners
(i.e., runners whose data were not used to develop the model). For example, Matijevich
et al. [12] developed a sensor-based model for predicting compressive forces on the tibia.
Successfully applying this model to free-living data from runners in the same population
would require the in-lab data collected on the subjects who formed the “training set” to be
a good match for the real-world running data from a new, unseen “test” subject.

Third, is a set of in-lab gait data from a large pool of runners a good representation
of the real-world gait pattern that might be observed from a new runner from a new
population, potentially in a different geographic location? This question is relevant when
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discussing the translatability of study findings, i.e., whether statistical inferences or predic-
tive model performance from a study on one population of runners (e.g., healthy adults in
one location) will generalize to a different or more specialized population of runners (e.g.,
college-aged females in a different location). For example, this question would be important
for clinicians who want to apply findings from a published study to the real-world training
of a patient from a new population, and for researchers who want to apply a published
predictive model to a new sample of runners.

This study addressed each of these questions by quantifying the degree of overlap
between gait patterns during in-lab and real-world running, as measured by a set of
consumer-grade wearable sensors. Further, this study disaggregated the effects of the
real-world running environment (inclines, declines, and turns) from changes in gait pattern
on flat, straight settings by comparing gait patterns during all real-world running, versus
real-world running only on flat, straight segments.

2. Materials and Methods
2.1. Overview

This study involved two separate cohorts of runners representing different populations
of potential interest to researchers and clinicians. Cohort 1 consisted of healthy male and
female runners aged 18 and older who completed an in-lab treadmill run while equipped
with a set of consumer-grade wearable sensors. These same runners completed five real-
world, free-living runs using the same set of sensors. Cohort 2 followed a different protocol,
which was designed to assess the generalizability of the findings from Cohort 1 to a new
population, as well as to determine the potential sources of gait differences between in-lab
and real-world running, specifically, the influence of turns, inclines, and declines. Cohort 2
consisted of healthy female runners aged 18 and older in a different geographic location
who completed a 2.4 km run on a measured course with known segments of flat, turning,
incline, and decline running while wearing the same set of sensors as Cohort 1. This cohort
also completed five real-world, free-living runs, again using the same set of sensors.

Gait metrics from the wearable sensors were used to characterize the gait pattern
for each runner, and the distributions of these metrics during in-lab and real-world run-
ning were compared to quantify the proportion of overlap in gait patterns across these
distributions.

2.2. Participants

Cohort 1. The inclusion criteria for Cohort 1 were designed to capture a pool of runners
representative of the broader population of runners. Healthy runners aged 18 and older
were recruited, with no upper limit on age. Participants were required to run at least three
times per week with at least one run of 40 min or longer, were required to have no current
musculoskeletal injury that prevented them from doing their usual running training, and
were required to meet American College of Sports Medicine preparticipation guidelines
for exercise [13]. Runners were recruited from the community via social media, flyers at
local running stores, and in person recruitment at local running events. Recruitment and
data collection for Cohort 1 took place in Greenville, North Carolina, which is located in a
region with predominantly flat terrain. All participants provided written informed consent,
and the study was approved by the East Carolina University and Medical Center IRB and
the Indiana University IRB (protocols # 21-001137 and 12040). The sample size for Cohort 1
was determined via a learning curve power analysis for a predictive modeling goal detailed
elsewhere [14], which indicated that a minimum of 40 participants were needed.

Cohort 2. The inclusion criteria for Cohort 2 were designed to construct a more
homogenous and specialized population of runners to assess the generalizability of in-lab
data to a new population of athletes. One such specialized population often studied in
prospective research on running injuries is young adult female runners, who may be at
greater risk of overuse injury (e.g., Davis et al., Rauh et al. [15,16]). In service of this goal
of testing the generalizability of findings from the in-lab data, Cohort 2 included women
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aged 18–32 were recruited who fulfilled the same inclusion criteria as Cohort 1 (running at
least three times per week with one run lasting at least 40 min, and no current injuries or
contraindications for exercise). Runners were recruited from students at a large university
via flyers on campus and at a local running club. Recruitment and data collection for Cohort
2 took place in Bloomington, Indiana, which is located in a region with predominantly hilly
terrain. All participants provided written informed consent, and the study was approved
by the Indiana University IRB (protocol #17923). The sample size for Cohort 2 was designed
to recruit a similar number of female subjects as were recruited for Cohort 1.

2.3. Wearable Sensors and Gait Metrics

Three consumer-grade wearable sensors were used to collect gait data during in-lab
and real-world running: a sports watch with global navigation satellite system (GNSS)
capabilities (Garmin Forerunner 245, Garmin Ltd., Olathe, KS, USA) worn on the partici-
pant’s left wrist; a chest strap heart rate monitor with an integrated accelerometer (Garmin
HRM-Run and HRM-Tri, Garmin Ltd., Olathe, KS, USA), which was worn around the
chest, centered over the heart and inferior to the sternum, and a foot pod with an inte-
grated inertial measurement unit (Stryd v2, Stryd Inc., Boulder, CO, USA), which was
placed on the distal shoelaces of the left shoe. This combination of devices was chosen
because these devices are already in wide use, record and synchronize their data to remote
cloud-based training platforms, and capture key biomechanical aspects of gait that can
be used to characterize a runner’s gait pattern. Six separate matched sets of these three
devices were used to reduce any device-specific systematic errors, and to enable parallel
enrollment of multiple subjects. Three of these device sets used the HRM-Run model of
chest strap sensor, and three of these devices sets used the HRM-Tri model of chest strap
sensor; using multiple variants of this device (both of which are in wide use) expanded the
real-world generalizability of predictive models built as a separate part of the project [14].
Validation testing on a separate cohort of ten runners showed that the chest strap-measured
gait metrics show close agreement in the gait metrics measured across the two variants
of the chest strap (see Supplementary Data S1, which details mean absolute percentage
differences between devices).

Five sensor-measured gait metrics were selected to represent a runner’s gait pattern:
running speed, step length, vertical oscillation, stance time, and leg stiffness. These five
specific gait metrics were selected because they correspond to key parameters of the mass-
spring model of running, a simple and well-studied model that describes numerous aspects
of running gait [11], and because these specific metrics are measured with acceptable
accuracy by the wearable sensors. Step length and vertical oscillation were measured with
the chest strap, while stance time and leg stiffness were measured by the foot pod.

Since the GNSS technology of the sports watch does not work indoors, speed data
from the foot pod was used to measure running speed on the treadmill. Both the foot pod
and GNSS speed estimates have errors of <2% compared to ground-truth running speed in
previous research, and the foot pod’s speed data showed no statistically significant bias
against the ground-truth treadmill speed (see Supplementary Table S1) [17,18].

The accuracy of the individual gait metrics was determined empirically for runners in
Cohort 1 using motion capture data collected during the in-lab treadmill run (See Supple-
mentary Table S1 for full device metric validation results including correlation coefficients
and Bland–Altman limits of agreement). Though not all metrics are measured by the
devices with equal absolute accuracy, this study’s validation and other validation studies
on the same devices have determined that these metrics are measured with sufficiently
high accuracy compared to in-lab metrics to detect changes in gait within and across
individuals [19–21].

