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Abstract: Spectra, salinity, total suspended solids (TSS, in mg/L) and colored dissolved 

organic matter (CDOM, ag(400) at 400 nm) sampled in stations in 44 different locations on 

December 18, 19 and 21, in 2006 were measured and analyzed. The studied field covered a 

large variety of optically different waters, the absorption coefficient of CDOM ([ag(400)] 

in m-1) varied between 0.488 and 1.41 m-1, and the TSS concentrations (mg/L) varied 

between 7.0 and 241.1 mg/L. In order to detect salinity of the Pearl River Estuary, we 

analyzed the spectral properties of TSS and CDOM, and the relationships between field 

water reflectance spectra and water constituents’ concentrations based on the synchronous 

in-situ and satellite hyper-spectral image analysis. A good correlation was discovered (the 

positive correlation by linear fit), between in-situ reflectance ratio R680/R527 and TSS 

concentrations (R2 = 0.65) for the salinity range of 1.74-22.12. However, the result also 

showed that the absorption coefficient of CDOM was not tightly correlated with 

reflectance. In addition, we also observed two significant relationships (R2 > 0.77), one 

between TSS concentrations and surface salinity and the other between the absorption 

coefficient of CDOM and surface salinity. Finally, we develop a novel method to 

understand surface salinity distribution of estuarine waters from the calibrated EO-1 

Hyperion reflectance data in the Pearl River Estuary, i.e. channels with high salinity and 
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shoals with low salinity. The EO-1 Hyperion derived surface salinity and TSS 

concentrations were validated using in-situ data that were collected on December 21, 2006, 

synchronous with EO-1 Hyperion satellite imagery acquisition. The results showed that the 

semi-empirical relationships are capable of predicting salinity from EO-1 Hyperion 

imagery in the Pearl River Estuary (RMSE < 2‰). 

 

Keywords: Pearl River Estuary, salinity, total suspended solid, colored dissolved organic 

matter, Hyperion imagery 

 

 

1. Introduction 

 

The use of visible signatures in estuarine environments presents many difficulties due to the variety 

of optically active constituents present in estuarine waters. These constituents generally fall into three 

main classes: total suspended solids (TSS), colored dissolved organic matter (CDOM) and chlorophyll 

pigments (Chl_a). Each class is characterized by specific inherent optical properties (IOPs) relating to 

absorption and scattering processes [1]. CDOM is part of the dissolved organic matter, which can be 

classified into two major groups–natural organic matter and anthropogenic organic matter (AOM, i.e.; 

agricultural waste, and industrial organic pollutants). A fast development in industry and agriculture 

has led to large amounts of AOM being released into the water of Pearl River Estuary (PRE), which 

results in significant divergence in the composition and concentration of CDOM. These parameters 

(concentration and composition of CDOM) provide information on organic pollution and on their 

corresponding sources [2]. Solids suspended in the Delta River and estuaries are comprised of living 

and dead phytoplankton, mineral particles, and organic detritus. The particles have important optical 

effects on the upper layer of the river surface water. Suspended solid particles have different responses 

to salinity under different water quality conditions in the estuary. Each component is likely to change 

temporally and spatially due to flocculation and the breakup of suspended particles, which depends on 

a variety of parameters such as salinity, suspended sediment concentration, turbulence, organic matter 

content, and biochemical processes [3]. The approach we applied here, the quantitative derivation from 

hyperspectral data of useful geophysical parameters (mainly TSS, salinity) necessitates models of the 

IOPs and of the radioactive transfer [4, 5].  

The Pearl River is the third largest river in China. The annual variation in its discharge depends 
significantly on the amount of rainfall it receives in the catchment, and from October to the next 

February the mean rainfall is comparatively low with about 30 mm/month, which results in the 

reduced runoff and causes marine water intrusion. During 2003–2006, the severe marine water 

intrusion events occurred around Macau, Zhongshan and Guangzhou area. The marine intrusion not 

only results in salinity increase in the rivers, influencing the freshwater taking sites along the river by 

delta cities, but also influences the concentration and distribution of nutrimental salt in the rivers. This 

leads to the change in the physical and chemical environment of the estuarine ecosystem. 

