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Abstract: This paper proposes a new distributed Kalman filtering fusion with random state 

transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It 

is proved that under a mild condition the fused state estimate is equivalent to the 

centralized Kalman filtering using all sensor measurements; therefore, it achieves the best 

performance. More importantly, this result can be applied to Kalman filtering with 

uncertain observations including the measurement with a false alarm probability as a 

special case, as well as, randomly variant dynamic systems with multiple models. 

Numerical examples are given which support our analysis and show significant 

performance loss of ignoring the randomness of the parameter matrices. 

 

Keywords: Random parameters matrices; Kalman filtering; Centralized fusion; Distributed 

fusion. 

 

 

1. Introduction  

 

Linear discrete time system with random state transition and observation matrices arise in many 

areas such as radar control, missile track estimation, satellite navigation, digital control of chemical 

processes, economic systems. Koning [1] gave the Linear Minimum Variance recursive estimation 

formulae for the linear discrete time dynamic system with random state transit and measurement 
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matrices without detailed rigorous derivation. Such system can be converted to a linear dynamic 

system with deterministic parameter matrices and state-dependent process and measurement noises. 

Therefore, the conditions of standard Kalman Filtering are violated and the recursive formulae in [1] 

can not be derived directly from the Kalman Filtering Theory. In this paper, a rigorous analysis 

(mainly in the appendix) shows that under mild conditions, the converted system still satisfies the 

conditions of standard Kalman Filtering; therefore, the recursive state estimation of this system is still 

of the form of a modified Kalman filtering. Reference [5] shows that this result can be applied to 

Kalman filtering with uncertain observations, as well as randomly variant dynamic systems with 

multiple models.  

Many advanced systems now make use of large number of sensors in practical applications ranging 

from aerospace and defense, robotics and automation systems, to the monitoring and control of a 

process generation plants. An important practical problem in the above systems is to find an optimal 

state estimator given the observations.  

When the processing center can receive all measurements from the local sensors in time, centralized 

Kalman filtering can be carried out, and the resulting state estimates are optimal in the Mean Square 

Error (MSE) sense. Unfortunately, due to limited communication bandwidth, or to increase 

survivability of the system in a poor environment, such as a war situation, every local sensor has to 

carry on Kalman filtering upon its own observations first for local requirement, and then transmits the 

processed data-local state estimate to a fusion center. Therefore, the fusion center now needs to fuse all 

received local estimates to yield a globally optimal state estimate.  

Under some regularity conditions, in particular, the assumption of independent sensor noises, an 

optimal Kalman filtering fusion was proposed in [11-12], which was proved to be equivalent to the 

centralized Kalman filtering using all sensor measurements; therefore, such fusion is globally optimal. 

Then, Song [7] proved that under a mild condition the fused state estimate is equivalent to the 

centralized Kalman filtering using all sensor measurements.  

In the multisensor random parameter matrices case, sometimes, even if the original sensor noises 

are mutually independent, the sensor noises of the converted system are still cross-correlated. Hence, 

such multisensor system seems not satisfying the conditions for the distributed Kalman filtering fusion 

given in [11-12]. In this paper, it was proved that when the sensor noises or the random measurement 

matrices of the original system are correlated across sensors, the sensor noises of the converted system 

are cross-correlated. Even if so, similarly with [7], centralized random parameter matrices Kalman 

filtering, where the fusion center can receive all sensor measurements, can still be expressed by a 

linear combination of the local estimates. Therefore, the performance of the distributed filtering fusion 

is the same as that of the centralized fusion under the assumption that the expectations of all sensor 

measurement matrices are of full row rank. Numerical examples are given which support our analysis 

and show significant performance loss of ignoring the randomness of the parameter matrices.  

The remainder of this paper is organized as follows. In Section 2, we present the concept of random 

parameter matrices Kalman filtering. In Section 3, we present an optimal Kalman filtering fusion with 

random parameter matrices and show that under a mild condition the fused state estimate is equivalent 

to the centralized Kalman filtering with all sensor measurements. In Section 4, we show that the result 

can be applied to Kalman filtering with uncertain observations as well as randomly variant dynamic 

systems with multiple models. More importantly, we will see that the Kalman filtering with false alarm 
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probability is a special case of Kalman with random parameter matrices. A simulation example is 

given in Section 5. And finally, in Section 6, we present our conclusions. 