In the case of gait metrics measured by two sensors, the sensor which measured that
gait metric more accurately was used—this was the chest strap for vertical oscillation, and
the foot pod for stance time. Since speed, cadence, and stride length are mathematically
linked, only speed and stride length were used in the representation of a runner’s gait
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pattern, because (1) runners often vary their speed by changes in stride length as opposed to
cadence [22,23], and (2) the devices quantize cadence by mapping it to an integer number of
strides (foot pod) or an integer number of steps (chest strap) per minute. This quantization
process introduces errors compared to using stride length, which is measured by the chest
strap to the millimeter.

During all runs, the chest strap and foot pod streamed their data wirelessly to the
sports watch, which recorded the gait metric values once per second alongside GNSS-
determined latitude, longitude, and speed (during outdoor running). All gait metrics for
each running session were saved in a single Flexible and Interoperable Data Transfer (FIT)
protocol file.

2.4. Protocol

Cohort 1, in-lab run. Participants in Cohort 1 first completed a 38 min in-lab treadmill
run at speeds ranging from 30% slower to 25% faster than each runner’s self-reported
preferred running speed for a “typical training run.” This range of speeds was designed to
increase the variability in each runner’s gait as observed in the lab, as most gait-related
parameters change as a function of speed. The range of speeds was selected by comparing
data on self-reported preferred running speed from a previous in-lab study [24] with known
values for the typical walk–run transition speed in healthy adults [25] and predictive
equations for estimating lactate threshold from training pace [26]. The range of 30% slower
to 25% faster kept the slowest speeds above the walk–run transition for most adults,
avoiding uncomfortably slow speeds, and kept the fastest speeds below each runner’s
predicted lactate threshold, avoiding excessive fatigue. The speeds were presented in a
semirandomized fashion, with the slowest two speeds first, then a block of randomized
speeds, followed by the fastest two speeds at the end. This ordering was chosen to maximize
the range of speeds covered by each subject and to minimize early-onset fatigue that would
prevent subjects from completing the protocol. To minimize any potential order effects,
each subject was randomly assigned one of four randomized block orders (speed ordering
for each protocol provided in Table S2). The in-lab treadmill run, which took place as a
part of a larger study [14], was completed in a motion capture lab while equipped with the
wearable sensors.

Cohort 2, measured course run. Participants in Cohort 2 first completed a 2.4 km run
on a measured out-and-back course while under observation by research staff and while
equipped with the wearable sensors. The measured course consisted of known segments
of flat and straight running, left turns, right turns, inclines, and declines (Figure 1), all of
which were confirmed via mapping software (OpenStreetMap, accessed 28 April 2023).
The flat and straight segment was a portion of a concrete running track with inclines and
decline magnitude of <0.5% grade. The left and right turns were turning portions on this
same track. The incline and decline segments were on a paved sidewalk with an average
grade of 5.5%.

Cohorts 1 and 2, real-world runs. After completing the in-lab or measured course
run, participants in Cohort 1 and Cohort 2, respectively, were sent home with the wearable
sensors. Both cohorts were instructed to record five outdoor runs, with no restrictions on
the course, terrain, run distance, or pace. In this way, the data from the real-world runs
were designed to be a representative sample of the participants’ typical gait patterns during
their typical day-to-day training. For both cohorts, five real-world runs were selected
because previous research has shown that this number of runs is sufficient to generate
a stable characterization of the distribution of a runner’s gait pattern during real-world
running [27].
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Figure 1. Route for 2.4 km measured course run completed by participants in Cohort 2. X- and Y-axes
represent longitude and latitude. The route consisted of one counter-clockwise loop, an out-and-back
segment on the incline/decline, and one clockwise loop. True route as determined using mapping
software (OpenStreetMap) is shown in dark blue; actual global navigation satellite system (GNSS)
data recorded by the participants are shown in gray. Each gray line represents course run completed
by one subject. Shaded and labeled boxes indicate areas known to contain flat and straight running,
left turns, right turns, inclines, and declines. Black line shows 100 m to scale.

2.5. Data Extraction

Wearable sensor data from all conditions and cohorts were downloaded as .FIT format
files. For the measured course run and all real-world runs, GNSS-based location data were
downloaded as GPS Exchange Format (GPX) files from the Garmin Connect online training
platform. Elevation data in the GPX files were derived from GNSS location queries to a
database of professional land survey data. FIT and GPX data were aligned via timestamps,
which were both derived from the on-device clock on the sports watch.

Cohort 1, in-lab run. Sensor data from each of the 12 running trials were trimmed
to exclude the first 25 s and the last 15 s of each segment to remove any effects caused by
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changes in the treadmill belt speed. During these portions of the protocol, the gait metrics
recorded by the devices lag behind the runner’s true gait metrics because the treadmill belt
speed is not constant—belt speed changes gradually over several seconds to avoid causing
a trip hazard.

Cohort 2, measured course run. GNSS-based position data were cross-referenced
against latitude-longitude bounding boxes to extract segments of the measured course run
that took place within the known segments of flat and straight running, left turns, right
turns, inclines, and declines (Figure 1). These segments were identified using a ground-
truth course measured using mapping software and elevation data from OpenStreetMap.

Cohorts 1 and 2, real-world runs. Since real-world running data contain some
amount of standing and walking, portions of the real-world data which had speeds be-
low 1.56 m/s or a cadence below 100 strides per minute were excluded, following similar
strategies used in previous work [27,28]. These strategies resulted in 6.5% of real-world
data being excluded.

2.6. Data Processing

To identify straight versus turning portions of real-world running, turn rate was calcu-
lated using a central-difference derivative applied to GNSS-based position data. Details
of this central-difference scheme are described in Supplementary Data S2. An example of
turn rate data is shown in Figure 2 for a portion of the known course run.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 2. Illustration of turn rate data from one participant’s data during a portion of the known 

course run. At each global navigation satellite system (GNSS) location sample, the runner’s current 

heading is represented by a directional arrow. The central difference derivative of this heading is 

the runner’s current turn rate, in degrees per second; this turning rate is illustrated by the color of 

each heading arrow. In this case, the turn rate is positive, indicative of turning to the left (following 

the right-hand rule convention for vectors). For ease of visualization, the GNSS data have been 

downsampled by a factor of four in this figure. 

Figure 2. Illustration of turn rate data from one participant’s data during a portion of the known
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heading is represented by a directional arrow. The central difference derivative of this heading is
the runner’s current turn rate, in degrees per second; this turning rate is illustrated by the color of
each heading arrow. In this case, the turn rate is positive, indicative of turning to the left (following
the right-hand rule convention for vectors). For ease of visualization, the GNSS data have been
downsampled by a factor of four in this figure.