Consequently, the structure, function and health of the estuarine ecosystem could be affected as a 

result of such marine intrusion. Therefore, the effective approaches that can meet the needs of spatial 

and temporal coastal water monitoring are critical towards understanding the characteristics of marine 



Sensors 2009, 9                            

 

 

658

intrusion into estuarine ecosystems. Although Brando and Dekker et al. had used Hyperion for water 

quality monitoring for quite a while, they made no reference to the analysis of salinity [6]. Miller and 

McKee established a robust linear relationship between band 1 (620–670 nm) of MODIS Terra 250 m 

data and in situ measurements of total suspended matter [7]. Hu et al. used MODIS for estuary water 

quality estimations and the research significantly improved our understanding of the global ocean. 

Moreover, they found the slope of the CDOM-salinity relationship changed with location (salinity 

range only: 24–32) within the bay. Besides, limitations become apparent when these data are applied 

to estuarine environments e.g.; the 1-km spatial resolution [8]. It is obviously worthwhile to develop 

new methodologies for effective marine intrusion monitoring in PRE, even though some literature 

already exists discussing the problem of the inversion of TSS, CDOM, and Chl_a based on in situ 

reflectance in the PRE [9]. Studies on TSS, CDOM and salinity by remote sensing in the PRE are 

limited, although several studies of optical and fluorescent characteristics of CDOM and salinity in 

Lingding Bay or coastal seawater have been reported [10, 11]. Moreover, the coarse resolution of Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) for detecting yellow substance according to existing 

research is not capable of monitoring the intrusions of marine waters [12]. So, there is a necessity in 

the research of optical characteristic and remote sensing of river intrusions in marine and coastal 

water, especially in salinity related river water color mechanisms. This is crucial for the understanding 

and monitoring of severe marine water intrusion in the PRE. Since 2006, the coastal agricultural 

managers in the PRE, such as Panyu District, have begun to adjust the local agricultural systems in 

order to reduce the influence of gradually severe marine intrusion on farming systems due to the longer 

and frequent marine intrusions [13]. 

 

2. Methods 

 

2.1. Field Work 

 

The field measurements of water surface spectra were carried out from 9:30 am to 2:30 pm (Beijing 

Time, GMT + 8) on December 18, 19 and 21, in 2006. Samples for spectra, salinity, TSS and CDOM 

in stations including 44 locations were measured and analyzed. Additionally, there were ten sites, 

synchronous with EO-1 Hyperion satellite imagery acquisition, where surface water was sampled and 

TSS concentrations and salinity were analyzed. The accurate positions of all the sampling stations 

were recorded by the global positioning system, as shown in Figure 1. We collected water samples 

during a cruise, while Panyu District Waterworks of Guangzhou and Zhongshan Water Conservancy 

Bureau collected water samples at locating monitoring sites during the fieldwork. All the samples were 

kept in an icebox and transported to a water quality analysis laboratory in Guangzhou as soon as 

possible in polypropylene sampling bottles. The entire procedure, including sample collection, storing, 

and measurement, was performed strictly according to the Technical Specifications Requirements for 

Monitoring of Surface Water and Waste Water of China (TSS, Chl_a; HJ/T 91—2002) [14], and 

Ocean Optics Protocols Version 2.0 (CDOM), distributed by NASA [15]. Absorption by CDOM was 

measured by first filtering samples with 25-mm Whatman GF/F glass-fiber filters and then measuring 

the absorption spectrum of the filtrate. Quartz cells with a path length of 10 cm were used in these 

measurements and distilled water was used as a reference. The absorption coefficient was calculated in 
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the same manner. The absorption coefficient at 400 nm, ag(400) (m-1), is adopted in the study. TSS 

(mg/L) was determined by filtering samples onto 0.45 mm filters of known weight, drying them and 

measuring the weight gain due to sediment concentration. Surface salinity was measured using an 

YSI® 30/Set, a portable salinity temperature and conductivity meter. Elaborate precautions during 

analysis were taken to avoid contamination. In other words, each water constituent analysis was 

carried out in the Center of Water Environment Monitoring of Pearl River (Guangzhou) according to 

the criterion reported in other studies [10]. 

 

Figure 1. Map of water system in the Pearl River Estuary (PRE) and the black frame 

outlines map of EO-1 Hyperion footprint. Sample for spectra, salinity, TSS and CDOM in 

stations including 44 locations were measured and analyzed on December 18, 19 and 21, in 

2006. There were 16 sampling locations in the Humen riverway (H1-H16), 16 locations in 

the Modaomen riverway (M1-M16) and 12 locations in the Lingding Bay (S1-S12). 

