SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies
Abstract
1. Introduction
- Regardless of the boot type, the SmartBoot system can objectively measure adherence and weight-bearing activities, including cadence and step count.
- User perspectives are similar across both boot types, though patients may prefer the boot that is easier to use.
2. Materials and Methods
2.1. SmartBoot
2.2. Experimental Protocol and Assessments
2.3. Participants
2.4. Data and Statistical Analysis
2.5. Sample Size
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boulton, A.J.M.; Whitehouse, R.W. The Diabetic Foot; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, R.P.; Armstrong, D.G.; Husain, K.S.; Lavery, L.A. Defining Loss of Protective Sensation in the Diabetic Foot. Adv. Skin Wound Care 1998, 11, 123–128. [Google Scholar]
- Barshes, N.R.; Uribe-Gomez, A.; Sharath, S.E.; Mills Sr, J.L.; Rogers, S.O., Jr. Leg Amputations among Texans Remote from Experienced Surgical Care. J. Surg. Res. 2020, 250, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Skrepnek, G.H.; Mills, J.L.; Armstrong, D.G. A Diabetic Emergency One Million Feet Long: Disparities and Burdens of Illness among Diabetic Foot Ulcer Cases within Emergency Departments in the United States, 2006–2010. PLoS ONE 2015, 10, e0134914. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Chalifoux, C.B.; Everett, J.B.; Razjouyan, J.; Brooks, E.A.; Armstrong, D.G. Cost Effectiveness of Smart Insoles in Preventing Ulcer Recurrence for People in Diabetic Foot Remission. Wound Care Manag. 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Bus, S.A.; Armstrong, D.G.; Crews, R.T.; Gooday, C.; Jarl, G.; Kirketerp-Moller, K.; Viswanathan, V.; Lazzarini, P.A. Guidelines on Offloading Foot Ulcers in Persons with Diabetes (IWGDF 2023 Update). Diabetes Metab. Res. Rev. 2024, 40, e3647. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, P.A.; Crews, R.T.; van Netten, J.J.; Bus, S.A.; Fernando, M.E.; Chadwick, P.J.; Najafi, B. Measuring Plantar Tissue Stress in People With Diabetic Peripheral Neuropathy: A Critical Concept in Diabetic Foot Management. J. Diabetes Sci. Technol. 2019, 13, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Jarl, G.; van Netten, J.J.; Lazzarini, P.A.; Crews, R.T.; Najafi, B.; Mueller, M.J. Should Weight-Bearing Activity Be Reduced during Healing of Plantar Diabetic Foot Ulcers, Even When Using Appropriate Offloading Devices? Diabetes Res. Clin. Pract. 2021, 175, 108733. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, A.; Finlayson, K.; Edwards, H.; Armstrong, D.G.; Najafi, B.; van Netten, J.J.; Lazzarini, P.A. The Validity and Reliability of Self-Reported Adherence to Using Offloading Treatment in People with Diabetes-Related Foot Ulcers. Sensors 2023, 23, 4423. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Mishra, R.; Vigano, D.; Macagno, M.; Rossotti, S.; D’Huyvetter, K.; Garcia, J.; Armstrong, D.G.; Najafi, B. Smart Offloading Boot System for Remote Patient Monitoring: Toward Adherence Reinforcement and Proper Physical Activity Prescription for Diabetic Foot Ulcer Patients. J. Diabetes Sci. Technol. 2023, 17, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Bus, S.A.; Reeves, N.D.; Armstrong, D.G.; Najafi, B. Offloading and Adherence through Technological Advancements: Modern Approaches for Better Foot Care in Diabetes. Diabetes Metab. Res. Rev. 2024, 40, e3769. [Google Scholar] [CrossRef] [PubMed]
