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Abstract: In light of the increasing availability of commercial high-resolution imaging 

sensors, automatic interpretation tools are needed to extract road features. Currently, many 

approaches for road extraction are available, but it is acknowledged that there is no single 

method that would be successful in extracting all types of roads from any remotely sensed 

imagery. In this paper, a novel classification of roads is proposed, based on both the roads’ 

geometrical, radiometric properties and the characteristics of the sensors. Subsequently, a 

general road tracking framework is proposed, and one or more suitable road trackers are 

designed or combined for each type of roads. Extensive experiments are performed to 

extract roads from aerial/satellite imagery, and the results show that a combination strategy 

can automatically extract more than 60% of the total roads from very high resolution 

imagery such as QuickBird and DMC images, with a time-saving of approximately 20%, 

and acceptable spatial accuracy. It is proven that a combination of multiple algorithms is 

more reliable, more efficient and more robust for extracting road networks from multiple-

source remotely sensed imagery than the individual algorithms. 
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1. Introduction 

 

The increasing availability of commercial high-resolution satellite imaging sensors such as SPOT5, 

IKONOS, QuickBird and TerraSAR, requires the availability of suitable automatic interpretation tools 

to extract and identify cartographic features, especially in rapidly changing urban areas. Roads are one 

of the most important linear cartographic features. Particularly, extraction of road networks from 

remotely sensed imagery is not only meaningful for cartography and topography [1], but also 

significant for various applications of geodata such as automatically aligning two spatial datasets [2] or 

automated vehicle navigation [3]. Therefore, research on the automatic extraction of road networks 

from remotely sensed imagery has been a topical research theme in the various fields of 

photogrammetry, remote sensing, geographic information systems, pattern recognition, and computer 

vision. As a result, many strategies, methodologies and algorithms for road network extraction have 

been presented since the 1970s, which have achieved varying degrees of success [4]. According to the 

level of automation, the techniques for road extraction with the aid of computer vision can be coarsely 

classified into automatic and semi-automatic approaches.  

The automatic methods attempt to seek an analysis and interpretation of the image similar to that of 

a human operator. Nevatia and Babu [5] utilized an edge detection method to identify ribbon roads 

with lateral and parallel anti-edges. Radon transform was employed to locate the roadsides and to 

measure the width of a road [6]. Due to the variation of the complexity of image contents, the above 

low level edge detection methods are insufficient to extract the road features with high completeness, 

correctness, quality and accuracy. Therefore, more high level techniques have been developed. For 

example, angular texture signatures can make use of the characteristics of road’s texture, and this is 

utilized to find candidate road centerline points [7] or to discriminate road surfaces from the parking 

lots [8]. Mathematical morphology is not only useful to dilate and enhance the road surfaces and 

roadsides [9], but also helpful to extract the skeletons of ribbon roads [10]. Segmentation and 

classification methods are popular due to the fact that they could utilize road’s radiometric, 

geometrical, topological, and elevation characteristics to help finding road networks [11,12]. Heipke et 

al. [13] utilized a multi-scale strategy to extract global road network structures initially at a low 

resolution and detailed substructures later at a high resolution. Multi-view approaches not only can 

reconstruct 3D models, but also can utilize the multi-cues from multiple source images [14,15]. Rule-

based approaches use reasoning methods to deal with the problems of segment alignment and 

fragmentation, as well as enable bottoms-up processing to link the fragmented primitives into a road 

network [16]. Statistical inference methods were also used to model the road linking process as a 

geometric-stochastic model [17], an active testing model [18], a MRF-based model [19], or a Gibbs 

point process [20]. Another category of automatic approaches is the use of existing information or 

knowledge to guide road extraction [21]. Currently, the tendency is that more and more methodologies 

are based upon hybrid strategies. For example, profile analysis, rule-based linking and model-based 

verification are combined together to detect, trace and link the road segments to form a road network 
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[22]; Hu et al. [2] combined a spoke wheel operator, used to detect road surfaces, and a toe-finding 

algorithm, utilized to determine the road direction, to trace roads; multi-resolution and object-oriented 

fuzzy analysis is integrated to extract cartographic features [23]; and a novel combination strategy was 

adopted by Peng et al. [24] who incorporated an outdated GIS digital map, multi-scale analysis, a 

phase field model and a higher order active contour to extract roads from very high resolution (VHR) 

images. Despite the fact that much work on automatic approaches for road extraction has taken place, 

the desired high level of automation could not be achieved yet [25]. The main problem of a fully 

automatic approach is that it needs some strict hypothesis of road characteristics, but road properties 

vary considerably with ground sampling distances (GSD), road types, and densities of surrounding 

objects, light conditions etc. Therefore, the quality of automatic extraction is usually insufficient for 

practical applications. 