Additionally, triangles indicate the ten sampling sites synchronous with EO-1 Hyperion 

satellite imagery acquisition. 

 
 

2.2. The Measurement and Processing of Field Spectra 

 

2.2.1. Spectral Measurement 

 

Spectral measurements of radiance at the water’s surface were carried out using ASD FieldSpec PR 

manufactured by the ASD Company in the USA. The instrument operates in the bands ranging from 
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350 to 2500 nm, with wavelengths resolution of 1 nm. To reduce the effect of water’s mirror 

reflection, an observation angle method was adopted [16] and the boat’s shadow was avoided by 

facing the boat side measured to Sun. In the spectral measurement, observation azimuth angle was less 

than 135° (sun azimuth angle is considered as 0°), and observation zenith angle was 45°. In each 

station, three important parameters were measured: radiance of water surface, sky and reference board. 

Integral time of the instrument was defined as 172 ms and 10 spectral curves were continuously 

measured at a time. Standard board with a reflectance of 30% was adopted and spectral measurements 

were taken from 0930 to 1430. The spectral measurements were always synchronous with water 

sample collection. This precaution can reduce errors in computing water leaving radiance values from 

measured radiance values due to variation in solar zenith angle.  

 

2.2.2. Spectral Processing 

 

Radiance of surface water at each station was calculated by averaging the measured data (the 

abnormal values caused from the capillary waves at river surface were eliminated during data 

analysis). Generally, the surface reflectance of water is calculated by the ratio of reflection radiance 

and incidence radiance in water quality remote sensing monitoring. In fact, the surface reflectance of 

water contains not only the reflection information of water but also information of diffused sunlight 

reflected by air-water interface. Thus, to obtain pure reflectance information of water, we converted in-

situ radiance of water to remote sensing reflectance by Equation (1), (2), and (3) that are described in 

detail below. 

Water leaving radiance is spectral information of water reflected by air-water interface. Point-blank 

reflection of sunlight can be avoided with the observation azimuth of 135 degree and water radiance 

(Lsw) measured by ASD can be calculated by Equation (1):  

skyWsw LrLL   (1)

where LW is water leaving radiance, Lsky is information of diffused sky light (involving no water 

information) and r is the sky light reflected by air-water interface. The value of r is usually between 

2.1% and 5%, depending on the sun’s position (θ0, Φ0), geometric conditions of observation (θv, Φv), 

wind speed, wind direction and roughness degree of water surface. Because average wind speed was 

less than 3 m/s and wind speed of most stations was less than 5 m/s during field measurements of 

water spectra, the value of r was defined as 0.022 [16]. 

Remote sensing reflectance was calculated by Equation (2): 

)0(/ d
 ELR Wrs  (2)

where, Ed (0
+) is the total incidence radiance of water surface it can be calculated by Lp [Equation (3)]: 

 

ppLE  /)0(d   (3)

where, ρp is reflectance of reference board, Lp is radiance of reference board. 
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2.3. Remote Sensing Data 

 

2.3.1. Imagery Acquisition 

 

Hyperion imagery of Pearl River Estuary was acquired at 1037 (local standard time) on 21 

December 2006, south China. The instrument is onboard the EO-1 satellite [17] that was launched on 

21 November 2000, and its imagery data are recorded in 16-bit radiance values.  

Hyperion is the first earth-orbiting imaging spectrometer operating across the full solar-reflected 

spectrum, collecting 196 unique calibrated spectral channels ranging with spectral coverage from 426-

2395 nm and 10-nm sampling and spectral response functions. The spatial sampling is 30 m with a 7.7-

km imagery swath and 185-km length, which is well suited for detecting and portraying complex 

spatial distributions of salinity and other water constituents in salt water intrusion region.  

 

2.3.2. Imagery Pre-Processing 

 

The Hyperion imagery acquired was pre-processed according to the guides of Hyperion imagery 

pre-processing [17]. The first step was to fix the bad lines of imagery. There were a few Hyperion 

detectors found to be bad in over 60,000 detectors (256 pixels × 220 bands). Bad detectors were 

corrected by the use of neighbor interpolation. The second step was to retrieve water area in the 

imagery. River and coastal water (investigation object) reflectance was analyzed according to their 

spatial profile (Figure 2). Figure 2 represents the water spatial reflectance profile using a Hyperion 

NIR band (864.35nm). It demonstrates that their reflectance values are below 0.075 on Hyperion 

imagery before atmospheric correction. To help us to extract water regions in ArcGIS, area 

information was added, because the connectivity area of river is generally larger than other water 

bodies. 