2.7. Identification of Flat and Straight Segments in Real-World Running

After calculating the turn rate and incline/decline of all real-world data, flat and
straight segments were identified by using cut-off thresholds for both turn rate and in-
cline/decline. These thresholds were determined using data from the flat, straight segment
of the known course run completed by runners in Cohort 2. Using the calculated turn rate
and incline/decline data from this segment, thresholds were identified which retained
>99% of datapoints from this known flat, straight segment. Applying these criteria led to a
turn rate threshold of 6.34 degrees per second and an incline/decline threshold of 2.28%
grade (Figure 3). Notably, this empirically-derived grade threshold is very similar to the
2% grade threshold used to identify flat portions of running in Benson et al. [27]. These
thresholds are nonzero because of the inherent jitter in GNSS data caused by atmospheric
conditions, buildings, and other sources of interference. As a consequence of this jitter,
even running on a perfectly flat and straight segment can result in nonzero calculated
incline/decline and turn rate data.
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of calculated incline/decline data from the known course run in Cohort 2 on known segments
of downhill, flat and straight ground, and uphill running. Dashed lines show ±2.28% grade, the
empirically-determined cut-off that retains >99% of running on the known flat, straight segment.
(B) Subject-by-subject turn rates for the left turn, flat and straight, and right turn segments of the
known course run in Cohort 2. Dashed lines show ±6.34 deg/s, the empirically-determined cut-off
that retains >99% of running on flat, straight ground. For both the incline/decline and turn rate data,
the known segments are clearly and reliably identified across subjects. Each line shows the trajectory
of one participant from Cohort 2.

2.8. Statistical Comparison of Gait Patterns

Two methods were used to quantify distributional overlap between sets of gait pat-
terns (e.g., in-lab and real-world gait patterns): a univariate analysis and a multivariate
depth analysis.

Univariate analysis. The univariate analysis treated each gait metric separately. For
each gait metric and each comparison, the overlap between a reference distribution D and
a new distribution D* was calculated as follows:

1. Calculate the central 95% range of the points in D. This corresponds to the [2.5%, 97.5%]
quantiles of this gait metric in this distribution.

2. Calculate the proportion of points in D* which fall within this central 95% range
calculated from D.

3. Data points in D* which fall within this central 95% range were considered to be
well-represented by the reference distribution D (Figure 4).
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Figure 4. Example of univariate analysis applied to each of the five gait metrics from in-lab and
real-world data from the same runner. The real-world data are represented by the green data points
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on the top portion of each plot panel, and the in-lab data are represented by the blue points on the
bottom portion of each panel. Overlap is quantified as the proportion of real-world data which fall
within the central 95% of the in-lab data (illustrated in blue shaded region).

Depth analysis. The univariate analysis cannot detect changes in how multiple gait
metrics covary together. For example, if the speed–stride length relationship differs for a
particular subject inside the lab versus outside the lab, this shift would not be fully captured
by the univariate analysis. The multivariate approach using depth statistics was used to
address this shortcoming.

The concept of statistical depth quantifies how “deep” in a multivariate distribution
(or point cloud) a given point is, relative to the rest of the data in the K-dimensional point
cloud, where the number of dimensions (K) is the number of variables of interest [29]. The
depth of a data point in a point cloud is a measure of how centrally-located it is with respect
to the rest of the distribution, and can be thought of as a multivariate generalization of the
median. This study used Tukey’s half-space depth because of its simplicity, interpretability,
and the availability of fast approximation methods that are scalable to large datasets (such
as the ~500,000 data points collected during Cohort 1′s real-world training) [29]. The
half-space depth of a point d with respect to a point cloud D is calculated as the smallest
possible fraction of all data points in a point cloud that can be separated from the remaining
points by a half-space that contains point d (illustrated in Figure 5). A half-space is the
portion of K-dimensional space that lies on one side of an K − 1 dimensional hyperplane
in K-dimensional space. Concretely, Figure 5 shows points in two dimensions; a one-
dimensional line partitions two-dimensional space into two half-spaces.

This depth analysis method was used to assign a depth to every point in a point cloud
D (e.g., the in-lab gait data from one subject), with the depth of each point quantifying how
well-represented that point is with respect to the overall data distribution. The depth of a
new point d∗ from a new point cloud D∗ (for example, the real-world gait data from the
same subject) was calculated relative to the original point cloud D. In this way, the depth
of a data point d∗ with respect to D quantifies how well-represented that new observation
is compared to the reference data distribution.

Within the original data distribution D, there exists a convex hull that contains 95% of
all of the data points in D, termed the 95% depth region, just like the [2.5%, 97.5%] quantiles
from the univariate analysis contain 95% of all observations of a single variable. The depth
value that denotes the minimum depth of this 95% depth region is termed the 95% depth
cut-off, and is calculated by finding the cumulative 95% quantile of the depth of all data
points in D. As with the univariate analysis, this study considered this 95% depth cutoff
as denoting the space of gait patterns that can be considered “well-represented” in the
reference distribution.

The depth analysis proceeded as follows, using the example of the comparison of
in-lab gait patterns from one runner to the real-world gait patterns from that same runner.
In this example, the gait pattern is a five-dimensional point d which contains the five
sensor-measured gait metrics.

1. Define the reference distribution of gait patterns, D (e.g., a set of five-dimensional
vectors containing all in-lab gait data from one subject in Cohort 1).

2. Calculate the half-space depth for all points d ∈ D, with respect to the reference
distribution D.

3. Calculate the 95% depth cutoff by finding the 95% quantile value of the depth values
for all points in D.

4. Define the new distribution of gait patterns, D∗ (e.g., real-world data from the same
subject in Cohort 1).

5. Calculate the half-space depth for all points d∗ ∈ D∗, with respect to the distribution D.
6. Calculate the proportion of points in D∗ that are as deep or deeper than the 95% depth

cutoff determined in step 3.
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Figure 5. Illustrative example of half-space depth calculation for data in two dimensions (K = 2).
Given a reference distribution as a point cloud D (shown in panel (A)), the depth value of any point d
(highlighted in red) relative to the reference distribution can be calculated as the minimum proportion
of the reference data that can be “sliced off” by a half-space (in 2D, a line) that contains d (shown in
panel (B)). In the example here, very few data points are sliced off by the half-space, and as such,
the point d has a low depth value associated with it. In comparison, the points at the center of the
point cloud (yellow) have higher depth values. The depth for each point in a new distribution D∗

can also be calculated with respect to the original reference distribution D (panel C). A point can be
considered “well-represented” if it falls within the 95% convex hull of the reference distribution D.
This convex hull is shown as the green shell in pane (D). The 95% convex hull contains the deepest
95% of the data from the reference distribution D. Though this figure illustrates depth using data in
only two dimensions, the same methods can be applied to data in higher dimensions as well.

The proportion of points that are as deep or deeper than the 95% depth cutoff is the
proportion of points in D∗ which are well-represented by the distribution of points in D. In
the example from above, this would be the proportion of data collected during real-world
running that is well-represented by the in-lab gait data for that subject. This concept is
illustrated in a simple two-dimensional example in Figure 5. Because this analysis uses five
gait metrics to represent a runner’s gait pattern, the actual depth analysis takes place in
five-dimensional space (K = 5). The depth analysis provides a single number summarizing
the joint distribution of the runner’s gait patterns (as characterized by the set of five-
dimensional vectors containing each of the five gait metrics chosen) for each comparison.
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Gait distributions comparisons and summary statistics. To quantify similarities
between in-lab and real-world gait patterns, the gait pattern distribution comparisons listed
in Table 1 were made using both the univariate and depth analysis approaches outlined
above. The comparisons listed in Table 1 address the questions posed in the introduction,
which examine the degree to which in-lab gait is representative of real-world gait for the
same runner, a runner from the same population of participants, and a runner from a
different population.