On the other hand, semi-automatic methodologies are considered to be a good compromise between 

the fast computing speed of a computer and the efficient interpretation skills of a human operator [1], 

and quite a number of promising approaches for semi-automatic road extraction have been proposed so 

far. Optimal search methods, which are often realized by dynamic programming [26] or snakes [27], 

are frequently applied to find or determine an optimal trajectory between manually selected seed 

points. In these models, geometric and radiometric characteristics of roads are integrated by a cost 

function or an ‘energy’ function. Then the road extraction is equivalent to seeking the global energy 

minimum. However, it is hard to define the reasonable ‘energy’ function for each image. Angular 

texture signature (ATS) has also been improved to semi-automatically track road axes. Lin et al. [28] 

and Shen et al. [29] proposed the mean value and the entropy besides existing variance to measure the 

texture. As a result, ATS is capable of tracing the bright ribbon roads from SPOT imagery or tracing 

the dark ribbon roads from VHR COSMO SAR imagery. Minimum cost to follow a path was proposed 

by Shukla et al. [30]. Essentially, the minimum cost is similar to the ATS in the sense that it takes 

variance as a measure of texture. Another practical methodology is template matching. McKeown and 

Denlinger [31] introduced a semi-automatic road tracker based on profile correlations. This road 

tracker starts from some road seed points. The profile matching technique compares a reference profile 

with the road profile at a pixel predicted to be on the road. The differences between the two profiles 

are measured by identifying two geometric parameters (shift and width) and two radiometric 

parameters (brightness and contrast). These parameters are estimated by minimizing the squared sum 

of the gray value differences between the profiles. Actually, the subsequent approaches essentially 

follow the same scheme as the above method. Vosselman and Knecht [1] improved the profile 

matching with a Kalman filter, Baumgartner et al. [25] also developed a human-computer interactive 

prototype system based on the above method. Zhou et al. [32] used two profiles, one orthogonal to the 

road direction and the other parallel to the road direction, to enhance the robustness of the tracker and 

applied extended Kalman filter and particle filter to solve profile matching problems for road tracking, 

and a prototype system for semi-automatic road extraction is also developed. Kim et al. [33] utilized a 

rectangular template instead of profile to track ribbon roads by least squares template matching from 

VHR satellite images. Zhao et al. [34] used rectangular template matching on the classified imagery 

and proposed another prototype. However, there are no reports on their applicability on VHR images 

finer than 0.2 m/pixel, and most of the road trackers mentioned above don’t operate well when they 

encounter irregular geometric deformations and radiometric changes due to the appearance of road 
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junctions, material changes, occlusion from cars, shadows, lane markings etc. As a result, consecutive 

failure of the road tracker not only loses efficiency, but also increases the work required of the human 

operators.  

After reviewing the existing work on road extraction, it was realized that ATS, profile matching and 

rectangular template matching are practical to extract road networks. However, it is acknowledged that 

there is no single method which is successful in extracting all types of roads from any remotely sensed 

imagery. Moreover, it is believed that a number of techniques developed for different classes of roads 

and for different kinds of imagery will lead to a many-branched solutions for road extraction which 

will be effective for a wide range of road types. In this paper, roads are classified into the ones with 

lane markings and the ones without lane markings on VHR remotely sensed imagery whose GSDs 

range from 2.5 per pixel to 0.2 m per pixel. Furthermore, two road trackers are proposed to extract the 

roads. Particularly, the profiles and rectangular templates are combined together to form an interlaced 

template, while the ATS [28,29] is further improved by a parallelepiped classifier, named 

parallelepiped angular texture signature (PATS). Correspondingly, a general road tracking framework 

is proposed. Then least squares interlaced template matching is applied to extract ribbon road networks 

with salient road markings, while the profile matching, rectangular template matching, and PATS are 

combined to extract ribbon roads without salient lane markings. In general, a practical system, 

combining multiple road trackers, is designed to extract the roads from VHR images in this paper. 

The remaining sections of this paper are organized as follows. In Section 2, a general scheme of 

road tracking is introduced, and the interlaced template matching and the PATS are proposed. In 

Section 3, experiments are described and the performances of the road trackers are evaluated and 

discussed. In Section 4, some conclusions are reached. 

 

2. Methods 

 

2.1. The general framework 

 

In the semi-automatic plotting system, a human operator is required in the annotation process where 

computer algorithms are utilized to assist the plotter performing measurement tasks. From the user’s 

point of view, the procedure is as follows: the operator first identifies a short segment of a road which 

serves as initialization for an automatic tracking, and then the tracker algorithms are launched and 

automatically trace the road axis for as long as possible. Whenever the internal evaluation of the 

algorithms indicates that the tracker might have lost the road centerline, it needs intervention of the 

user. Then the operator has to confirm the tracker or he/she must edit the extracted road and put the 

tracker back the road again. Particularly, the semi-automatic tracking is divided into the  

following steps: 

 
1) Initialization by three seed points. Similar to McKeown’s strategy [31], in this paper the 

initialization is also accomplished by manual selected seed points. However, we make an improvement 

in that a three consecutive mouse clicks strategy is adopted to obtain the starting location, direction, 

width of the road, and the step size as well. This three seeds method is feasible for most ribbon roads, 

and it is accomplished as follows [see Figure 1(a)]: the human operator enters a road segment with two 
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consecutive mouse clicks on A’ and B with the axis joining the points defining one road sideline A’B, 

which indicates road direction arctangent(A’B), then the following third click on C, on the other 

roadside, defines the width w of the road. w  is equal to the distance between the point C and the line 

A’B. As a result, the above three points can also derive a rectangle A’B’B”A” with width w  and 

length
sign

L . And the direction of A’B’ is equal to arctangent(A’B) while C is located on the side B”A”. 