- Crews, R.T.; Lepow, B.D.; Mills, J.L.; Conte, M.S.; Najafi, B.; Steinberg, J.S.; Wu, S.C.; Armstrong, D.G. A Limb Is a Peninsula and No Clinician Is an Island: Introducing the American Limb Preservation Society (ALPS). Foot Ankle Surg. Tech. Rep. Cases 2021, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, P.A.; Jarl, G. Knee-High Devices Are Gold in Closing the Foot Ulcer Gap: A Review of Offloading Treatments to Heal Diabetic Foot Ulcers. Medicina 2021, 57, 941. [Google Scholar] [CrossRef] [PubMed]
- Skrepnek, G.H.; Mills, J.L.; Lavery, L.A.; Armstrong, D.G. Health Care Service and Outcomes Among an Estimated 6.7 Million Ambulatory Care Diabetic Foot Cases in the U.S. Diabetes Care 2017, 40, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Bus, S.A.; van Deursen, R.W.; Armstrong, D.G.; Lewis, J.E.A.; Caravaggi, C.F.; Cavanagh, P.R. Footwear and Offloading Interventions to Prevent and Heal Foot Ulcers and Reduce Plantar Pressure in Patients with Diabetes: A Systematic Review. Diabetes Metab. Res. Rev. 2016, 32, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, P.A.; Jarl, G.; Gooday, C.; Viswanathan, V.; Caravaggi, C.F.; Armstrong, D.G.; Bus, S.A. Effectiveness of Offloading Interventions to Heal Foot Ulcers in Persons with Diabetes: A Systematic Review. Diabetes Metab. Res. Rev. 2020, 36, e3275. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Jensen, J.L.; Weber, A.K.; Robinson, D.E.; Armstrong, D.G. Use of Pressure Offloading Devices in Diabetic Foot UlcersDo We Practice What We Preach? Diabetes Care 2008, 31, 2118–2119. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Grewal, G.S.; Bharara, M.; Menzies, R.; Talal, T.K.; Armstrong, D.G. Can’t Stand the Pressure: The Association between Unprotected Standing, Walking, and Wound Healing in People with Diabetes. J. Diabetes Sci. Technol. 2017, 11, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Gutekunst, D.J.; Hastings, M.K.; Bohnert, K.L.; Strube, M.J.; Sinacore, D.R. Removable Cast Walker Boots Yield Greater Forefoot Off-Loading than Total Contact Casts. Clin. Biomech. 2011, 26, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Lavery, L.A.; Vela, S.A.; Lavery, D.C.; Quebedeaux, T.L. Reducing Dynamic Foot Pressures in High-Risk Diabetic Subjects With Foot Ulcerations: A Comparison of Treatments. Diabetes Care 1996, 19, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Finco, M.G.; Cay, G.; Lee, M.; Garcia, J.; Salazar, E.; Tan, T.W.; Armstrong, D.G.; Najafi, B. Taking a Load Off: User Perceptions of Smart Offloading Walkers for Diabetic Foot Ulcers Using the Technology Acceptance Model. Sensors 2023, 23, 2768. [Google Scholar] [CrossRef] [PubMed]
- Cay, G.; Finco, M.G.; Garcia, J.; McNitt-Gray, J.L.; Armstrong, D.G.; Najafi, B. Towards a Remote Patient Monitoring Platform for Comprehensive Risk Evaluations for People with Diabetic Foot Ulcers. Sensors 2024, 24, 2979. [Google Scholar] [CrossRef] [PubMed]
- Pouwer, F.; Perrin, B.; Lavender, A.; Najafi, B.; Ismail, K.; Vileikyte, L. The Quest for Wellness: How to Optimise Self-Care Strategies for Diabetic Foot Management? Diabetes Metab. Res. Rev. 2024, 40, e3751. [Google Scholar] [CrossRef] [PubMed]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.F.; Robert, P. Spatio-Temporal Parameters of Gait Measured by an Ambulatory System Using Miniature Gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Helbostad, J.L.; Moe-Nilssen, R.; Zijlstra, W.; Aminian, K. Does Walking Strategy in Older People Change as a Function of Walking Distance? Gait Posture 2009, 29, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Khan, T.; Wrobel, J. Laboratory in a Box: Wearable Sensors and Its Advantages for Gait Analysis. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Boston, MA, USA, 30 August–3 September 2011; pp. 6507–6510. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.D.; Najafi, B.; Crews, R.T.; Bowling, F.L. Aging and Type 2 Diabetes: Consequences for Motor Control, Musculoskeletal Function, and Whole-Body Movement. J. Aging Res. 2013, 2013, 508756. [Google Scholar] [CrossRef] [PubMed]