Table 1. Reference distribution and new data distribution for each analysis.

Analysis Comparison Reference Distribution New Data Distribution

Analysis 1 In-lab vs. real-world running
(same runner)

Cohort 1 in-lab data from
one subject

Cohort 1 real-world data from
same subject

Analysis 2
In-lab vs. real-world running

(new runner, same
population)

Cohort 1 in-lab data from all but
one subject

Cohort 1 real-world data from one
left-out subject

Analysis 3
In-lab vs. real-world running
(new runner, new population

and location)

Cohort 1 in-lab data from all
subjects

Cohort 2 real-world data from
all subjects

Analysis 4

Real-world running in one
population vs. real-world

running in new population
and location

Cohort 1 real-world data from
all subjects

Cohort 2 real-world data from
all subjects

Each comparison was carried out in a subject-wise fashion, operating similarly to leave-
one-subject-out cross-validation. For each comparison, and each quantification method
(univariate and depth-based multivariate), means across subjects and 95% confidence
intervals to assess uncertainty were calculated using nonparametric bootstrapping with
10,000 replicates, as implemented in the R package ‘boot’ version 1.3-28 [30]. This boot-
strapping approach addresses differences in the sample size between Cohort 1 and Cohort
2 by accurately reflecting the increased uncertainty in comparisons made using Cohort 2,
which had fewer participants. Depth analysis was calculated using the ‘depth.halfspace’
function from the R package ‘ddalpha’ version 1.3.13 [31] using the random approximation
method of Cuesta-Albertos and Nieto-Reyes [32] with 1000 random directions. To make
depth calculation computationally tractable, real-world data were thinned by taking a
random subsample of 25% of the data [32].

3. Results
3.1. Participants, Recruitment, and Running Data Summary

In Cohort 1, 60 runners were recruited for participation. Of these, eleven subjects were
excluded for the following reasons: two were uncomfortable running on the treadmill, one
did not complete the real-world portion of the study, four experienced device malfunctions
during either the in-lab or real-world portion of the study, one sustained an ankle sprain
(unrelated to study procedures) after the in-lab run but prior to completing the real-world
runs, and three completed no runs with a GNSS connection, leaving 49 participants in Co-
hort 1 who recorded a total of 247 running sessions (some participants recorded individual
training session as multiple runs on the watch, e.g., a warm-up, a workout session, and a
cool-down). Twenty-four of these running sessions were excluded because they did not
include GNSS data (querying the participants revealed that the cause was beginning a
run prior to GNSS satellite acquisition on the watch; improving the instructions given to
participants reduced the rate of no-GNSS-data runs in subsequent data collections), and
three of these running sessions were excluded because the foot pod or chest strap was not
worn for the run.

After these exclusions, 219 runs (149.08 h of running) were included in the analysis.
Participant demographics are provided in Table 2. In Cohort 1, 77.32% of running time
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took place on flat segments, 86.52% took place on straight segments, and 67.22% of running
took place on segments that were flat and straight.

Table 2. Participant demographics from both cohorts.

Cohort 1 (N = 49 Participants).

Min 1st
Quartile Median 3rd

Quartile Max

Age (year) 18 24 29 35 58
Height (m) 1.54 1.68 1.74 1.81 1.93
Mass (kg) 43 60.9 66.7 79.2 110.5

Body Mass Index
(kg/m2) 17.49 20.51 22.3 24.35 31.6

Training volume
(km/wk) 16.09 24.14 40.23 51.5 88.51

Experience (year) 2 7 10 15 47
Sex 25 M, 24 F

Category
(self-reported) Novice: 0, Recreational: 29, Competitive: 18, Elite: 2

Cohort 2 (N = 19 Participants).

Min 1st
Quartile Median 3rd

Quartile Max

Age (year) 18 19 20 21 32
Height (m) 1.52 1.59 1.66 1.69 1.77
Mass (kg) 47 53.35 57.3 63.7 80.8

Body Mass Index
(kg/m2) 18.35 20.74 22.05 22.64 28.09

Training volume
(km/wk) 12.87 21.73 32.19 41.04 112.65

Experience (year) 2 6 7 9 18
Sex 0 M, 19 F

Category
(self-reported) Novice: 0, Recreational: 14, Competitive: 4, Elite: 1

In Cohort 2, 23 runners were recruited for participation. Of these, 4 were excluded
because they did not have time to complete real-world runs prior to the study’s conclusion,
yielding 19 runners who recorded 95 running sessions. Six of these running sessions were
excluded because they did not include GNSS data. After these exclusions, 89 runs (47.97 h)
were included in the analysis. In Cohort 2, 55.57% of running time took place on flat
segments, 87.35% took place on straight segments, and 48.58% took place on segments that
were flat and straight. The difference in proportion of flat segments was expected based on
geographic differences between the data collection locations in Cohort 1 and Cohort 2—the
terrain in the geographic location of Cohort 2 was much hillier than for Cohort 1. The small
number of self-reported elite runners in both cohorts were not noticeable outliers in any of
the analyses.

3.2. Univariate Analysis of Gait Pattern Overlap

Analysis 1. When using in-lab data from one subject as the reference distribution, real-
world data from that same subject showed overlap from 65.7 to 95.2% on average across
gait metrics, but with some subjects displaying overlap below 50% (Figure 6A). Average
overlap was lowest for vertical oscillation (74.5%) and leg stiffness (65.7%), indicating a
change in these gait metrics when a subject was running in-lab versus in the real-world.
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world data from a new subject from Cohort 1 showed overlap of 89.5%, though the 

confidence intervals for this average overlap excluded 95%—the overlap that would be 

Figure 6. Distribution overlap results for each of the four analyses, using both the univariate
analysis and the depth analysis. Each point represents data from one subject; black lines in crossbars
represent the mean across subjects, and shaded regions in the crossbars represent bootstrapped 95%
confidence intervals. Left panels show univariate analysis considering each gait metric separately;
right panel shows depth analysis, which considers all gait metrics jointly. Dashed line shows the
expected amount of overlap at the 95% confidence level (i.e., 95% overlap). Panel (A) shows overlap
between one runner’s in-lab data (reference distribution) and that same runner’s real-world data
(new distribution). Panel (B) shows overlap between in-lab data from all subjects and real-world data
from a new runner from the same population (Cohort 1). Panel (C) shows overlap between in-lab
data from all subjects and real-world data from a new runner from a new population (Cohort 2).
Panel (D) shows overlap between real-world data from one population (Cohort 1) and real-world
data from another population (Cohort 2). For all analyses, stratifying real-world data to only include
running on flat, straight segments resulted in <5% change in distributional overlap (blue vs. red
points and shaded crossbars).