Then a start point A of the road is derived from the middle point of A’ A”. In this paper, 
sign

L  is equal to 

a coefficient,
signC , multiplying by the road width w . 

 

Figure 1. Construction of the interlaced template and detection of the road markings. (a) A 

subset of color aerial image and the initialization of our road tracker; (b) the interlaced 

template of the road surface in (a); (c) a subset of a panchromatic satellite image; (d) the 

interlaced template of the road surface in (c); (e) the profile transformations of the ribbon 

road in (b) and there are four salient peaks representing the four lane markings on the road 

surface; (f) the profile transformations of the ribbon road in (d) and there is only one 

salient peak representing a marking line on the road surface. 

  
(a)     (b) 

  
(c)     (d) 
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Figure 1. Cont. 
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Subsequently, the operators can select any road tracker from profile matching, template matching, 

interlaced template matching (introduced in Section 2.2), PATS (introduced in Section 2.3) based on 

their judgments. Alternatively, the computer can automatically adapt a combination strategy based on 

the following procedures. First, it is necessary to detect whether there is lane marking in the rectangle 

A’B’B”A”. Correspondingly, a new method is proposed to automatically determine the number of lane 
markings 

signs
N  and the road markings’ positions along the road profile to enhance the automation. In 

fact, a strip of lane marking is a brighter bar-shaped ribbon [14]. Suppose there is a profile 
profileP , with 

length w  and direction arctangent(A’B) +
2


, and it passes the start point A. Then 

profileP  derives a 

series of profiles with length 
sign

L  and direction arctangent(A’B) at each pixel of 
profileP . At last, we 

calculate the sum of the derived intensity profiles at each pixel of 
profileP  one by one, which will form a 

line chart. Therefore, a significant peak of this line chart corresponds to a brighter marking in the 

image, and the above process is named a profile transformation (PT) in this paper. For example, two 

PTs are shown in Figures 1 (e) and (f), respectively. It is clear that the first PT has four dominating 

peaks while the second PT has only one dominating peak. However, there are some weak peaks or 

small peaks on or near dominating peaks [see Figures 1 (e) and (f)], which make precisely locating the 

dominating peaks difficult. The toe-finding algorithm [2] is employed to find the number of dominant 
peaks that represent road directions and simultaneously locate road markings’ positions on 

profileP . This 

toe-finding approach is divided into two separate steps. First, the dominant peaks are found. Second, 

valleys between sequential peaks are found. In the algorithm, there are three constant coefficients, 

1 , 2 , and 3 , and they are selected based on our experiments. We set 1 = 0.25, 2 = 0.8, and 3  = 

w /8, i.e., if the distance of two peaks is less than w /8, then merge the two peaks. 

As long as any lane marking found, generate a reference interlaced template described in Section 

2.2, and then interlaced template matching is triggered. If there are no markings, the standard 

deviation  of intensity rectangle A’B’B”A” is calculated. In this circumstance: 
 If  < 1I  hold, generate a reference profile with width 

profiile
W , and go to the profile matching 

algorithm;  
 If  > 1I  and  < 2I hold, generate a reference rectangular template with width w and length

sign
L , 

and go to the template matching algorithm;  
 If  > 2I hold, go to the PATS algorithm described in Section 2.3.  
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2) Acquire the next road axis point. If the interlaced template matching, profile matching or template 

matching is launched, the system then predicts next most possible position of the road axis according 

to the following equation: 
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where nextnext yx ,  are the coordinates of next template point; currentcurrent yx ,  are the coordinates of the 

current template point; stepL is the suitable step size of the increment (i.e., the distance between two 

consecutive points on the road axis); S is a variable indicating the shift distance around the predicted 
point in convolution; current  is the direction of the current road axis point; and 

rotating  is a variable 

indicating the change/offset in road direction. In this paper, stepL  is equal to a coefficient, 
steplengthC , 

multiplying by the road width w , and rotating   (0°, ±5°, ±T °), S (0,±1, ±2,…, ± ( w /8)).  

When the reference template is convolved within part of the image by Equation (1), a number of 

target templates are generated. The one which has the minimal squared sum of gray value differences 

between reference template and target template is taken as the optimal response. With this optimal 

response, the next road axis is located.  

Alternatively, if PATS is triggered, the operation is performed as follows: revolve the current road 
axis point p and calculate the PATS values; take the direction of the significant maximum which has a 
minimal inclination with the current road direction current  as the direction of next road axis point; and 

get the next road axis point by Equation (1) where rotating =0°, S =0. 

 

3) Validate the above optimal point. Once the above obtained point is added into the road trajectory, 

check whether any stopping criterion is fulfilled as follows:  

 the change of the directions of two adjacent road segments is larger than predefined threshold T ; 

 approaching an extracted road or border of the image; 

 the minimal squared sum of gray value differences between the reference template and the target 
template surpass 1T  for the interlaced template matching, profile matching or template matching; 

 compactness of PATS polygon [8] is larger than 2T . 