 

Figure 2. Variance range of water spatial reflectance profile at a Hyperion NIR band 

(864.35 nm). 

 

 
 

Finally, removal of atmospheric effects is especially important due to the low reflectance of water 

body. Hyperion imagery was performed using the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) software package in ENVI 4.0 (Research Systems Corp.). FLAASH is 
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designed for atmospheric correction of hyperspectral and multispectral data [18]. It incorporates 

MODTRAN 4 radioactive transfer codes with all MODTRAN atmosphere and aerosol types to 

calculate a unique solution for each image. FLAASH also includes a correction for the adjacency 

effect, provides an option to compute a scene-average visibility (aerosol/haze amount) and utilizes 

advanced techniques for handling particularly challenging atmospheric conditions such as clouds. 

FLAASH produces results in terms of a scaled radiance reflectance that equals irradiance reflectance 

in the case of Lambertian surfaces. In this study, model parameters describing a mid-latitude winter 

atmosphere and rural aerosols together with automatic aerosol retrieval were used in FLAASH to 

correct the Hyperion imagery. Finally, geometric correction was performed by the nearest neighbor 

resample method based on a water system graph of 1:50,000 scale in the PRE (the water system graph 

is mapped in 2005) within 0.5 pixel departure. 

 

Figure 3. The comparison of the FLAASH-derived reflectance with the apparent 

reflectance, and with the measured Hyperion remote sensing reflectance of surface water in 

the PRE. The three vertical lines indicate blue, green and visible light bands from left to 

right in the Figure. 

 
 

To validate the results of atmospheric correction of FLAASH, the comparison of the derived 

reflectance with FLAASH and apparent reflectance of EO-1 image was produced. From Figure 3, the 

apparent reflectance of surface water in PRE is higher in visible band (especially in blue band) than the 

measured reflectance, and decreases with wavelength increasing. However, the derived reflectance 

with FLAASH decreases in visible band, and the most distinct lowering occurs in blue band and green 

band. In the visible light band, the radiance distortion is mainly caused by Rayleigh scattering and 

diffused scattering in the atmospheric window. Rayleigh scattering decreases with band increasing 

with the strongest effect in blue band. The diffused scattering results from cloud particle and it has an 

effect on all wavelengths of visible light. So, the scattering radiance must be removed from image 

signal by atmospheric correction method, which results in the decrease of object reflectance in the 

visible band. 

Additionally, the derived spectral curve with FLAASH is compared with in-situ spectral curve 

synchronous with EO-1 Hyperion satellite imagery acquisition. From Figure 3, the spectral values of 



Sensors 2009, 9                            

 

 

663

surface water derived with FLAASH are a little higher than in-situ remote sensing reflectance, 

however, two spectral curves have same change trend with similar peak and crest (RMSE of 0.0039). 

First, the reflectance increases with band increasing, and arrives at peak near 580 nm. Then, decreases 

with band increasing, and arrives at another peak near 680 nm in the visible band. In conclusion, for 

surface water of PRE, the atmospheric correction based on FLAASH is effective by comparing the 

derived reflectance of EO-1 Hyperion imagery with in-situ reflectance. 

 

3. Results 

 

3.1. Relationship between In-situ Reflectance and Water Constituents 

 

The study area covered a large variety of optically different waters. For example, the ag(400) 

sampled varied between 0.488 and 1.41 m-1. There were better results among the single band and band 

ratios and their varieties were obtained in reflectance ratios, especially for the correlation of 

reflectance with water constituents in the PRE. There was positive correlation between ag(400) and 

reflectance ratio R703/ R488(r = 0.62). However, the ag(400) of most sites varied between 0.5 and 1, so 

the linear relationship between ag(400) and the reflectance ratio need to be validated by more 

measurement data with high CDOM concentrations (Figure 4). Bowers et al. [19] showed from theory 

that there should be a linear relationship between ag(400) and the ratio of reflectance in the red and 

one other color, provided the effect of suspended particles on the optical signature is weak compared 

to that of CDOM. Thus, the relationship between ag(400) and the reflectance ratio was not rigorous, 

due to the strong influence of other water constituents (such as TSS) on ocean color in the PRE. 