Analysis 2. When using “leave-one-subject-out” in-lab data from Cohort 1 as the
reference distribution, real-world data were well-represented by the in-lab data. Overlap
for speed (98.3%), step length (96.6%), vertical oscillation (92.4%), stance time (97.3%), and
leg stiffness (91.3%) were all close to 95%, indicating strong overlap between distributions.
However, one to five outlying subjects had distributional overlap below 50%, with some
near zero (Figure 6B)—these individuals had marked differences in their real-world step
length, ground contact time, and leg stiffness, which drove this poor overlap.
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Analysis 3. When using in-lab data from Cohort 1 as the reference distribution, real-
world data from Cohort 2 were well-represented by the in-lab data for speed (95.9%), step
length (94.7%), vertical oscillation (99.4%), and stance time (97.9%), but to a lesser extent
leg stiffness (88.3%), which had lower mean values because of three subjects with lower
distributional overlap (Figure 6C).

Analysis 4. When using real-world data from Cohort 1 as the reference distribution,
real-world data from Cohort 2 were well-represented by Cohort 1′s real-world data for
speed (93.0%), step length (94.0%), vertical oscillation (99.6%), stance time (88.6%), and leg
stiffness (95.0%), albeit with lower overlap for two subjects (Figure 6D).

Stratification by flat and straight segments. For all analyses, overlap changed by less
than five percentage points when stratifying real-world data to include only flat, straight
segments (red vs. blue points in Figure 6).

3.3. Depth Analysis of Gait Pattern Overlap

Analysis 1. When using in-lab data from one subject as the reference distribution,
real-world data from the same subject showed an average of 32.5% overlap (Figure 6A).
For ten subjects, overlap was less than 10%.

Analysis 2. When using in-lab data from Cohort 1 as the reference distribution,
real-world data from a new subject from Cohort 1 showed overlap of 89.5%, though the
confidence intervals for this average overlap excluded 95%—the overlap that would be
expected for data drawn from the same underlying distribution, because overlap criteria
were set as falling within the central 95% of the reference distribution (Figure 6B).

Analysis 3. When using in-lab data from Cohort 1 as the reference distribution, real-
world data from Cohort 2 overlapped 90.3% with the in-lab data, with confidence intervals
including 95%. One outlying individual had overlap near zero, caused by running slower
and with shorter steps than most of the data in Cohort 1 (Figure 6C).

Analysis 4. When using real-world data from Cohort 1 as the reference distribution,
real-world data from Cohort 2 showed overlap of 91.6%, with confidence intervals including
95%. One outlying individual with zero overlap; this individual ran slower and with shorter
steps than any of the runners in Cohort 1 (Figure 6D).

Stratification by flat and straight segments. As with the univariate analysis, strati-
fication of real-world data to include only flat, straight segments resulted in less than a
five-percentage point change for all the analyses (red vs. blue points in Figure 6), indicating
that the turns, inclines, and declines encountered during real-world running were not the
primary driver of differences between in-lab and real-world gait patterns.

3.4. Sensitivity Analysis of Gait Pattern Metric Choice

A sensitivity analysis demonstrated that the decreased overlap in the depth-based
analysis could not be attributed to any one gait metric, nor could it be explained by
changes in the speed–step length relationship (Figure 7). Even when gait patterns were
characterized using only speed, cadence, and ground contact time, in-lab versus real-world
overlap remained below 50%.
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Figure 7. Sensitivity analysis of in-lab versus real-world data. Analysis shows effects of iteratively
reducing the number of gait metrics used to represent the runner’s gait pattern. Black bar shows
mean overlap across subjects, and shaded box shows bootstrapped 95% confidence interval for the
mean. The left-most column (K = 5) is the original analysis (Analysis 1). This analysis shows that
leg stiffness and vertical oscillation drive some of the poor overlap between in-lab and real-world
running, but even when gait pattern is characterized only by speed, step length, and stance time,
mean overlap remains below 50%. The high overlap when considering only speed and step length
(K = 2) indicates that a change in speed–step length strategy (i.e., how runners modulate their
cadence and step length to achieve a given speed) cannot explain the poor overlap between in-lab
and real-world running.

4. Discussion

The main objective of this study was to assess to what degree gait patterns during
real-world running are well-represented by in-lab running gait. Individually, speed, step
length, and stance time are largely similar when moving from the lab to the real-world,
based on results from the univariate analysis. However, less than one-third of steps taken
during real-world running are well-represented by a runner’s own in-lab data when these
gait metrics are considered together using depth analysis. This finding indicates that
the relationships between gait metrics is changing, rather than their univariate range.
This fraction is materially unchanged (<5%) when restricting real-world running to flat,
straight segments.

4.1. Distributional Shifts in Real-World Data

Together, these findings indicate that real-world gait often exhibits a distributional
shift (as illustrated in Figure 8), and as a consequence, many of the steps taken by a runner
during real-world training use gait patterns that are never seen during an in-lab data
collection, even when in-lab data are collected at similar speeds as the real-world training.
As such, efforts to use in-lab data to create athlete-specific, sensor-based models of gait
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may face difficulties when attempting to apply these models to real-world data, since the
same athlete runs differently in the lab versus in the real world.
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Figure 8. Visualization of the five-dimensional gait pattern for one subject in Cohort 1, projected to
two dimensions using multidimensional scaling, a dimensionality reduction technique [33]. Panels
(A–C) show the in-lab (red) and real-world (blue) gait pattern data for this runner. Some distributional
overlap exists, but this runner’s real-world gait pattern shows a clear distributional shift away from
the in-lab distribution. When using the in-lab data as a reference distribution for depth analysis
(panel (D)), only 30.1% of this runner’s real-world data (panel (E)) fall within the 95% depth threshold
of the in-lab data distribution. For this runner, over half of the real-world data have a depth of zero
(shown as gray data points in panel (E), meaning they are completely outside of the distribution of
gait patterns seen during in-lab running.

The overlap of ~90% seen in the depth analysis for Analyses 2 and 3 indicates that
pooling in-lab data from a large number of runners can better-represent real-world gait
patterns, even when the new runner comes from a different population than the in-lab
reference data. Since these comparisons were made using subject-wise cross-validation, a
subject’s own in-lab data were not included in the pool of in-lab data used to make overlap
comparisons. Thus, the improvements compared to Analysis 1 indicate that aggregated
in-lab data from many runners can act as a stand-in for real-world data from a new runner.
A dataset with many runners contains much more variability in gait pattern than a dataset
from a single runner, thus increasing the probability that any given step taken by a runner
in the real-world has a “match” within the pool of in-lab gait patterns.

Collectively, the findings from Analyses 1, 2, and 3 suggest that experimental results
that rely on in-lab data will be more likely to generalize to real-world running if they are
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drawn from a large dataset of in-lab data, pooled across many runners, even if the target
application is a subject-specific model or prediction. The increase in overlap from Analysis
1 to Analysis 2 is a strong example of this principle at work.