If any of these conditions is encountered, exit the tracking procedure and go to Step 4). Otherwise, 

go to Step 2) again. 

 

4) Stop the trace. If no rule can be made to continue the tracking procedure, the system will stop 

tracking, report the reason, and offer an appropriate choice of user interaction. The user can then 

modify the traced path with the aid of common GIS-functionalities, manually digitize complex roads, 

update the reference template (occurrence of change of the number of lanes, or significant change of 

spectral characteristics due to different ages, construction materials, illumination angles, etc.), or 

restart the tracking process from the next specified location. 

In this paper, for each test image, the four state-of-the-art road algorithms, such as the profile 

matching, rectangular template matching, interlaced template matching, PATS, and their combination 

strategy were employed, respectively, to trace the road network to compare their performances. In the 

tracking procedure, for each type of road, if a road tracker frequently fails, it suggests the road tracker 
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is not suitable for tracing this type of road, and then another type of road is tried. Moreover, manual 

digitization was adopted to create reference data to verify the performances of the road trackers. Note 

that in the process of full manual annotation, the manual clicks should be as accurate as possible, i.e., 

the selected points should be on the road axes. Furthermore, the digitized roads should be smooth, i.e., 

abrupt changes in directions should be avoided and no zigzags should occur. 

 

2.2. The interlaced template matching 

 

In fact, the salient lane markings are usually less frequently disturbed by the occlusions of cars or 

the shadows of colonnade than other parts of road surfaces [35] on VHR imagery. This meaningful 

phenomenon is neglected by most of existing research about semi-automatic road tracking. In this 

case, if templates of lane markings rather than the template of a segment of whole rectangular road 

surface are utilized in template matching, it may be more effective and robust. Considering that the 

above salient road markings are often discontinuous, it is a tradeoff between a rectangular template of 

road surface and some templates of salient lane markings. Consequently, we can take a novel template, 

i.e., an interlaced template which is composed of two parts: some cross-section profiles (i.e., each is a 

typical intensity profile perpendicular and symmetrical to the road axis) and some rectangular 

templates of road markings (i.e., some intensity rectangles whose width are as wide as lane markings). 

Normally, the intensity of pure road surface except the disturbing features tends to be constant, and 

so are the intensities of road markings. This characteristic can be formulated as follows: 

min)'()'( 22    
signs sign signprofile profiile N

k

L

l

W

n

N

i

W

j

mmgg  ( 1min T )  (2) 

where g , 'g  are the gray values of two homonymy points on the profiles, m , 'm  are the gray values 

of two homonymy points on the rectangular templates of lane markings, 
profile

N  is the number of profiles 

in the interlaced template, 
profiile

W  is the length of the profile, 
signs

N is the number of markings, 
sign

L  is the 

length of the markings, 
sign

W is the width of the road marking that is a preset value inputted by the 

operator based on the GSD, and 1T  is an adaptive value. Actually, Equation (2) is a specific expression 

of least square method [1] for interlaced template matching. In this paper, 
profiile

W  is equal to a 

coefficient,
profileC , multiplying by the road width w ; and the number of profiles 

profile
N  is derived by the 

following formula: 

profile
N  =  (

signs
N *

sign
L *

sign
W )/

profiile
W      (3) 

Equation (3) guarantees that the number of pixels in the profiles is equal to the one of pixels of lane 
markings, and the equality has significant effect on determining the threshold 1T . In this paper, 1T  is 

equal to variance of the profiles in the reference interlaced template plus variance of the markings in 
the reference interlaced template. In this sense, 1T  is adaptive in our paper.  

Once 
signs

N  and road markings’ positions are decided by PT and toe-finding algorithm, the 

rectangular templates of markings are constructed. Then 
profile

N can be deduced by Equation (3), and the 

profiles can be constructed. The interval between two profile is max(
sign

L /(
profile

N -1),1). Note that if 
sign

L < 

(
profile

N -1), then the profiles evolve into the rectangle template [33]. Figure 1 (b) and (d) illustrate two 

examples of interlaced templates respectively. 
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2.3. PATS 

 

A texture measure is described in [7]. Practically, it is hard to populate ATS if it still takes variance 

as a measure of texture in complex scene where even intensities of one feature differ greatly. 

Fortunately, it could still function on a classified thematic image. As mentioned above, the 

initialization information derives a rectangle A’B’B”A”. And then for each band, calculate the mean 
M  and standard deviation   of the gray values of pixels in rectangle A’B’B”A” respectively, then 

perform parallelepiped classification using ±  as limits on the raw image. Subsequently, set the pixels 

of road subclass as 1, meanwhile set the pixels of any other subclass as 0, and then the mean of the 

rotating template is feasible too [see Figure 2(c)]. 

 

Figure 2. Angular Texture Signature. (a) Texture is computed over a set of rectangular 

regions rotating around a road centerline point (note that there are 72 templates but only 

odd ones are displayed); (b) the graph of the ATS; (c) the graph of the PATS; (d) the PATS 

polygon of (c). 