 
Figure 4. Correlation between ag(400) and reflectance ratio. 

 

 

 

 

 

 

 

 

    

             

 

 

 

Based on the above analysis, the correlation of TSS concentration and reflectance was further 

examined. There were 44 TSS sample data synchronous with field spectra measurements on December 

18, 19 and 21, 2006. TSS concentrations varied between 7.0 and 241.1, covering a large variety of 

optically different coastal waters.  
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Figure 5 shows a correlation of TSS against R680/R527 for all sites in the delta river ways and 

Lingding Bay. Remarkably, stations from a variety of locations and also over a range of TSS 

concentrations supported a good linear correlation between TSS and reflectance ratio of R680/R527. A 

least-squares linear regression on TSS against R680/R527 produced the following correlation model: 

680

527

403.49 207.55
R

TSS
R

    (R2 = 0.65, n = 44, P < 0.001)                               (4) 

The 44 point data were used to develop the linear model, which could describe nearly 65% of the 

variability in the ratio R680/R527 with a range of TSS, 7.0－241.1 mg/L.  

 

Figure 5. Correlation between TSS concentration and reflectance ratio. 
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Equation four indicates that the reflectance ratio is positively proportional to the TSS concentration, 

which is in accordance with the other algorithms showing an increase in red band reflectance [20] and 

a decrease in blue-green band with increasing sediment concentration [21]. Moreover, according to 

previous research, the success of algorithms based on visible wavelength color ratios has been 

restricted to regions where mineral sediments are likely to dominate the optical signal, such as the Bay 

of Fundy [22], the Irish Sea [20] and the Menai Strait [23].  

Up to now, the existing algorithms for determining water quality parameters in the open ocean 

waters are more robust and universal than those for coastal water. Coarsely spectral and spatial 

resolution imagery in spectral properties of river estuary waters, different optical characteristics of the 

water constituents in different estuary waters and the problem of imagery atmospheric correction, 

which result in present algorithms are not suitable for determining the water constituents in seawater 

intrusion reaches or estuary water. Thus, it is necessary to analyze the spectral properties of the water 

constituents based on in-situ hyper-spectral data and develop reliable algorithms for simultaneously 

retrieving the temporal and spatial distribution of various water parameters in the PRE.  
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3.2. Correlation between Salinity and CDOM 

 

The correlation between ag (400) and salinity was analyzed from field data (Tables 1, 2 and 3). The 

ag (400) is significantly correlated with salinity in the studied field. Salinity decreases linearly with the 

increasing CDOM absorption coefficient. The correlation could be described by Equation (5), and 

involved data of 39 sample sites (including different marine intrusion river reaches and marine water) 

with a good linear correlation (R2 = 0.77).  

However, five in-situ data points of lower salinity were discarded, which were from the Shenwan 

River way and were controlled by severe pollution of the Xihe waterway by industry and life.  

 

Table 1. The constituents of samples that were collected simultaneously with field 

spectrum measurement on December 18 2006 in the Humen waterway of PRE. 

Location H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 

ag(400)(/m) 0.71 0.73 0.66 0.68 0.68 0.73 0.73 0.78 0.74 0.86 0.82 0.95 0.87 0.93 0.99 0.99 

TSS (mg/L) 36.6 23.2 29.4 24.0 24.6 23.2 25.4 48.6 32.4 22.4 18.2 11.4 7.6 17.6 12.0 7.0 

Salinity(‰) 18.8 16.2 13.4 16.5 15.5 14.6 15.6 14.1 13.2 6.96 5.56 1.74 3.16 2.22 1.08 0.43 

 

Table 2. The constituents of samples that were collected simultaneously with field 

spectrum measurement on December 19 2006 in the Modaomen waterway of PRE. 

Location M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

ag(400)(/m) 1.32 1.24 0.74 0.85 0.72 0.79 0.76 0.71 0.77 0.74 0.76 0.74 1.16 0.94 1.33 1.41 

TSS (mg/L) 46.5 35.6 10.1 13.8 10.9 10.2 19.8 12.7 19.1 14.2 11.8 14.8 32.1 18.4 32.7 42.1 

Salinity(‰) 2.11 2.33 3.23 3.99 5.2 5.56 5.56 7.3 6.25 5.64 5.38 5.2 4.08 4.95 2.94 2.51 

 

Table 3. The constituents of samples that were collected simultaneously with field 

spectrum measurement on December 21 2006 in the Lingding Bay of PRE.  