4.2. Effects of Inclines, Declines, and Turns

The overlap between in-lab and real-world gait patterns was trivially affected by
stratifying real-world running to only include running on flat, straight segments. Overlap
was often greater, but only by 0.8% or less. This finding indicates that the differences
between in-lab and real-world gait patterns seen in this study cannot be solely attributed
to inclines, declines, and turns: runners run differently in the real world versus in the
lab, even when running on flat, straight segments. Notably, other work has shown that
sensor-measured tibial acceleration differs between in-lab treadmill running and real-world
running on flat, straight ground [34], as well as between in-lab overground running and
real-world running on flat, straight ground [35].

4.3. Gait Pattern Overlap across Different Populations of Runners

Comparing gait patterns across the two populations of runners (Cohort 1 versus
Cohort 2) showed that the gait patterns adopted by the young adult female runners in
Cohort 2 were well-represented by both the in-lab and real-world data from Cohort 1 (males
and females, age 18–59 years), suggesting that predictive models or inferences about gait
developed from Cohort 1’s data would likely generalize well to Cohort 2. The depth-based
distribution analysis used in this study could be used in future work to assess similar
questions about generalizability of a predictive model or an experimental finding.

4.4. Comparison with the Previous Literature

When viewed in the context of previous work on in-lab versus overground or real-
world running, this study’s results suggest that mean differences in gait metrics seen in
other work (e.g., the kinematic changes seen in Lafferty et al. [6], the shifts in plantar
pressure distribution seen in Hong et al. [36], or the decreased impact shocks seen during
fatiguing overground running in García-Pérez et al. [37]) likely represent true distributional
shifts, not merely changes in the average value of a gait parameter. Indeed, the success of
machine learning-based classifiers that can accurately differentiate between running on
pavement, synthetic track, and woodchip trails suggests that distributional shifts among
gait metrics across different environments can be significant enough to produce very little
overlap between running in different conditions [38]. Future work should investigate what
environmental factors cause these distributional shifts in gait pattern.

4.5. Limitations

This study’s design had multiple limitations that should be considered alongside its
primary findings regarding the degree to which in-lab gait patterns are well-representative
of real-world gait patterns. First, though the inclusion criteria for Cohort 1 were designed
to recruit a broad, diverse pool of runners in terms of age and running experience, it
used convenience sampling, and thus cannot be considered a representative sample of
all runners. Likewise, Cohort 2 represented a specific, homogenous group at risk for
running-related injuries (female young adult runners); though gait data from Cohort 1 was
well-representative of this specific population, the same finding may not be true for other
specialized populations.

This study used a small set of gait metrics measured by consumer-grade wearable
sensors to characterize a runner’s gait pattern. Though the metrics selected capture key
parameters of running explained by simple models of gait (e.g., the mass-spring model [11]),
these metrics still neglect aspects of gait that could be important for running gait assessment
for runners at risk of injury, such as joint kinematics and kinetics [1].

Moreover, while the five gait metrics selected to represent a runner’s gait pattern in
this study showed moderate to high correlations with gold-standard lab measurements
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(Table S1), these device validations were carried out on in-lab running, not real-world
running. As a consequence, true shifts in gait pattern between in-lab and real-world
running might have been obscured by apparent differences caused by systematic errors
in the wearable sensors which only occur during real-world running (e.g., if leg stiffness
or ground contact time were measured with systematically greater error in the real world
versus in the lab). These systematic differences could be caused by the different surfaces of
in-lab vs. real-world running; not all real-world runs were completed on the same type of
surface, and potential differences in surface stiffness between in-lab and real-world running
could have affected the runner’s gait pattern. However, such differences would be expected
to be magnified by environmental differences such as turns and inclines/declines; the fact
that the findings of this study were substantively unchanged when stratifying real-world
data to only include flat, straight segments provides some evidence that such systematic
differences were not a major factor in the findings.

A large portion of the in-lab vs. real-world differences were driven by vertical os-
cillation and leg stiffness, which are measured less accurately and, in the case of vertical
oscillation, less consistently from device to device (see Supplementary Data S1, which de-
tails device-to-device differences in gait metric measurements). Though these device-based
errors motivate future work using more precise equipment (e.g., video-based markerless
motion capture), a sensitivity analysis did reveal that low in-lab/real-world overlap per-
sisted even when iteratively removing leg stiffness and vertical oscillation as metrics in
the gait pattern vector (see Figure 7). This robustness indicates that a substantial portion
of the poor overlap in-lab/real-world is not attributable merely to inaccuracies in the
measurement of any one individual gait metric.

This study used a treadmill to assess in-lab gait, but real-world running took place
overground. Because of this design choice, it was not possible to disaggregate the effects
of the treadmill itself from the effects of being in a gait laboratory versus in the real
world. Future work should investigate in-lab treadmill, in-lab overground, and real-world
overground running separately to parse out the effects of treadmill running from the in-lab
environment itself.

Advances in techniques for real-world assessment of gait could be used in future work
to mitigate some of these limitations: using video-based gait assessment [39], research-grade
wearable sensors [40], or fusing both of these measurement techniques together [41], could
enable more comprehensive assessment of running gait patterns during both in-lab and
real-world running, allowing for direct comparisons of a more complete representation of a
runner’s gait pattern. Though these methods would not be scalable to the population sizes
possible with consumer-grade wearable sensors, findings from smaller-scale studies with
more intensive gait data could be used to confirm or refute the findings of the present study.

5. Conclusions

Research on the biomechanics of running is often limited to in-lab environments. If
in-lab findings are to translate well to real-world applications in sport and clinical practice,
the data collected in such in-lab studies needs to be representative of real-world, day-to-day
training. This study’s findings indicate that a significant fraction of real-world running
training involves gait patterns that are not well-represented by in-lab running. Over two-
thirds of the steps a runner takes during real-world training are not well-represented by
an in-lab data collection, even when this data collection is done throughout a prolonged
run at a wide range of speeds, and even when real-world data are restricted only to flat,
straight segments of runs.

One solution to the problems introduced by this distributional shift in gait patterns in
the real world is to aggregate in-lab gait data from a large pool of runners so that predictive
models or statistical inferences can “borrow” information across individuals. When such
pools of data are used, real-world running gait patterns from a new runner are much
better-represented by this aggregated pool of in-lab gait patterns—even when that new
runner is drawn from a new subject population in a new geographic location.
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The most immediate application of these findings in clinical practice is in the context
of developing sensor-based, athlete-specific models of gait for monitoring training loads or
implementing gait retraining protocols (e.g., the regression equations developed by Brund
et al.) [42]. The findings of this study suggest that even an individualized model should be
developed using a large pool of data across many runners to improve the proportion of
real-world running that is well-represented by the in-lab data used to develop the model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s24092892/s1, Table S1: Validation analysis of gait metrics; Table S2:
Treadmill run protocol. Supplementary Data S1: Agreement between chest strap sensor gait metrics.
Supplementary Data S2: Details of turn rate calculations.