 

0

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Direction Index

St
an
d
ar

d 
d
ev
i
at

io
n

 
(a)      (b) 

0

50

100

150

200

250

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Direction Index

Su
m 
of
 
th
em
at
i
c 
va
lu
e

0

50

100

150

200

250
1

2 3 4 5
6

7
8

9
10

11
12

13
14

15
16

17
18

19

20

21

22

23

24
25

26
27

28
29

30
31

32
33343536

37
38394041

42
43

44
45

46
47

48
49

50

51

52

53

54

55

56
57

58
59

60
61

62
63

64
65

66
67

68
69 70 71 72

 
(c)       (d) 

 

In this sense, PATS is improved and redefined to make it fit to semi-automatic road tracking as 
follows. At each road centerline point p , ),,,( phwT  is defined as the mean for a rectangular set of 

pixels of width w  and height 
sign

L  around pixel p  whose principal axis lies at an angle of  from the 

p 
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road direction  . This measure is computed for a set of angles n ,0  at pixel p . Angles n ,0  

are with same interval  . At the point p , the ATS is regarded as the set of 
values  ),,,(,),,,,(),,,,( 10 phwTphwTphwT n  . Figure 2(a) displays an ATS with  =5°, Figure 

1(c) shows the improved PATS values related to Figure 2(a). The direction of the significant maximum 
which has a minimal inclination with road direction   is taken as the direction of next road axis point.  

To find the relationship between the shape of the PATS polygon and corresponding pixel types, we 

plot the PATS values around the pixel under consideration with corresponding direction and link the 

last point to the first point [6]. The resulting polygon is called the PATS polygon, and Figure 2(d) 
shows the calculated PATS for pixel p  with the PATS polygons. If the road has a good contrast with 

its surrounding objects, the polygon usually looks like an ellipse or  -shape, or a circle in other cases. 

The compactness of PATS is defined as the compactness of the PATS polygon using Equation (4):  

2scompactnes

4
PATS

P

A



       (4) 

where A  and P  are the area and perimeter of the PATS polygon, respectively. It is employed to check 

whether the shape of the PATS polygon looks like a circle. A circle-like PATS polygon usually 

indicates that the tracker is no longer fit for tracking the road ahead. Note that our program will 

calculate the compactness of PATS at regular intervals to verify whether the PATS is still suitable for 

tracing a road. 

 

3. Experiments and Performance Evaluation 

 

A prototype system based on the proposed framework was developed to verify the algorithms. The 

hardware we used is a Dell Precision workstation T5400, with an Intel Xeon 2.50-GHz plus 2.49-GHz 

CPU and 3-GB RAM. It should be noted that since our system is still in the simulation stage, the 

program is implemented in a single thread mode. Performance should be improved if it is implemented 

as a multi-thread application taking full advantage of the features of multi-core processors. 

 

3.1. Data collection  

 

Various images in urban areas, suburban areas, or rural areas and images with different scales 

(resolutions from 2.5 m per pixel to 0.2 m per pixel) were tested to verify the capabilities of each road 

tracker: (1) a SPOT5 satellite image with a size of 3,7502,499 pixels acquired in 2002 [see Figure 

3(a)]. The GSD of this image is 2.5 m per pixel; (2) an IKONOS satellite image with a size of 

9,3746,246 pixels acquired in 2004 [see Figure 4(a)]. The GSD of the above image is 1 m per pixel; 

(3) a QuickBird satellite image with a size of 15,36810,240 pixels acquired in 2005 [see Figure 5(a)]. 

The GSD of the image is 0.61 m per pixel; (4) an airborne SAR image with a size of 23,99920,172 

pixels (see Figure 6(a)). The GSD of it is 0.3 m per pixel; and (5) an aerial image acquired by a Zeiss 

Imaging’s DMC camera with a size of 12,4287,780 pixels [see Figure 7(a)]. The GSD of the image is 

0.2 m per pixel. The images in (1), (2) and (3) are fused from their panchromatic band and multi-

spectral bands by smoothing filter-based intensity modulation algorithm [36], and the geographic area 

for the images in (1), (2) and (3) is located at Tai’an, Shandong Province, P.R. China. Additionally, the 
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SAR image is located at He’fei, Anhui Province, P.R. China, while the coverage area of the DMC 

image is within Denver, Colorado, USA. 

 

Table 1. Characteristics of the roads on the images. 

Road type 

Sensors 

National 

highway 

Intrastate 

highway 

Railroad Avenue Lane 

S
P

O
T

5 

Contrast low low low low - 

Average length long long long mean - 

Average curvature mean mean mean low - 

Noises j j j b, j - 

IK
O

N
O

S
 

Contrast high mean low low - 

Average length long long long mean - 

Average curvature mean mean mean low - 

Noises v, j v, j n v, b, c, j - 

Q
uickB

ird 

Contrast high high mean mean low 

Average length long long long mean short 

Average curvature mean mean mean low low 

Noises v, j v, j n v, b, c, j v, c, j 

S
A

R
 

Contrast - high - mean - 

Average length - long - mean - 

Average curvature - low - low - 

Noises - j, s - j, s - 

D
M

C
 

Contrast - mean mean mean mean 

Average length - long long short short 

Average curvature - mean mean low high 

Noises - v, c, j j v, b, c, j v, b, c, j 

Note that the noises include the occlusions of vehicles, shadows of buildings, occlusions of trees, 

road junctions or crossings, and speckles.  Particularly, “v” denotes the occlusions of vehicles, “b” 

denotes the shadows of buildings, “c” denotes the occlusions of colonnades, “j” denotes the road 

junctions or crossings, “s” denotes the speckles, and “n” denotes no salient obstacles on the road 

surfaces.  