 

2. Random Parameter Matrices Kalman Filtering 

 

Consider a discrete time dynamic system: 

1k k k kx F x     (1) 

, 0,1,2,...k k k ky H x k    (2) 

where r
kx R  is the system state, N

ky R  is the measurement matrix, r
k R   is the process noise, 

and N
k R  is the measurement noise. The subscript k is the time index. r r

kF R   and N r
kH R  are 

random matrices. 
We assume the system has the following statistical properties: { , , , , 0,1,2,...}k k k kF H k    are all 

sequences of independent random variables temporally and across sequences as well as independent 
of 0x . Moreover, we assume kx  and { , , 0,1,2,...}k kF H k   are mutually independent. The initial state 0x , 

the noises ,k k  and the parameter matrices ,k kF H  have the following means and covariance. 

    0 0 0 0 0 0 0,
T

E x E x x P      , (3) 

       0, , 0,
k k

T T
k k k k k kE E R E E R           (4) 

   , , k k
ij mn

k k
k k ij mn f f

E F F Cov f f C   (5) 

   , , k k
ij mn

k k
k k ij mn h h

E H H Cov h h C   (6) 

Where k
ijf and k

ijh are the ( , )i j th entries of matrices kF  and kH , respectively. 

Rewriting kF and kH  as: 

k k kF F F    (7) 

k k kH H H    (8) 

And substituting (7), (8) into (1), (2) converts the original system to: 

1k k k kx F x      (9) 

k k k ky H x     (10) 

where 

k k k k

k k k k

F x

H x

 

 

 

 




 (11) 

System (9), (10) has deterministic parameter matrices, but the process noise and observation noise 

are dependent on the state. Therefore, this would not satisfy the well-known assumptions of the 

standard Kalman filtering apparently. 

In the appendix, we give a detailed proof that system (9) and (10) satisfy all conditions of the 

standard Kalman filtering and derive the recursive state estimate of the new system as follows: 
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Theorem 1. The Linear Minimum Variance recursive state estimation of system (9), (10) is given by: 

 

 

 
  
  

   

1 1

1

1 1 1 1 1

k+1 1 1 1 1 1

1 |

1| 1 1 1 1

1 1

K

k k

k k

k

k

k k

k k

k k k k K k k

k k k

T T
k k k k k k k

T
k k k k k k

k k k k k k

T T
k k k k

T T
k k k k

T T
k k k k k k

x x K y H x

x F x

P H H P H R

P F P F R

P I K H P

R R E F E x x F

R R E H E x x H

E x x F E x x F E





 

 

 



    



    



    

 

  



 

 

 

 

 

 









 

 

ㄧ

ㄧ

ㄧ ㄧ

ㄧ

ㄧ ㄧ

ㄧ

ㄧ

  
   0 0 0 0|0 0 0 0 0 0 0|0, ,

k

T T
k k k k

T T

F E x x F R

x Ex P Var x E x x Ex Ex P



   

 

ㄧ

  

where the superscript "+" denotes Moore-Penrose pseudo inverse, 1|k kx   denotes the one-step 

prediction of 1kx  , 1|k kP   denotes the covariance of 1|k kx  , 1| 1k kx    denotes the update of 1kx   and 1| 1k kP    

denotes the covariance of 1| 1k kx   . 

Compared with the standard Kalman filtering and noting the notations in (5), (6), the random 

parameter matrices Kalman filtering has one more recursion of   1 1
T

k kE x x   as follows: 

      1 1 k

T T T T
k k k k k k k k k kE x x F E x x F E F E x x F R        

where 

  
1

1
( , )

1 1

...k k k k
n mi nr mi

r r
T T k k

k k k k i irf f f fm n
i i

E F E x x F C X C X
 

       

  
1

1
( , )

1 1

...k k k k
n mi nr mi

r r
T T k k

k k k k i irh h h hm n
i i

E H E x x H C X C X
 

       

and where k
ijX  is the ( , )i j th entries of ( )k T

k kX E x x . 

 

3. Random Parameter Matrices Kalman Filtering with Multisensor Fusion 

 

In this section, a new distributed Kalman filtering fusion with random parameter matrices is 

proposed. The framework of the distributed tracking system is the same as those considered in [12-15]. 

The advantages of transmitting sensor estimates other than sensor measurements can be seen in [12-

15]. We will show that under a mild condition the fused state estimate is equivalent to the centralized 

Kalman filtering using all sensor measurements. Therefore, it achieves the best performance. 

The l -sensor dynamic system is given by: 

1 , 0,1,...

, 1,...,

k k k k

i i i
k k k k

x F x k

y H x i l




   

  
 (12) 

where r
kx R  is the state, 

ii N
ky R  is the measurement matrix in i -th sensor, r

k R   is the process 

noise, and 
ii N

k R   is the measurement noise. Parameter matrices kF  and i
kH  are random. We assume 
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that { , , , , 0,1,2,...}i j
k k k kF H k   ， , 1,...i j l ， is a sequence of independent variables. Every single 

sensor satisfies the assumption in the last section. 