Author Contributions: Conceptualization, J.J.D.IV, A.H.G. and S.A.M.; methodology, J.J.D.IV, A.H.G.,
S.A.M., J.H., J.S.R. and A.W.B.; software, J.J.D.IV and J.H.; validation, J.J.D.IV, J.H., S.A.M. and
A.H.G.; formal analysis, J.J.D.IV, J.H., S.A.M. and A.H.G.; investigation, J.J.D.IV, S.A.M. and A.H.G.;
resources, A.H.G. and S.A.M.; data curation, J.J.D.IV; writing—original draft preparation, J.J.D.IV;
writing—review and editing, J.J.D.IV, A.H.G., S.A.M., J.H., A.W.B. and J.S.R.; visualization, J.J.D.IV; su-
pervision, A.H.G. and S.A.M.; project administration, A.H.G. and S.A.M.; funding acquisition, J.J.D.IV,
A.H.G. and S.A.M. All authors have read and agreed to the published version of the manuscript.

Funding: Funding and equipment for this project were provided in part by World Athletics, the
American College of Sports Medicine (ACSM), and the American Society of Biomechanics. Travel
funding was provided in part by the ACSM Biomechanics Interest Group, the De Luca Foundation,
and the Indiana University Graduate and Professional Student Government. On-shoe foot pods were
provided by Stryd Inc.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki, and approved by the University Institutional Review Boards at both data collection
locations (protocol numbers 17923 and 21-001137).

Informed Consent Statement: All participants provided written informed consent before participat-
ing in this study.

Data Availability Statement: Code and anonymized data supporting the findings of this study are
available on GitHub (https://github.com/johnjdavisiv/inlab-vs-realworld) and FigShare
(https://doi.org/10.6084/m9.figshare.23662662).

Acknowledgments: The authors would like to thank Lauren Dicktel, Bridget Kenny, Hannah McLen-
don, Ankur Padhye, Dylan Sampson, Lucas Tripp, and Abigail Yourkavitch for their assistance with
data collection.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Ceyssens, L.; Vanelderen, R.; Barton, C.; Malliaras, P.; Dingenen, B. Biomechanical risk factors associated with running-related

injuries: A systematic review. Sports Med. 2019, 49, 1095–1115. [CrossRef] [PubMed]
2. Vannatta, C.N.; Heinert, B.L.; Kernozek, T.W. Biomechanical risk factors for running-related injury differ by sample population: A

systematic review and meta-analysis. Clin. Biomech. 2020, 75, 104991. [CrossRef] [PubMed]
3. Moore, I.S. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy.

Sports Med. 2016, 46, 793–807. [CrossRef] [PubMed]
4. Willwacher, S.; Kurz, M.; Robbin, J.; Thelen, M.; Hamill, J.; Kelly, L.; Mai, P. Running-related biomechanical risk factors for

overuse injuries in distance runners: A systematic review considering injury specificity and the potentials for future research.
Sports Med. 2022, 52, 1863–1877. [CrossRef]

5. Van Hooren, B.; Fuller, J.T.; Buckley, J.D.; Miller, J.R.; Sewell, K.; Rao, G.; Barton, C.; Bishop, C.; Willy, R.W. Is motorized treadmill
running biomechanically comparable to overground running? A systematic review and meta-analysis of cross-over studies.
Sports Med. 2020, 50, 785–813. [CrossRef] [PubMed]

6. Lafferty, L.; Wawrzyniak, J.; Chambers, M.; Pagliarulo, T.; Berg, A.; Hawila, N.; Silvis, M. Clinical indoor running gait analysis may
not approximate outdoor running gait based on novel drone technology. Sports Health 2022, 14, 710–716. [CrossRef] [PubMed]

7. Benson, L.C.; Clermont, C.A.; Ferber, R. New considerations for collecting biomechanical data using wearable sensors: The effect
of different running environments. Front. Bioeng. Biotechnol. 2020, 8, 86. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/s24092892/s1
https://www.mdpi.com/article/10.3390/s24092892/s1
https://github.com/johnjdavisiv/inlab-vs-realworld
https://doi.org/10.6084/m9.figshare.23662662
https://doi.org/10.1007/s40279-019-01110-z
https://www.ncbi.nlm.nih.gov/pubmed/31028658
https://doi.org/10.1016/j.clinbiomech.2020.104991
https://www.ncbi.nlm.nih.gov/pubmed/32203864
https://doi.org/10.1007/s40279-016-0474-4
https://www.ncbi.nlm.nih.gov/pubmed/26816209
https://doi.org/10.1007/s40279-022-01666-3
https://doi.org/10.1007/s40279-019-01237-z
https://www.ncbi.nlm.nih.gov/pubmed/31802395
https://doi.org/10.1177/19417381211050931
https://www.ncbi.nlm.nih.gov/pubmed/34758661
https://doi.org/10.3389/fbioe.2020.00086
https://www.ncbi.nlm.nih.gov/pubmed/32117951


Sensors 2024, 24, 2892 21 of 22

8. Nielsen, R.Ø.; Bertelsen, M.L.; Ramskov, D.; Damsted, C.; Brund, R.K.; Parner, E.T.; Sørensen, H.; Rasmussen, S.; Kjærgaard, S.
The Garmin-RUNSAFE Running Health Study on the aetiology of running-related injuries: Rationale and design of an 18-month
prospective cohort study including runners worldwide. BMJ Open 2019, 9, e032627. [CrossRef] [PubMed]

9. Benson, L.C.; Räisänen, A.M.; Clermont, C.A.; Ferber, R. Is this the real life, or is this just laboratory? A scoping review of
IMU-based running gait analysis. Sensors 2022, 22, 1722. [CrossRef]

10. Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport biomechanics applications
using inertial, force, and EMG sensors: A literature overview. Appl. Bionics Biomech. 2020, 2020, 2041549. [CrossRef]

11. Blickhan, R. The spring-mass model for running and hopping. J. Biomech. 1989, 22, 1217–1227. [CrossRef] [PubMed]
12. Matijevich, E.S.; Scott, L.R.; Volgyesi, P.; Derry, K.H.; Zelik, K.E. Combining wearable sensor signals, machine learning and

biomechanics to estimate tibial bone force and damage during running. Hum. Mov. Sci. 2020, 74, 102690. [CrossRef] [PubMed]
13. Riebe, D.; Franklin, B.A.; Thompson, P.D.; Garber, C.E.; Whitfield, G.P.; Magal, M.; Pescatello, L.S. Updating ACSM’s recommen-

dations for exercise preparticipation health screening. Med. Sci. Sports Exerc. 2015, 47, 2473–2479. [CrossRef]
14. Davis IV, J.J. Understanding Internal Biomechanical Loads during Running Using Wearable Sensors; Indiana University: Bloomington,

IN, USA, 2023.
15. Davis, I.S.; Bowser, B.J.; Mullineaux, D.R. Greater vertical impact loading in female runners with medically diagnosed injuries: A

prospective investigation. Br. J. Sports Med. 2016, 50, 887–892. [CrossRef]
16. Rauh, M.J.; Barrack, M.; Nichols, J.F. Associations between the female athlete triad and injury among high school runners. Int. J.