 

The above five images contain the most frequent road types such as national highways and 

railroads, intrastate highways, ring roads, streets for local transportation, and rural roads. Furthermore, 

each image contains different road structures such as curves, ramps, straight roads, junctions and 

bridges. It also includes various road conditions such as occlusions of vehicles and shadows from trees 

or high buildings. The detailed characteristics of roads refer to Table 1 and Figure 8. Note that, in 

Table 1, the contrast means the differences between roads and other features measured by three 

qualitative levels: low contrast roads refer to these whose digital numbers are similar to the ones of 

surrounding objects while the boundaries are still discernable, mean contrast roads refer to these whose 
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digital numbers are slightly different from the ones of surrounding objects while the boundaries are 

discernable and high  contrast roads refer to these whose digital numbers are quite different from the 

ones of surrounding objects while the boundaries are discernable; the length of the roads are also 

measured by three qualitative levels: short one refers to that whose length is no larger than 1.0 km, 

mean one refers to that whose length is larger than 1.0 km but no longer than 3.0 km and long one 

refers to that whose length is larger than 3.0 km; the average curvature indicates the smoothness of the 

road measured by the levels: short one refers to that whose average curvature is no larger than 0.3, 

mean one refers to that whose average curvature is larger than 0.3 but no larger than 1.5 and high one 

refers to that whose average curvature is larger than 1.5; and the above thresholds are set based on  

our experience. 
Based on our extensive experiments, the first threshold 1I , namely the standard deviation of 

intensity rectangle A’B’B”A”, is set to 10.0; while the second threshold 2I , namely the standard 

deviation of intensity rectangle A’B’B’’A”,  is set to 20.0. For profile matching, the coefficient profileC  

to calculate the width of a profile is set to 2.0, the coefficient 
steplengthC to calculate the length of step 

size is set to 0.5, and the changed angle T  for two adjacent road segments is set to 10°. For template 
matching, the profileC  is set to 1.0, the coefficient signC  to calculate height of the template is set to 2.0, 

steplengthC is set to 0.8, and T is set to 10°. For PATS algorithm, profileC is set to 1.0, signC is set to 2.0, 

steplengthC is set to 0.8,  T is set to 10°, and 2T  is set to 0.8. For interlaced template matching, profileC is 

set to 1.0, signC is set to 0.5, 
steplengthC is set to 0.4, T is set to 10°, and the width 

sign
W  of a lane marking is 

set to 3 pixels.  

 

3.2. Evaluation criteria 

 

Zhou et al. [32] proposed that the criteria used to evaluate a semi-automatic system include 

correctness, completeness, efficiency and accuracy. In our system, when the tracking is running after 

initialization, if the program detects a possible tracking problem or a tracking failure, it returns control 

back to the human operator. The operator supervises the road changes, diagnoses the failure reasons, 

deletes the incorrect parts, and restarts the tracker or inputs a new correct segment which refreshes the 

state model of the tracker. In this way, the correctness of tracking is guaranteed. Therefore, the 

completeness, efficiency and accuracy are employed to evaluate the performances of our road trackers. 

Particularly, the completeness is defined as the ratio of length of roads tracked by the computer with 
the aid of the plotter to the total length of reference data. The efficiency efficiencyC  is measured by time 

saving that can be obtained by the following formula: 

 %
*100 k

Manual

erTrac
sscompleteneefficiency T

T
CC       (5) 

where  sscompleteneC is the corresponding completeness, kerTracT  is the time cost of the tracker including the 

interaction time with human operator and computation time, and ManualT  is time cost of fully manual 

plotting. Geometric accuracy is evaluated as the mean square error between the road tracker’s result 

and the reference data. Note that the length of roads is measured in number of pixels, which is 

convenient to compare the performances of the same tracker on different resolutions, and the total time 

cost includes the computation time and interaction time with the human operator. 
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3.3. Experimental results and performance evaluation 

 

Table 2 shows the statistical results of the performances while Figures 3, 4, 5, 6 and 7 show the raw 

images and the final road segments extracted from the images (1), (2), (3), (4) and (5) illustrated in 

Section 3.1 respectively. The profile matching method is capable of extracting the homogenous 

highways from the above SPOT5, IKONOS and QuickBird images with different efficiency and 

geometrical accuracy. But, in the SPOT5 image, even the highways are blurry due to their narrow 

width and low contrasts to other surrounding objects [see Figure 8(a)], which leads to frequent failures, 

low efficiency and large RMSE. Fortunately, this algorithm can also work on the main streets which 

have a sparse traffic and shadow on IKONOS image. However, profile matching is not robust 

compared to the other trackers, and frequent stops lead to low efficiency in spite of its low computing 

magnitude for per movement. 

 

Table 2. Statistics about the performance of the algorithms. 