- Wrobel, J.S.; Najafi, B. Diabetic Foot Biomechanics and Gait Dysfunction. J. Diabetes Sci. Technol. 2010, 4, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Fernando, M.E.; Woelfel, S.L.; Perry, D.; Najafi, B.; Khan, T.; Dubourdieu, C.; Shin, L.; Armstrong, D.G. Dosing Activity and Return to Preulcer Function in Diabetes-Related Foot Ulcer Remission: Patient Recommendations and Guidance from the Limb Preservation Consortium at USC and the Rancho Los Amigos National Rehabilitation Center. J. Am. Podiatr. Med. Assoc. 2021, 111. [Google Scholar] [CrossRef] [PubMed]
- Hulshof, C.M.; Van Netten, J.J.; Pijnappels, M.; Bus, S.A. The Role of Foot-Loading Factors and Their Associations with Ulcer Development and Ulcer Healing in People with Diabetes: A Systematic Review. J. Clin. Med. 2020, 9, 3591. [Google Scholar] [CrossRef] [PubMed]
- Raspovic, A.; Landorf, K.B. A Survey of Offloading Practices for Diabetes-Related Plantar Neuropathic Foot Ulcers. J. Foot Ankle Res. 2014, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Park, C.; Shahbazi, M.; York, M.K.; Kunik, M.E.; Naik, A.D.; Najafi, B. Digital Biomarkers of Cognitive Frailty: The Value of Detailed Gait Assessment Beyond Gait Speed. Gerontology 2022, 68, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Rouzi, M.D.; Atique, M.M.U.; Finco, M.G.; Mishra, R.K.; Barba-Villalobos, G.; Crossman, E.; Amushie, C.; Nguyen, J.; Calarge, C.; et al. Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring. Sensors 2023, 23, 4949. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Mishra, R.; Golledge, J.; Najafi, B. Digital Biomarkers of Physical Frailty and Frailty Phenotypes Using Sensor-Based Physical Activity and Machine Learning. Sensors 2021, 21, 5289. [Google Scholar] [CrossRef] [PubMed]
- Crews, R.T.; Sayeed, F.; Najafi, B. Impact of Strut Height on Offloading Capacity of Removable Cast Walkers. Clin. Biomech. 2012, 27, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Crews, R.T.; Shen, B.J.; Campbell, L.; Lamont, P.J.; Boulton, A.J.M.; Peyrot, M.; Kirsner, R.S.; Vileikyte, L. Role and Determinants of Adherence to Off-Loading in Diabetic Foot Ulcer Healing: A Prospective Investigation. Diabetes Care 2016, 39, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Crews, R.T.; Candela, J. Decreasing an Offloading Device’s Size and Offsetting Its Imposed Limb-Length Discrepancy Lead to Improved Comfort and Gait. Diabetes Care 2018, 41, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.C.; Frykberg, R.G.; Armstrong, D.G.; Boulton, A.J.M.; Edmonds, M.; Ha Van, G.; Hartemann, A.; Game, F.; Jeffcoate, W.; Jirkovska, A.; et al. The Charcot Foot in Diabetes. Diabetes Care 2011, 34, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Rios, D.A.; Edelberg, H.K. Gait Variability and Fall Risk in Community-Living Older Adults: A 1-Year Prospective Study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.K.; Parafianowicz, I.; Danells, C.J.; Closson, V.; Verrier, M.C.; Staines, W.R.; Black, S.E.; McIlroy, W.E. Gait Asymmetry in Community-Ambulating Stroke Survivors. Arch. Phys. Med. Rehabil. 2008, 89, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, S.; Czamara, A. Evaluation of Gait Kinematics and Symmetry during the First Two Stages of Physiotherapy after Anterior Cruciate Ligament Reconstruction. Acta Bioeng. Biomech. 2012, 2, 91–100. [Google Scholar]