Sports Phys. Ther. 2014, 9, 948. [PubMed]
17. Nielsen, R.O.; Cederholm, P.; Buist, I.; Sørensen, H.; Lind, M.; Rasmussen, S. Can GPS be used to detect deleterious progression in

training volume among runners? J. Strength. Cond. Res. 2013, 27, 1471–1478. [CrossRef]
18. Navalta, J.W.; Montes, J.; Bodell, N.G.; Aguilar, C.D.; Radzak, K.; Manning, J.W.; DeBeliso, M. Reliability of trail walking and

running tasks using the Stryd power meter. Int. J. Sports Med. 2019, 40, 498–502. [CrossRef]
19. Imbach, F.; Candau, R.; Chailan, R.; Perrey, S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal

Speeds. Sports 2020, 8, 103. [CrossRef]
20. Andersen, C.; Skovsgaard, N. Reliability and validity of Garmin Forerunner 735XT for measuring running dynamics in-field.

Sport. Technol. Thesis Aalbord Universitet Aalborg, Denmark 2017.
21. Adams, D.; Pozzi, F.; Carroll, A.; Rombach, A.; Zeni Jr, J. Validity and reliability of a commercial fitness watch for measuring

running dynamics. J. Orthop. Sports Phys. Ther. 2016, 46, 471–476. [CrossRef]
22. Mercer, J.A.; Bezodis, N.E.; Russell, M.; Purdy, A.; DeLion, D. Kinetic consequences of constraining running behavior. J. Sci. Med.

Sport. 2005, 4, 144.
23. Zandbergen, M.A.; Buurke, J.H.; Veltink, P.H.; Reenalda, J. Quantifying and correcting for speed and stride frequency effects on

running mechanics in fatiguing outdoor running. Front. Sports Act. Living 2023, 5, 1085513. [CrossRef] [PubMed]
24. Davis, J.J., IV; Gruber, A.H. Leg Stiffness, Joint Stiffness, and Running-Related Injury: Evidence From a Prospective Cohort Study.

Orthop. J. Sports Med. 2021, 9, 23259671211011213. [CrossRef] [PubMed]
25. Diedrich, F.J.; Warren, W.H., Jr. Why change gaits? Dynamics of the walk-run transition. J. Exp. Psychol. Hum. Percept. Perform.

1995, 21, 183. [CrossRef] [PubMed]
26. Daniels, J. Daniels’ Running Formula; Human Kinetics: Champaign, IL, USA, 2013.
27. Benson, L.C.; Ahamed, N.U.; Kobsar, D.; Ferber, R. New considerations for collecting biomechanical data using wearable sensors:

Number of level runs to define a stable running pattern with a single IMU. J. Biomech. 2019, 85, 187–192. [CrossRef] [PubMed]
28. Rowe, D.; Welk, G.; Heil, D.; Mahar, M.; Kemble, C.; Calabro, M.; Camenisch, K. Stride rate recommendations for moderate-

intensity walking. Med. Sci. Sports Exerc. 2011, 43, 312–318. [CrossRef] [PubMed]
29. Mosler, K.; Mozharovskyi, P. Choosing among notions of multivariate depth statistics. Stat. Sci. 2022, 37, 348–368. [CrossRef]
30. Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997.
31. Lange, T.; Mosler, K.; Mozharovskyi, P. Fast nonparametric classification based on data depth. Stat. Papers 2014, 55, 49–69.

[CrossRef]
32. Cuesta-Albertos, J.A.; Nieto-Reyes, A. The random Tukey depth. Comput. Stat. Data Anal. 2008, 52, 4979–4988. [CrossRef]
33. Hastie, T.J.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer:

Berlin/Heidelberg, Germany, 2009.
34. Dillon, S.; Burke, A.; Whyte, E.F.; O’Connor, S.; Gore, S.; Moran, K.A. Are impact accelerations during treadmill running

representative of those produced overground? Gait Posture 2022, 98, 195–202. [CrossRef]
35. Milner, C.E.; Hawkins, J.L.; Aubol, K.G. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing. Med.

Sci. Sports Exerc. 2020, 52, 1361–1366. [CrossRef] [PubMed]
36. Hong, Y.; Wang, L.; Li, J.X.; Zhou, J.H. Comparison of plantar loads during treadmill and overground running. J. Sci. Med. Sport.

2012, 15, 554–560. [CrossRef] [PubMed]
37. García-Pérez, J.A.; Pérez-Soriano, P.; Llana Belloch, S.; Lucas-Cuevas, Á.G.; Sánchez-Zuriaga, D. Effects of treadmill running and

fatigue on impact acceleration in distance running. Sports Biomech. 2014, 13, 259–266. [CrossRef] [PubMed]
38. Dixon, P.; Schütte, K.; Vanwanseele, B.; Jacobs, J.; Dennerlein, J.; Schiffman, J.; Fournier, P.; Hu, B. Machine learning algorithms

can classify outdoor terrain types during running using accelerometry data. Gait Posture 2019, 74, 176–181. [CrossRef] [PubMed]

https://doi.org/10.1136/bmjopen-2019-032627
https://www.ncbi.nlm.nih.gov/pubmed/31494626
https://doi.org/10.3390/s22051722
https://doi.org/10.1155/2020/2041549
https://doi.org/10.1016/0021-9290(89)90224-8
https://www.ncbi.nlm.nih.gov/pubmed/2625422
https://doi.org/10.1016/j.humov.2020.102690
https://www.ncbi.nlm.nih.gov/pubmed/33132194
https://doi.org/10.1249/MSS.0000000000000664
https://doi.org/10.1136/bjsports-2015-094579
https://www.ncbi.nlm.nih.gov/pubmed/25540710
https://doi.org/10.1519/JSC.0b013e3182711e3c
https://doi.org/10.1055/a-0875-4068
https://doi.org/10.3390/sports8070103
https://doi.org/10.2519/jospt.2016.6391
https://doi.org/10.3389/fspor.2023.1085513
https://www.ncbi.nlm.nih.gov/pubmed/37139307
https://doi.org/10.1177/23259671211011213
https://www.ncbi.nlm.nih.gov/pubmed/34104663
https://doi.org/10.1037/0096-1523.21.1.183
https://www.ncbi.nlm.nih.gov/pubmed/7707029
https://doi.org/10.1016/j.jbiomech.2019.01.004
https://www.ncbi.nlm.nih.gov/pubmed/30670328
https://doi.org/10.1249/MSS.0b013e3181e9d99a
https://www.ncbi.nlm.nih.gov/pubmed/20543754
https://doi.org/10.1214/21-STS827
https://doi.org/10.1007/s00362-012-0488-4
https://doi.org/10.1016/j.csda.2008.04.021
https://doi.org/10.1016/j.gaitpost.2022.09.076
https://doi.org/10.1249/MSS.0000000000002261
https://www.ncbi.nlm.nih.gov/pubmed/31913243
https://doi.org/10.1016/j.jsams.2012.01.004
https://www.ncbi.nlm.nih.gov/pubmed/22652147
https://doi.org/10.1080/14763141.2014.909527
https://www.ncbi.nlm.nih.gov/pubmed/25325770
https://doi.org/10.1016/j.gaitpost.2019.09.005
https://www.ncbi.nlm.nih.gov/pubmed/31539798


Sensors 2024, 24, 2892 22 of 22
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