Methods 

Sensors 

Profile 

Matching 

Template 

Matching 

PATS Interlaced 

Template 

matching 

Combination Manual 

S
P

O
T

5 

Length (pixels) 11045 28531 16780 - 29332 47793 

Time (seconds) 502 733 641 - 702 1444 

Completeness (%) 23.11 59.70 35.11 - 61.37 100.00 

Efficiency (%) -11.65 8.94 -9.28 - 12.76  

RMSE(pixels) 2.5 1.8 2.1 - 1.9 0.0 

Road Type 1,2 1,2,4 1,2,4 - 1,2,4 1,2,3,4 

IK
O

N
O

S
 

Length (pixels) 4019 55996 57332 20350 70300 108846 

Time (seconds) 782 1196 1650 312 1756 3360 

Completeness (%) 36.93 51.45 52.67 18.70 66.26 100.00 

Efficiency (%) 13.66 15.86 3.56 9.41 14.00 - 

RMSE(pixels) 1.0 1.1 1.5 0.2 1.2 0.0 

Road Type 1,2,4 1,2,3,4 1,2,3,4 1,2 1,2,3,4 1,2,3,4 

Q
uickB

ird 

Length (pixels) 42767 155056 16500 70579 171811 194022 

Time (seconds) 300 2077 2475 806 1695 3058 

Completeness (%) 22.04 79.92 85.05 36.38 88.56 100.00 

Efficiency (%) 12.23 11.20 4.11 10.02 33.13 - 

RMSE(pixels) 0.8 1.2 1.4 0.4 0.9 0.0 

Road Type 1,2 1,2,3,4 1,2,3,4 1,2 1,2,3,4 1,2,3,4 

S
A

R
 

Length (pixels) - 51198 98135 24498 - 110150 

Time (seconds) - 966 1265 195 - 280 

Completeness (%) - 46.48 89.09 22.24 - 100.00 

Efficiency (%) - -299.52 -366.70 -4.74 - - 

RMSE(pixels) - 1.5 1.3 1.4 - 0.0 

Road Type - 2,4 2,4 2 - 2,4 
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Table 2. Cont. 

D
M

C
 

Length (pixels) - - 123877 81241 168989 195261 

Time (seconds) - - 2352 820 2106 3202 

Completeness (%) - - 63.44 41.61 86.54 100.00 

Efficiency (%) - - -10.01 16.01 20.77 - 

RMSE(pixels) - - 0.4 0.8 1.1 0.0 

Road Type - - 1.2,3,4,5 1.2,3,4 1.2,3,4,5 1.2,3,4,5 

Note that road types include the ones in Table 1. Particularly, “1” denotes the national highways, “2” denotes 

the intrastate highways, “3” denotes the railroads, “4” denotes the avenue, “5” denotes the lane. 

 

The rectangular template approach can extract the railroads and main streets besides the highways 

with acceptable spatial accuracy. According to the statistical results, the highest efficiency, 

approximately 15% of time saving, is achieved on IKONOS image. Note that the low efficiency on the 

SAR image is partially blamed to the noisy speckles, and mostly induced by the straightness of the 

roads which is in favor of manual drawing. On the other hand, the maximum completeness is achieved 

on the QuickBird image with 11% of time saving compared to fully manual interpretation. 

Unfortunately, dense traffics and shadows make this algorithm inapplicable on the DMC image. In 

general, this method performs better than the profile matching approach on SPOT5 image, IKONOS 

image and SAR image. 

 

Figure 3. Road network extraction from a SPOT5 satellite image. (a) SPOT5 fused image 

with 2.5 m pixel-1 resolution and an image size of 3,750 pixels by 2,499 pixels; (b) the 

reference road network plotted; (c) the extracted vector road network by the combination 

strategy.  

   
(a)     (b)     (c) 

 

The PATS has the ability to extract various types of roads, but, at the same time, its performance 

varies considerably with images. The highest completeness occurs on the SAR image; the highest 

efficiency appears on the QuickBird image; and the smallest RMSE arises on the DMC image. On the 

other side, the lowest efficiency occurs on the SAR image, and the lowest completeness and largest 
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RMSE appear on the SPOT5 image. As a mater of fact, the completeness and the geometrical accuracy 

of PATS are roughly equivalent to template matching method on the IKONOS and QuickBird images, 

compared to its relatively lower efficiency than the latter. Additionally, the PATS has higher 

completeness, lower efficiency and larger RMSE than the interlaced template matching algorithm for 

the DMC image test.  

 

Figure 4. Road network extraction from an IKONOS satellite image. (a) IKONOS fused 

image with 1 m pixel-1 resolution and 9,374 pixels by 6,246 pixels image size; (b) the 

reference road network plotted; (c) the vector road network extracted by the  

combination strategy.  

   
(a)     (b)     (c) 

 

Figure 5. Road network extraction from a QuickBird satellite image. (a) QuickBird fused 

image with 0.61 m pixel-1 resolution and the image size is 15,368 pixels by 10,240 pixels; 

(b) the reference road network plotted; (c) the extracted vector road network by the 

combination strategy.  

   
(a)     (b)     (c) 
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Figure 6. Road network extraction from an airborne SAR image. (a) Raw SAR image with 

0.3 m pixel-1 resolution and 23,999 pixels by 20,172 pixels image size; (b) the reference 

road network plotted; (c) The extracted vector road network by PATS. 