- Grewal, G.S.; Bharara, M.; Menzies, R.; Talal, T.K.; Armstrong, D.; Najafi, B. Diabetic Peripheral Neuropathy and Gait: Does Footwear Modify This Association? J. Diabetes Sci. Technol. 2013, 7, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Ling, E.; Lepow, B.; Zhou, H.; Enriquez, A.; Mullen, A.; Najafi, B. The Impact of Diabetic Foot Ulcers and Unilateral Offloading Footwear on Gait in People with Diabetes. Clin. Biomech. 2020, 73, 157–161. [Google Scholar] [CrossRef] [PubMed]
Categories | TAM Questions |
---|---|
Perceived usefulness | Using the smart boot can improve my quality of life |
The smart boot helped me in doing my daily activities | |
The smart boot helped me follow the doctor’s instructions | |
The smart boot encouraged me to monitor how much I walk | |
The design of the smart boot made me want to wear it longer | |
Interacting with the boot through the smart watch was helpful to keep me on track | |
It is beneficial for the doctor to be able to monitor my activity through the smart boot | |
The alerts on the smart watch were easy to understand | |
The number of alerts I received were just about right | |
Perceived ease of use | The smart boot was too intrusive |
Learning how to use the smart boot was easy | |
Using the smart boot is easy | |
The smart boot is easy to take on and off | |
The smart boot looks good | |
The smart boot is comfortable | |
Attitude toward using | I like using the smart boot |
I think the smart boot is a good idea | |
Behavioral intention to use | I would like to use the smart boot in the future |
I would recommend the smart boot to my friends |
Healthy Subjects (n = 12) | DFU Patients (n = 81) | |
---|---|---|
Age, years | 30 ± 4.01 | 57.2 ± 12.8 |
Gender (male), % | 58% | 81% |
Ethnicity (Hispanic), % | 25% | 53% |
BMI | 31.4 ± 11.9 | 33.1 ± 9.9 |
Gait Protocol | Slow | Habitual | Fast | |||
---|---|---|---|---|---|---|
Average of #steps (DH Walker by Össur) | 51.8 ± 6.3 | 51.6 ± 4.1 | 46.8 ± 7.8 | |||
Average of #steps (Foot Defender) | 49.5 ± 2.9 | 46.8 ± 7 | 48.1 ± 7.3 | |||
Step count error * (steps / %) | Speed (m/s) | Step count error * (steps / %) | Speed (m/s) | Step count error * (steps / %) | Speed (m/s) | |
DH Walker by Össur | 1.83 (3.67) | 0.50 | 1.58 (3.17) | 0.81 | 3.17 (6.33) | 1.10 |
Foot Defender | 0.50 (1) | 0.56 | 0.67 (1.5) | 0.89 | 0.17 (0.5) | 1.18 |
Accuracy (%) | Sensitivity (%) | Specificity (%) | |
---|---|---|---|
DH Walker by Össur | 96 | 99 | 86 |
Foot Defender | 97 | 99 | 88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cay, G.; Lee, M.; Armstrong, D.G.; Najafi, B. SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies. Sensors 2025, 25, 4490. https://doi.org/10.3390/s25144490
Cay G, Lee M, Armstrong DG, Najafi B. SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies. Sensors. 2025; 25(14):4490. https://doi.org/10.3390/s25144490
Chicago/Turabian StyleCay, Gozde, Myeounggon Lee, David G. Armstrong, and Bijan Najafi. 2025. "SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies" Sensors 25, no. 14: 4490. https://doi.org/10.3390/s25144490
APA StyleCay, G., Lee, M., Armstrong, D. G., & Najafi, B. (2025). SmartBoot: Real-Time Monitoring of Patient Activity via Remote Edge Computing Technologies. Sensors, 25(14), 4490. https://doi.org/10.3390/s25144490