Convert system (12) to the following one with deterministic parameter matrices: 

1 , 0,1...

, 1,...,

k k k k

i i i
k k k k

x F x k

y H x i l




   

  




 (13) 

where 

k k k k

i i i
k k k k

F x

H x

 

 

 

 




  

The stacked measurement equation is written as: 

k k k ky H x     

where 

     1 1 1,..., , ,..., , ,...,
T T T T T TT T T

l l l
k k k k k k k k ky y y H H H         

and the covariance of the noise k  is given by: 

 k kVar R     

Consider the covariance of the measurement noise of single sensor in new system. By the 

assumption above, we have: 

    
 
   

T

T T T T

T T

Ti j i i j j
k k k k k k k k

i i i T j i j i T j
k k k k k k k k k k k k

i j i T j
k k k k k k

E E H x H x

E x H H x H x x H

E E H E x x H

   

   

 

  

   

    

  

   

 

 

As shown in the last part of Section 2, every entry of the last matrix term of the above equation is a 
linear combination of ( )k k

ij lsE h h . Hence, when i
kH  and j

kH  are correlated, in general, 

  0
Ti T j

k k k kE H E x x H   
  . Therefore, even if   0

Ti j
k kE    , i.e., the original sensor noises are mutually 

independent, the sensor noises of the converted system are still cross-correlated, i.e., kR  is non-

diagonal block matrix. 

Luckily, when sensor noises are cross-correlated, in [7], it was proven that under a mild condition 

the fuse state estimate is equivalent to the centralized Kalman filtering using all sensor measurments. 

According to Theorem 1 and the Kalman filtering formulae given in [8-10], the local Kalman 

filtering at the i -th sensor is: 

   
1

1 1 1

T

i i i i i i i i i i
k k k k k k k k k k k k k k k

i i i i
k k k k k

x x K y H x I K H x K y

K P H R


       

 

ㄧ ㄧ ㄧ ㄧ

ㄧ

 (14) 

where 

 i i
k kR Var    

with covariance of filtering error given by: 

  1
i i i i

k k k k k kP I K H P  ㄧ ㄧ  

or 
1 1 1

| |

Ti i i i i
k k k k k k kP P H R H
  

    (15)
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where 

  
  

1 1 1

1 1 1

i i
k k k k k

Ti i i
k k k k k k k k

Ti i i
k k k k k k k k

x F x

P E x x x x

P E x x x x

  

  



  

  

ㄧ ㄧ

ㄧ ㄧ ㄧ

ㄧ ㄧ ㄧ

 

We assume that the system has the following properties: the row dimensions of all sensor 
measurement matrices i

kH  to be less than or equal to the dimension of the state, and all i
kH  to be of 

full row rank. In many practical applications, this assumption is fulfilled very often. Thus, we 
know ( )i i

k kH H I  . 

According to [7] and Theorem 1, the centralized Kalman filtering with all sensor data is given by: 

 
 

   

1 1

1

1
1

1

*

k k k k k k k k k

k k k k k k

l
T i

k k k k k k k k k
i

x x K y H x

I K H x K y

I K H x P H R i y

 








  

  

    

ㄧ ㄧ ㄧ

ㄧ

ㄧ ㄧ

 
(16) 

1T
k k k k kK P H R 

ㄧ  (17) 

where,  1 *kR i  is the i -th column block of 1
kR . The covariance of filtering error given by: 

   
1

1

1

1 1 1

1 1

1

*

k k k k

T T

k k

T
k k k

l
T i i i i i
k k k k k k k

i

P P H R H

P H R i R H H R H







  


 



 

  



  

ㄧ ㄧ

ㄧ

 (18) 

or 

  1k k k k k kP I K H P  ㄧ ㄧ  (19) 

where 

  
  

1 1 1

1 1 1

k k k k k

T

k k k k k k k k

T

k k k k k k k k

x F x

P E x x x x

P E x x x x

  

  



  

  

ㄧ ㄧ

ㄧ ㄧ ㄧ

ㄧ ㄧ ㄧ

  

Using (15) and (18), the estimation error covariance of the centralized Kalman filtering is given by 

using the estimation error covariance of all local filters: 

     1 1

1 1

1 1 1

1

*
T

k k k k k k k k

l
T i i i i
k k k k

i

P P H R i R H P P
 

 


  



     
ㄧ ㄧ ㄧ ㄧ

 (20) 

Using (17): 

 

    1

1

1

1

1

*

*
T T

l
T i

k k k k k k k
i

l
T i i i i i

k k k k k k k k k
i

K y P H R i y

P H R i R H H R y





















  

ㄧ

ㄧ

 (21) 

To express the centralized filtering |k kx  in terms of the local filtering, by (14) and (15), we have 

 