Location S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

ag(400)(/m) 0.584 0.509 0.488 0.509 0.519 0.530 0.536 0.541 0.568 0.623 0.590 0.612 

TSS (mg/L) 106 143.6 178.4 241.1 133.6 187 58 95.8 69.3 66.2 58.9 43.9 

Salinity(‰) 18.49 21.59 22.12 20.57 19.38 18.78 19.38 19.44 18.30 16.81 17.77 16.69 

 

Usually, a linear correlation exists between the absorption coefficients of CDOM and salinity in 

estuary, indicating that freshwater was the primary source of CDOM [11]. So, CDOM was rooted 

upstream and in the adjacent area in the PRE. However, the linear correlation is not only regional but 

also time dependent. The slope of this line is determined by the concentration of CDOM at the point of 

fresh water origin (salinity = 0) [24]. This will undoubtedly vary both geographically and temporally 

with factors such as variations in the availability and type of organic matter, volume of and persistence 

of rainfall, size of watershed, etc. From Figure 6, compared to the results [10, 11], the slope of this 

regression line is closed but smaller than Hong’s and this shows that the Pearl River discharge controls 
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the slope of regression line between CDOM and salinity. Additionally, the relationship that was 

observed under a high salinity estuary does not work under lower salinity of marine intrusion river 

reach (salinity < 0.45‰) in the PRE [25].  

 

Figure 6. Correlation between salinity (‰) and CDOM absorption coefficients. Squares 

present five in-situ data, which were from the Shenwan River way and were controlled by 

severe pollution of the Xihe waterway by industry and life. 
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3.3. Correlation between Salinity and TSS 

 

At the same time, we examined the correlation between TSS and salinity based on in-situ TSS and 

salinity data (Tables 1, 2 and 3). The TSS concentration is significantly correlated with salinity in the 

PRE. Salinity increases with the increasing suspended sediment concentrations, while the slope of the 

curve is larger under the low suspended sediment concentrations and change of salinity is slow when 

suspended sediment concentrations arrive at a certain value (about 100 mg/L) (Figure 7).  

The correlation could be described by Equation (6) and involved data of 39 sample sites with a 

better linear correlation (R2 = 0.51). However, five in-situ data points in Shenwan River way were 

discarded due to severe eutrophication. It suggested that the correlation between salinity and water 

constituents deserved further study under lower salinity conditions of marine intrusion river reach in 

the PRE. Moreover, a strong negatively exponential correlation between salinity and TSS (R2 = 0.84, P 

< 0.001) was built under low salinity (< 1.33‰) based on field data of December 18, 2005 [25]. 

Equation (6) indicates that concentrations of TSS are positively correlated with salinity, which is 

inconsistent with investigation results in Spring and Summer, 2003, in the Lingding Bay water of the 

PRE [26]. With the suspended particles, it has a different response to salinity during different water 

quality and anthropogenic activity conditions in estuary. As a whole, the correlation between TSS and 

salinity is limited by many conditions, such as tidal forcing, freshwater inflows, geometry of river 

network systems, bottom materials, etc. Each of these processes act on a different time scale, ranging 

from seconds to years, and affects suspended sediment concentration differently, depending on the 
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local bathymetric and physical environment [27]. In the waterway of the PRE, tides result in salinity 

and suspended sediment increasing due to marine intrusion. However, freshwater containing a mass of 

dissolved and particulate materials arose mostly due to urban development, discharge into the South 

China Sea. The TSS concentrations of each river mouth can be clearly changed after the river flows 

through the delta plains where the urban land use extends quickly, especially during the dry season. 

Moreover, the suspended particulate properties of each river mouth also differ because the river 

receives different amounts of urban sewage [2]. Adding the large seasonal variation in runoff the 

Lingding estuarine hydrodynamics are commonly characterized as well stratified during the wet season 

and well mixed during the dry season with regard to the salinity field [28, 29]. The marine water 

wedge and turbidity maximum also shift seasonally [30, 31]. Estuarine circulation is mainly formed by 

the upper layer of brackish water that flows out and entrains the lower layer of high salinity water from 

the inner shelf which flows in at the bottom of the estuary. The net advection and tidal pumping 

mainly controlled the suspended sediment concentrations [32].  