   
(a)    (b)     (c) 

 

Interlaced template matching is proposed to extract the roads with lane markings or continuous 

centerlines such as highways. In fact, it not only can trace its preferred roads, but it also can extract the 

roads with strips of vegetations or bar-shaped features such as rails on the railroads, which is an 

unexpected bonus. Moreover, it is not sensitive to the dense occlusions of vehicles and tree shadows, 

which results in a fast tracking speed with high geometrical accuracy when it operates. In fact, its 

unpleasing performance on the SAR image further suggests that existing step-by-step tracking is more 

preponderant for smooth and curving long ribbon roads than for straight roads.  

 

Figure 7. Road network extraction from a DMC airborne image. (a) DMC image with 0.2 

m pixel-1 resolution and a 12,428 pixels by 7,780 pixels image size; (b) the reference road 

network plotted; (c) the extracted vector road network by combination strategy.  

   
(a)    (b)    (c) 
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Figure 8. Typical roads on the images. (a) A subset of SPOT5 image in Figure 3(a); (b) a 

subset of IKONOS image in Figure 4(a); (c) a subset of QuickBird image in Figure 5(a); 

(d) a subset of SAR image in Figure 6(a); (e) a subset of DMC image in Figure 7(a). 

   
(a)     (b)     (c) 

  
(d)      (e) 

 

The combination strategy can extract most of the roads from the above images except the SAR 

image with acceptable efficiency and spatial accuracy. Particularly, the time saving reaches 

approximately 21% for the DMC image and approximately 33% for the QuickBird image, which can 

be transferred into an enhanced economic productivity in the future. Considering the potential of 

performance optimization of the algorithms and implementation as multiple-thread program, the result 

is promising. 

 

3.3. Discussion 

 

As can be seen, each road tracker has its preferred types of roads. For example, highways are 

favored by the interlaced template matching method, even though the surfaces of the highways may be 

seriously occluded by vehicles; while avenues with a few tree shadows may be traced better by the 

PATS on the DMC image. In fact, the combination strategy is aimed to extract each road with an 

optimal road tracker, which indicates its advantages from the above experiment results. However, the 

road trackers mentioned in this paper is not an exhaustive list. For instance, a new road tracker is 

needed for the fast extraction of the straight roads, and new approaches are demanded to detect and 

depict the various types of road junctions or crossings, which will produce a more advanced 

combination strategy than current one. 

On the other hand, the performance of a road tracker is greatly influenced by the GSD of an image. 

For example, profile matching method has a higher efficiency than the interlaced template matching 

one in extraction of the highways from the IKONOS image, but it is not a case for the QuickBird 

image, because the highways on the former image has less vehicles than the latter. Unfortunately, the 

profile matching approach is not suitable to extract the highway from the DMC image at all, which has 
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a very dense traffic on road surfaces [see Figure 8(e)]. A similar phenomenon occurs for the 

rectangular template matching algorithm.  In this sense, in this paper each road tracker has its preferred 

GSD. Particularly, the GSD from 1 m pixel- to 0.61 m pixel- is favored for profile matching, from 1 m 

pixel- to 0.3 m pixel- for rectangular template matching, from 1 m pixel- to 0.2 m pixel- for PATS, from 

1 m pixel- to 0.2 m pixel- for interlaced template matching method. 

Additionally, complex road scenes can cause frequent tracking failures, requiring more human 

interactions, which significantly decreases the tracker’s efficiency. As for the IKONOS image, the 

profile matching can track approximately 51 pixels per second, while the interlaced template matching 

can follow approximately 65 pixels per second. However, theoretically the speed of former should be 

higher than the latter considering both of the complexity of the algorithm and computing magnitude. 

As a mater of fact, the low efficiency is deduced by the irregular appearances of the vehicles, shadow 

of trees and building, junctions or crossings, etc.  

Despite the consideration of decreasing the influences of the above noises for interlace template 

matching algorithm and PATS, large shadows of high buildings and junctions are still barriers for road 

tracking, especially in urban areas. In addition, currently there is no method which can more efficiently 

extract the straight ribbon roads with many disturbances than manual plotting, which is also one of the 

major reasons that decrease the overall efficiency of the combination strategy. 

 

4. Conclusions 

 

This paper presents a semi-automatic system for road tracking. The system adopts a new 

combination strategy to extract the road networks. Particularly, the interlaced template matching, the 

profile matching, the rectangular template matching, and the PATS methods are adaptively selected 

based on the initialization information. At the same time, a human operator is retained in the tracking 

process to supervise the extracted trajectory, to response to the program’s prompts. Extensive 

experiments are performed to extract roads from aerial/satellite imagery including optical imagery and 

Synthetic Aperture Radar (SAR) data. The results show that the combination of multiple road trackers 

can more reliably and more efficiently extract most of the main roads than each individual tracker, 

which has significant practical applications. The current limits of our scheme are that it can’t deal well 

with road junctions or crossings, and shadows of high buildings, and it needs a novel method to extract 

straight ribbon roads. Future work will also include the optimization of the algorithms to speed up the 

calculations.  
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