1 1

1

1

1 1

1 1

T

k k

k k k k k k

k k k k k k k k

i i i i i i
k k k k k

i i i i i
k k

i i i i

H R y P K y

P x I K H x

P x P x

 





 

 



    

 


ㄧ

ㄧ ㄧ ㄧ

ㄧ ㄧ ㄧ ㄧ

 (22) 
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Thus, substituting (19), (21) and (22) into (16) yields:  

     1 1

1 1 1 1

1 1 1

1

*
T

k k k k k k k k k k k k k k k k

l
T i i i i i i
k k k k

i

P x P x H R i R H P x P x
 

   


  



    
ㄧ ㄧ ㄧ ㄧ ㄧ ㄧ ㄧ ㄧ

 (23) 

That is to say that the centralized filtering (23) and error matrix (20) are explicitly expressed in 

terms of the local filtering. Hence, the performance of the distributed random parameter matrices 

Kalman filtering fusion is the same as that of the centralized random parameter matrices fusion. 

Remark 1. In this paper it is assumed that all sensor observations are synchronous. In practice, this 

may be very rarely true. However, in the past 20 years, such assumption was used very often in the 

track fusion community (for example, see [7, 11-13] among others).  One of reasons for this is that  it 

is easy to extend the results for synchronous distributed Kalman filtering fusion to the corresponding 
asynchronous case by letting 

k k

ix
ㄧ

=
1k k

ix
ㄧ

  and  
k k

iP
ㄧ

=
1k k

iP
ㄧ

when the i th sensor does not receive its 

observation i
ky  at time k  to reduce the asynchronous distributed tracking system to be synchronous. 

Remark 2.The distributed systems here and in [7, 11-15] have a fusion center and the local sensor 
should transmit

k k

ix
ㄧ

, 
1k k

ix
ㄧ

,
k k

iP
ㄧ

 and 
1k k

iP
ㄧ

to the fusion center. Our purpose in this paper is to derive a 

globally optimal distributed fusion algorithm equivalent to the centralized Kalman filtering as the 

fusion center can receive all sensor observations. In this framework, the system has not only the global 

optimality, but also the good survivability in a poor situation.  Clearly, such systems are different from 

the system considered  [16]. The system in [16] does not require any form of central processing facility, 

and the algorithm there is highly resilient to loss of one or more sensing nodes, but costs more 

communication and has no real-time global optimality. Thus, both of them have their own advantages 

and disadvantages. The Random Kalman filtering in the framework of [16] may be another future 

research direction. 

 

4. Applications of Random Parameter Matrices Kalman Filtering 

 

In this section, we will see that the results in the last two sections can be applied to the Kalman 

filtering with uncertain observations as well as randomly variant dynamic systems with multiple 

models. 

 

4.1. Application to a General Uncertain Observation 

 

The Kalman filtering with uncertain observation attracted extensive attention [2-4].  There are two 

types of uncertain observations in practice. The first one is that the estimator can exactly know whether 

the observation fully or partially contains the signal to be estimated, or just contains noise alone (for 

example, see [2]). By directly using the optimal estimation theory, the Kalman filter for the first type 

of uncertain observations can be derived easily.  The other uncertain observations belong to the second 

type, i.e., the estimator cannot know whether the observation fully or partially contains the signal to be 

estimated or just contains noise alone, but the occurrence probabilities of each case are known. 

Clearly, the latter is more practical. By applying the random measurement matrix Kalman filtering, we 
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can derive the Kalman filter with the second type of uncertain observations, which is much more 

general than that in [2-4]. 

Consider a system: 

1k k k kx F x     (24) 

   
1 1

k k

l l
i i

k k k ki i
i i

y I H x I   
 

    (25) 

where all the parameter matrices are non-random and a set of multiple observation equations is 
selected to represent the possible observation case at each time. The random variable k  is either 

observable or unobservable. If k i  , the measure matrix is i
kH  and the observation noise corresponds 

to i
k . When the value of k  is observable at each time k , this is an uncertain observation of the first 

type and the state estimation with measurement equation (25) is converted to:  
i i

k k k ky H x    (26) 

which is obviously the classical Kalman filtering, i.e., the least mean square estimate using the various 
available observation of ky . To show the applications of the random measurement matrix Kalman 

filtering, we focus on the second type of uncertain observation, i.e., in (25), k  is unobservable at each 

time k , but the probability of occurrence of every available measurement matrix is known. 
Consider that in (25), k  is unobservable at each time k , but the probability of the occurrence of 

each measurement is known. Obviously, (2) is a more general form of (25) because only expectation 
and covariance of kH  in (2) are known other than its distribution. The expectation of kH  can be 

expressed as: 

1

l
j j

k k k
j

H p H


   (27) 

,i
k k kH H H  with probability i

kp  (28) 

All that remains in order to apply the random measurement matrix Kalman filtering is just to 

calculate: 

       
1

k k k

l TT T i i T i
k k k k k k k k k k k

i

R R E H E x x H R p H H E x x H H  


     
   (29) 

Substituting (27}) and (29) into Theorem 1 can immediately obtain the random measurement 

matrix Kalman filtering of model (1) and (25). 