 

Figure 7. Correlation between salinity (‰) and total suspended solids (TSS) concentration 

(mg/L), and the black full line represent linear relationship between salinity and total 

suspended solids (TSS) concentration (R2 = 0.51).  
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During the field measurement on December 18, 19 and 21, in 2006 (during the dry season), a strong 

tidal action happened with a large tidal volume during the flood tide, which dominates the salinity of 

river. Therefore, it results in salinity increasing and suspended sediment increasing due to marine 

intrusion.  

 

3.4. Mapping salinity and TSS concentrations from EO-1 Hyperion Imagery 

 

According to the studies of Lee et al. [33] and Chen et al. [34], the ratio of irradiance reflectance is 

equal to the ratio of remote sensing reflectance. Thus these algorithms can be applied to retrieve TSS 

concentrations and salinity from the pre-processed Hyperion imagery. The ratio of the 33rd band (681.2 

nm) and the 18th band (528.57 nm) of Hyperion imagery was selected for the retrieving of TSS 
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concentrations and salinity using Equation 4 and Equation 6, and the retrieved TSS and salinity are 

shown in Figure 8.  

 

Figure 8. The left graph is sea graph of Lingding Bay; the right graph is products from the 

semi-empirical algorithms on December 21, 2006. (a) total suspended solid (mg/L). (b) 

salinity (‰). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

Areas of Low concentrations of TSS are detected near the mouths of rivers, especially at the mouths 

of the HuMen waterway and Dongbao River [Figure 1 and Figure 8(a)]. The lowest retrieved value is 

under 5 mg/L. Other low values, near four mouths of PRE (from east to west, HuMen, JiaoMen, 

HongQiMen, HengMen) are below 80 mg/L. Low concentrations of TSS were also detected near 

island (Macau Airport and SanJiaoShan Island), with the value of 120 mg/L. The distribution of 

salinity was the same as that of TSS. Salinity of the mouths of the rivers is lower and salinity gradually 

increases further from the river mouth. For Dongbao River, that is the sole river in the Hyperion 

imagery, the surface salinity decreases from the mouth of the river to the upper river area. The lowest 

salinity is under 13‰, which is found in the Dongbao River. 

Combining with the sea graph of Lingding Bay [Figure 8 (left)], the characteristic of distribution of 

TSS can be presented as follows: First, TSS concentrations in the west shoal are highest, the next is the 

middle shoal, and TSS concentration in the east shoal is lowest. Second, TSS concentrations of the 

west channel are higher than the east channel. However, TSS concentrations of east-west channels are 
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higher than shoals, and the characteristic of distribution is same with other results, such as the 

quantitative estimation of multi-temporal remote sensing images during different seasons and tide 

period [35]. Salinity in the east shoal is lowest, the next is the middle shoal, and salinity in the west 

shoal is the highest. Moreover, salinity of east-west channels is higher than shoals, which was the same 

as that of TSS. 

 

4. Discussions 

 

Table 4 presents the inverse and measured TSS concentrations and salinity for validation. The 

concentration of TSS and salinity could be reasonably well estimated and the root mean square errors 

(RMSE) were small below 11 mg/L (relative error < 17%), although low concentration area was 

slightly overestimated and high concentration area was slightly underestimated. The reason is probably 

inhomogeneous atmospheric parameters. In this study, single values for the atmospheric parameters 

were used for the whole imagery. However, the atmospheric parameters should be different from place 

to place, in particular in the bay region near industrial cities. These retrieved results were similar to 

environmental bulletin of 2006 (TSS concentrations of river reaches are much lower near the mouth, 

and increase gradually further from the mouth) compiled by the Committee of Environmental 

Protection of Guangdong province in the PRE [36].  

 

Table 4. Comparison between observed and EO-1 Hyperion derived TSS concentrations 

and salinity. 