In the classical Kalman filtering problem, the observation is always assumed to contain the signal to 

be estimated. However, in practice, when the exterior interference is strong, i.e., total covariance of the 

measurement noise is large; the estimator will mistake the noise as the observation sometimes. In radar 

terminology, this is called a false alarm. Usually, the estimator cannot know whether this happens or 

not, only the probability of a false alarm is known. In the following, we will show that the Kalman 

Filtering with a false alarm probability is a special case of the uncertain observations of the above 

model (1), (25) are given. 

Consider a discrete dynamic process: 

1k k k kx F x     (30) 
, 0,1, 2,...k k k ky h x k    (31) 
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where { , , , , 0,1, 2,...}k k k kF h k    satisfy the assumptions of standard Kalman filtering. kF and kh  are 

deterministic matrices. The false alarm probability of the observation is1 kp . 

Then,we can rewrite the measurement equations as follows: 
, 0,1, 2,...k k k ky H x k    (32) 

where the observation matrix kH  is a binary-valued random with: 

 Pr k k kH h p   (33) 

 Pr 0 1k kH p    (34) 

Due to (8): 

k k kH p h  (35) 

  Pr 1k k k kH p h p    (36) 

 Pr 1k k k kH p h p     (37) 

In the false alarm case, the state transition matrix is still deterministic, but the measurement matrix 

is random, by (35), (36) and (37), the covariance of the process and observation noises can be written 

as follows: 

k k
R R   (38)

      1
k k k

T T T T
k k k k k k k k k kR R E H E x x H R p p h E x x h      
   (39)

Thus, the Kalman filtering with false alarm probability in this case is given by: 
 

 

 
   

   

1 1 1 1 1 1 1 1

1

2
1 1 1 1 1 1 1 1

1 |

1| 1 1 1 1 1

1 1

1

k

k

k k

k

k k k k k k k k k k

k k k k k

T T
k k k k k k k k k k

T
k k k k k k

k k k k k k k

T T
k k k k k k

T T T
k k k k k k

x x K y p h x

x F x

K p P h p h P h R

P F P F R

P I p K h P

R R p p h E x x h

E x x F E x x F R





 



       





       



     

 

  



 

 

 

  

 







ㄧ ㄧ ㄧ

ㄧ ㄧ

ㄧ ㄧ

ㄧ

ㄧ

   0 0 0 0|0 0 0 0 0 0 0|0, , T Tx Ex P Var x E x x Ex Ex P   ㄧ

 

In this section, we consider the application to a general uncertain observation for one sensor case. In 

a manner analogous to the derivation of Section 4.1, we can also give an application to a general 

uncertain observation for multisensor case using Section 3. The procedure is omitted here. 

 

4.2. Application to a Multi-Model Dynamic Process 

 

The multiple-model (MM) dynamic process has been considered by many researchers. Although the 

possible models considered in those papers are quite general and can depend on the state, but no 

optimal algorithm in the mean square error (MSE) sense was proposed in the past a few decades. On 

the other hand, when some of the MM systems satisfy the assumptions in this paper, they can be 

reduced to dynamic models with random transition matrix and thus the optimal real-time filter can be 

given directly according to the random transition matrix Kalman filtering proposed in Theorem 1.  
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Consider a system: 

1
i

k k k kx F x     with probability , 1,...,i
kp i l  (40) 

k k k ky H x    (41) 
where kF  and k  are independent sequence, and kH  is non-random. We use random matrix kF  to 

stand for the state transition matrix. The expectation of kF  can be expressed as: 

1

l
j j

k k k
j

F p F


   (42) 

i
k k kF F F  ，with probability i

kp  (43) 

A necessary step for implementing the random Kalman filtering is to calculate: 

       
1

k k k

l TT T i i T i
k k k k k k k k k k k

i

R R E F E x x F R p F F E x x F F  


     
   (44) 

Thus, all the recursive formulas of random Kalman filtering can be given by: 

 

 

 

    

   

1 1 1 1 1 1 1

1

1 1 1 1 1 1

1 |

1| 1 1 1 1

1

1 1
1

k

k

k k

k

k k k k k k k k k

k k k k k

T T
k k k k k k k k

T
k k k k k k

k k k k k k

l Ti i T i
k k k k k k k

i

l
T T T i

k k k k k k k
i

x x K y H x

x F x

K P H H P H R

P F P F R

P I K H P

R R p F F E x x F F

E x x F E x x F R p





 



      





     



    



 


  



 

 

 

   

  







ㄧ ㄧ ㄧ

ㄧ ㄧ

ㄧ ㄧ

ㄧ

ㄧ

    
   0 0 0 0|0 0 0 0 0 0 0|0, ,

Ti T i
k k k k k

T T

F F E x x F F

x Ex P Var x E x x Ex Ex P

 

   



ㄧ

 

 

5. Numerical Example 

 

In this section, three simulations will be done for a dynamic system with random parameter 

matrices modeled as an object movement with process noise and measurement noise on the plane. The 

simulations give the special applications of results in the last section and show that fused random 

parameter matrices Kalman filtering algorithms can track the object satisfactorily. 

Remember that we have rigorously proved in Section 3 that the centralized algorithm using all 
sensor observations i

ky at the fusion center can be equivalently converted to be distributed algorithm   

using all sensor estimates |
i
k kx . In addition, the computer simulations we have done show that the 

simulation results of two algorithms are exactly the same. It turns out that in the following numerical 

examples, we only compare the distributed random Kalman filtering and the corresponding standard 

Kalman filtering that ignores the randomness of the parameter matrices. Without loss of generality our 

examples assume the local sensors send updates each time when they receive a measurement. 

Firstly, we consider a three-sensor distributed Kalman filtering fusion problem with false alarm 

probabilities. 
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Example 1. The object dynamics and measurement equations are modeled as follows: 

1

, 1, 2,3

k k k k

i i i
k k k k

x F x

y H x i




  

  
 

where { , , , , 0,1, 2,...}i i
k k k kF H k   satisfy the assumptions of standard Kalman filtering. The state 

transition matrix kF   

   
   

cos 2 / 300 sin 2 / 300

sin 2 / 300 cos 2 / 300kF
 
 

 
   

 

is a constant. The measurement matrix is given by: 

31 1 3
, 1,2,

1 1 3
i
k k

i
H i H

i

   
         

 

The false alarm probability of the l -th sensor is given by: 
1 2 31 0.01,1 0.02,1 0.03.k k kp p p       

The initial state 0 (50,0)x  , 0|0
iP I . The covariance of the noises are diagonal, given by 

1R  , 2iR

 , 1, 2,3.i  . Using a Monte-Carlo method of 50 runs, we can evaluate tracking 

performance of an algorithm by estimating the second moment of the tracking error, given by: 

 
50

22

1

1

50 k k

i
k k

i

E x x


  ㄧ
 

Figure 1 shows that the second moments of tracking error for three sensors Kalman filtering fusion 

without considering the false alarm (i.e. standard Kalman filtering) and three sensors random Kalman 

filtering fusion considering the false alarm (i.e. random Kalman filtering), respectively. It can be 

shown that even if the false alarm probability is very small, the distributed Random Kalman filtering 

fusion performs much better than the standard Kalman filtering. 

 

Figure 1. Comparison of standard Kalman filtering fusion and random Kalman filtering 

fusion. 
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In Example 1, both the sensor noises and the random measure matrices of the original system are 

mutually independent, so the sensor noise of the converted system are mutually independent. Now, we 

consider another example that both the noises and the random measure matrices of the original system 

are cross-correlated. 

 

Example 2. The object dynamics and measurement equations are modeled as follows: 

1k k k kx F x     

,i i i
k k k ky H x    with probability of kp  

i
k k   , with probability of 1 kp  

where 1, 2,3i  , { , , , , , 0,1, 2,...}i i
k k k k kF H k    satisfy the assumptions of standard Kalman filtering. 

The state transition matrix kF  and the measurement matrices i
kH  are the same as Example 1 and k  is 

a large  transition  noise. When it happens, the sensors will mistake the transition noise as the 
observation. The false alarm probability of the transition noise is given by1 0.05kp  . Though the 

sensor noises i
k , 1, 2,3i   are mutually independent and independent of k , but the total measurement 

noises i
k  are cross-correlated here. The covariance of the noises are diagonal, given 

by 1R  , 2R  0.5iR

 , 1, 2,3.i  The initial state 0 (50,0)x  , 0|0

iP I . 

In this example, both the measurement noises and the random measure matrices of the original 

system are cross-correlated. Hence, the sensor noises of the converted system are cross-correlated. 

Figure 2 shows that the random Kalman filtering fusion given in Section 3 still works better than the 

standard Kalman filtering without considering the false alarm. This implies that the standard Kalman 

filtering  incorrectly assumes that sensor noises are independent. 

 

Figure 2. Comparison of standard Kalman filtering fusion and random Kalman filtering 

fusion. 