Site E1 E2 E3 E4 E5 W1 W2 W3 W4 W5 RMSE

TSS 

observed 
162.4 123.8 126.4 113.3 164 220.7 127.4 135.6 177.2 182.2 

10.8 
TSS 

predicted 
159.99 131.7 132.2 114.7 160 226.3 147.8 147.8 178.7 203.4 

Salinity 

observed 
22.04 22.22 23.13 22.58 23.31 22.22 21.32 21.86 22.04 20.05 

1.89 
Salinity 

predicted 
22.60 21.32 21.35 20.42 22.60 24.88 22.08 22.08 23.33 24.18 

 

The comparison graphs of predicted and observed data (Figure 9) show the strong relationship (R2 

= 0.94) between field and Hyperion estimated TSS concentrations (left graph), however, a weaker 

correlation between in-situ and Hyperion-estimated salinity (right graph) (R2 = 0.2). Several reasons 

are responsible for the weaker correlation. First, in-situ salinity varied rarely, between 20.05 and 

23.31. Second, the synchronous filed measurement points were adjacent due to difficult acquisition 

condition (Figure 1), and this affects the reliability of validation results.  
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Figure 9. Correlations between the in-situ TSS concentrations and salinity data and 

estimated from an atmospherically corrected Hyperion image of PRE (Dec. 2006) using 

Equations (4) and (6). Ten stations data synchronous with EO-1 Hyperion imagery were 

used to validate TSS concentrations and salinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hyperspectral data were very important in the selection of the PRE for field sampling and for 

construction of salinity model, because they allowed for a better characterization of the variations 

between the reflectance and water constitute parameters due to changes in water constituents. The new 

model of salinity has the potential to estimate the salinity variations of the complex network of river 

tributaries and channels as well as map marine water TSS concentrations and salinity anytime based on 

appropriate remote sensing imagery (such as EO-1 Hyperion imagery), which will largely improve the 

ability to inspect the phenomena of marine water intrusion in PRE. Furthermore, the new model could 

help us to better understand the mechanism of coastal marine water dynamics and to find an effective 

way to alleviate the influence of marine water intrusion into drinking water, and understand more 

about the situation of estuarine ecosystems. 

 

5. Conclusions 

 

In recent years, seawater intrusion into Pearl River occurs earlier and lasts longer, which creates a 

severe drinkable water security issue in the Peal River Estuary (PRE) in South China. However, there 

are no efficient methods that can quickly estimate the salinity variations in a large spatial scale such as 

in the PRE. Instead, such estimation has to rely on substantial field investigation in order to understand 

the spatial characteristics of the marine water intrusion into drinking water taking sites, but it is 

difficult to both access and afford with enough density distribution.  

In this research, on the basis of the analysis of in-situ data from 44 sampling sites in the PRE, the 

spectral properties of estuarine water constituents (TSS and CDOM) were analyzed and the models 

between salinity and water constituents were built. According to the results, water constituents were 

feebly correlated with single waveband reflectance, but better correlated with reflectance ratio. TSS 

and CDOM concentrations increased with decreased reflectance in blue-green band due to the strong 
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absorption by particulate and dissolved materials and increased with increased reflectance in red band. 

It affirms to optical properties of coastal water. Some significant correlations between in-situ 

reflectance ratios and TSS concentrations were observed based on synchronous in-situ spectra and 

marine water constituents’ concentrations data on December 18, 19 and 21, 2006 in the PRE. In 

addition, we also observed two significant correlations (R2 > 77%, P < 0.001), one between TSS and 

surface salinity and the other between ag (400) and surface salinity. Combining with the salinity model 

built based on in-situ data on December 18, 2005, when salinity of river water is under the criterion 

(almost equal to intrusion seawater salinity value for drinkable freshwater, 250 mg/L) [25], we were 

able to develop a robust, universal and accurate method of inverting surface salinity from remotely 

sensed reflectance in the PRE. Thus, the new approach was applied for detecting TSS concentrations 

and surface salinity from EO-1 Hyperion imagery. Maps of TSS concentrations and salinity in the PRE 

were derived from Hyperion imagery based on the semi-empirical correlations in this study. The 

inversed result showed the high salinity in the channels and low salinity in the shoal in Lingding Bay. 

Additionally, the comparison between the synchronous in-situ observed data and the data retrieved 

from Hyperion imagery indicated that the empirical correlations are significant and powerful for 

mapping TSS concentrations and salinity in the PRE. However, the equations (4) and (6) are the 

regional empirical algorithms, which were built based on the data of river network area and Lingding 

Bay in the PRE. The models are applicable to monitor the TSS concentrations and salinity of river net 

area and Lingding Bay, namely for inspecting the saltwater intrusion reaches in the PRE. 
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