 
 

Example 3. In this simulation, there are three dynamic models with the corresponding probabilities 

of occurrence available. The object dynamics and measurement matrix in (40) are given by: 
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   
   

1 cos 2 / 300 sin 2 / 300

sin 2 / 300 cos 2 / 300k
F

 
 

 
   

 with probability 0.1 

   
   

2 cos 2 / 250 sin 2 / 250

sin 2 / 250 cos 2 / 250k
F

 
 

 
   

 with probability 0.2 

   
   

3 cos 2 /100 sin 2 / 50

sin 2 / 50 cos 2 /100k
F

 
 

 
   

 with probability 0.7 

1 1

1 1kH
 

   
 

The covariance of the noises are diagonal, given by 2R  , 1R  . In the following, we compare 

our numerical results with the IMM. Since in this example, the occurrence probability of each model at 

every time k  is known and mutually independent, it is also the transition probability in the IMM. 

Therefore, the transition probability matrix   at each time in the IMM is fixed and given by: 
0.1 0.2 0.7

0.1 0.2 0.7

0.1 0.2 0.7

 
    
 
 

 

( , )i j here means the transition probability of model i  to model j . This assumption also implies that 

the model probability in the IMM is fixed as follows: 
1 2 30.1, 0.2, 0.7, 1,2...k k k k     

Figure 3 shows that the random Kalman filtering given in section 4.2 still works better than the IMM 

with the fixed transition probability and model probability. This makes sense since the former is 
optimal in the MSE sense but the latter is not. However，in practice, the occurrence probability of 

each model  is very often dependent on state or observation, and therefore not independent of each 

other in time. In this case, our new method offers no advantage. 

 

Figure 3. Comparison of IMM and random Kalman filtering. 
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6. Conclusions  

 

In the multisensor random parameter matrices case, it was proven in this paper that when the sensor 

noises, or the measurement matrices of the original system are correlated across sensors, the sensor 

noises of the converted system are cross-correlated. Hence, such multisensor system seems not to 

satisfy the conditions for the standard distributed Kalman filtering fusion. This paper propose a new 

distributed Kalman filtering fusion with random parameter matrices Kalman filtering and proves that 

under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering using 

all sensor measurements, therefore, it achieves the best performance. More importantly, this result can 

be applied to Kalman filtering with uncertain observations as well as randomly variant dynamic 

systems with multiple models. The Kalman filtering with false alarm is a special case of Kalman 

filtering with uncertain observations. Numerical examples are given which support our analysis and 

show significant performance loss of ignoring the randomness of the parameter matrices. 

 

Appendix 

 

In the Appendix, we will give the proof of Theorem 1. Firstly, we give a detailed proof that system 

(9) and (10) satisfy all conditions of the standard Kalman filtering as follows: 

 
Lemma 1. Suppose random matrix F  and random vector x  are independent, then: 

    T T T TE Fxx F E FE xx F  

Proof. By the properties of conditional expectation, we have that: 

    
  
  

T T T T

T T

T T

E Fxx F E E Fxx F

E FE xx F

E FE xx F







| F

| F  

Q.E.D. 

Lemma 2. 
     
       
           
     

0 0

0, 0;

1 0, 2 0

1 0, 2 0, 3 0,

, ,
k k

k k

T T
k k

T T T
k l k l k l

T T
k k v k k

a E E

b E x v b E x

c E c E c E k l

d E R E R

 



     

   

 

 

    

 

 



     

   

 

where 

  
  

,

.

k k

k k

T T
k k k k

T T
k k k k

R R E F E x x F

R R E H E x x H

 

 

 

 





 

 
 

Proof. 

(a): By the assumptions on the model (1) and (2) , and notations in (11) , it is obvious. 
(b1): Since   , , 0,1, 2,...k kF k  is independent of  0x , 
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    
 

  
 

  
 

 
           

0 0

0

0 1 1 1

0 1 1

0 2 2 2 1

0 2 2 1

0 0 0 1 2 1

0 0 0 1 2 1

...

...

...

0.

TT
k k k k

T T
k k

T T
k k k k

T T T
k k k

T T T
k k k k k

T T T T
k k k k

T T T T T T
k k k

T T T T T T
k k k

E x E x F x

E x x F

E x F x F

E x x F F

E x F x F F

E x x F F F

E x x F F F F F

E x x E F E F E F E F E F

 





  

 

   

  

 

 

 



 



 

























 

(b2): Similarly,  0 0T
kE x   . 

(c1): Without loss of generality, we consider the case of k l  only. 

   T T T T T T T
k l k l k l l k k l k k l lE E x F F x F x x F              

For lx  is linearly dependent on 1 2 1 0 0 1 1 2 1... , , ... , 2,3,..., ,l l l l l l i l iF F F F x F F F i l           and 

 , , 0,1, 2,...k kF k  is independent of 0x , 

  0T T
k l lE x F   

    
 

  
   

   
       

1 1 1

1 1

1 2 2 2

1 2 2 1 2

1 1 1

1 1

...

... ...

...

0.

T T
k k l k k k k l

T
k k k l

T
k k k k k l

T T
k k k k l k k k l

T T
k k l l l k k l l l

T
k k l l l

E F x E F F x

E F F x

E F F F x

E F F F x E F F

E F F F x E F F F

E F E F E F E

  



 

  

  

 

  

 

   

    

  

 

 



 

 

 





 





 

 



 

Noting that lx  and  , 0,1, 2,...kF k   are independent, by Lemma 1 we have: 

    
 
 

   
 

1 1 1

1 1

1 2 2 1 2

1 2 1 1 2 1

1 2 1

...

... ...

...

T T T T
k k l l k k k k l l

T T
k k k l l

T T T T
k k k k l l k k k l l

T T T T
k k k l l l l l k k k l l l l

T T
k k k l l l l l

E F x x F E F F x x F

E F F x x F

E F F F x x F F F x F

E F F F F F x x F E F F F F x F

E F F F F F x x F E F







  

 

    

     

  

 



 

 

 

   

 

   

   

    
    

1 2 1

1 2 1

...

...

0.

T T
k k k l l l l l

T T
k k k l l l l l

F F F F x x F

E E F F F F F E x x F

  

  



 

  
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Hence,   0T
k lE     . 

(c2): Also consider the case of k l  only. Since lx  is linearly dependent 

on 1 2 1 0 0 1... ,l l lF F F F x    , 1 2 1...l l l i l iF F F      , 2,3,...,i l , , , , , 0,1, 2,...k k k kF H k   is independent of 0x  , 

and  , , 0,1, 2,...k kF H k   is independent of lx .Moreover: 

   
 

  
 
 

 

1 1 1

1 1

1 2 2 1 2

1 2 1 1 2

...

... ...

T T T T T T T
k l k l k l l k k l k k l l

T T
k k l l

T T
k k k k l l

T T
k k k l l

T T T T
k k k k l l k k k l l

T T
k k k l l l l l k k k

E E x H H x H x x H

E H x x H

E H F x x H

E H F x x H

E H F F x x H H F x H

E H F F F F x x H E H F F F

     





  

 

    

    

   



 



 

 

    

 

 

 

   

   1

0.

T T
l l l lx H





 

(c3): 

   T T T T T T T
k l k l k l l k k l k k l lE E x H F x F x x H             . 

When k l , 

   
  

 
   

 

1 1 1

1 1

1 2 2 1 2

1 2 1 1 2 1

...

... ...

0.

T T T
k l k k l l

T T
k k k k l l

T T
k k k l l

T T T T
k k k k l l k k k l l

T T T T
k k k l l l l l k k k l l l l

E E F x x H

E F F x x H

E F F x x H

E F F F x x H E F F x H

E F F F F F x x H F F F F x H

 







  

 

    

     



 



 

 



  

 

 

   

   

 

when  k l , 

    
 
   

   

1 1 1

1 1

2 2 2 1

1 1 1 1

...

... ...

0,

TT T T
k l l k l l l l

T T T
k l l l

T T T T T T
k l l l k l l l

T T T T T T T T T
k k k k l l k k k l l

E x H E F x H

E x F H

E x F H E F H

E x F F F H E F F H

  



  

  

  

 

   

   

 



 

 



 



 

 
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    
 

  

  
 

    

1 1 1

1 1

2 2 2 1

1 1

1 1

1 1

...

...

...

...

0

TT T T
k k l l k k l l l l

T T T
k k l l l

T T T
k k l l l l l

T T T T
k k k k k k l l

T T T T T
k k k k k l l

T T T T T
k k k k k l l

E F x x H E F x F x H

E F x x F H

E F x F x F H

E F x F x F F H

E F x x F F F H

E F E x x F E F F H







  

 

   

 

 

 

 



 

 







   

 

 

 

 

 

 

Thus,   0.T
k lE      

(d):  

   
 

  
k

k

T T T T T T T
k k k k k k k k k k k k k k

T T
k k k k

T T
k k k k

E E x F F x F x x F

R E F x x F

R E F E x x F





        

 

 

    

 

 

 

Similarly,     .
k

T T T
k k k k k kE R E H E x x H        

Q.E.D. 

By Lemma 2, system (9), (10) satisfies all conditions of the standard Kalman Filtering. Hence, we 

derive the recursive state estimate of the new system, i.e., Theorem 1 immediately. 
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