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Abstract: This work develops a new current-mode mixed signal Complementary Metal-

Oxide-Semiconductor (CMOS) imager, which can capture images and simultaneously 

produce vehicle lane maps. The adopted lane detection algorithm, which was modified to 

be compatible with hardware requirements, can achieve a high recognition rate of up to 

approximately 96% under various weather conditions. Instead of a Personal Computer (PC) 

based system or embedded platform system equipped with expensive high performance 

chip of Reduced Instruction Set Computer (RISC) or Digital Signal Processor (DSP), the 

proposed imager, without extra Analog to Digital Converter (ADC) circuits to transform 

signals, is a compact, lower cost key-component chip. It is also an innovative component 

device that can be integrated into intelligent automotive lane departure systems. The chip 

size is 2,191.4 x 2,389.8 m, and the package uses 40 pin Dual-In-Package (DIP). The 

pixel cell size is 18.45 x 21.8 m and the core size of photodiode is 12.45 x 9.6 m; the 

resulting fill factor is 29.7%. 

 

Keywords: Image sensor; CMOS; photodiode; current-mode; lane detection; peak-finding 

algorithm; Gaussian filter; intelligent transportation systems.  
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1. Introduction 

 

Over the last decade, Intelligent Transportation Systems (ITS) have received considerable attention. 

ITS covers lane detection, obstacle recognition, car following and other areas. Instead of a Personal 

Computer (PC) based system or an embedded platform system equipped with expensive high 

performance chip of Reduced Instruction Set Computer (RISC) or Digital Signal Processor (DSP), this 

study develops a low-cost, compact, and portable Complementary Metal-Oxide-Semiconductor 

(CMOS) imager to capture images and detect lanes in real-time in an intelligent automotive lane 

departure system. In another respect, the use of the single chip specific CMOS imager for visual lane 

detection makes it more difficult for competitors to copy and reverse engineer than the use of an 

embedded system platform loosely combined with a normal CMOS imager module. The single chip 

solution certainly insures a longer product life as well as a higher value-added profit in high-tech 

market. As far as we know, this idea and the proposed prototype chip have never been described in the 

literature.  

Various vision-based lane detection algorithms [1-6] have been proposed in recent years. For 

example, Kluge and Lakshmanan [3] proposed the LOIS (Likelihood of Image Shape) lane detection 

algorithm, called the Metropolis algorithm. It detects lanes based on a stochastic optimization 

procedure even when shadows or broken lanes exist. However, Metropolis algorithm sometimes fails 

to reach a global maximum when the algorithm starts from a poor initial solution. Takahashi et al. [4] 

divided the parameter space of the lane model to generate the lane marking patterns and then applied 

the voting scheme to find the lane boundary. This algorithm does not guarantee a global optimum or 

satisfactory accuracy without huge computational resources. Moreover, both of these works are 

difficult to implement into hardware circuits. Broggi [5] presented an edge-based road detection 

algorithm, which is effective only for well-painted roads. In addition, adjusting the threshold to 

accommodate various weather conditions and traffic environments is difficult in Broggi’s approach. 

Most CMOS imager designs have been proposed with focuses on high resolution, high dynamic 

range, and noise reduction, rather than for embedded integration for particular applications. Coulomb 

and Mohamad [7] proposed a current mode active pixel sensor for variable resolutions with offset and 

gain compensation to reduce Fixed Pattern Noise (FPN). Their FPN suppression scheme improves the 

ability to inhibit noise under different light conditions, such as darkness or brightness. However, they 

didn’t further explain how to develop a valuable System-on-Chip (SoC).  

In the recent literature, only a few investigations have integrated edge detection and motion 

detection in a CMOS image sensor [8-10]. Typically, edge detection operation only computes the 

difference of intensity between adjacent pixels. These approaches tend to yield abrupt broken edges or 

non-single pixel edges that lead to poor quality of resultant edges caused by noise and inaccuracy 

when identifying the edge points. Yang et al. [10] proposed a 256 x 256 smart CMOS image sensor for 

line-based vision applications. They used the edge-based architecture to extract the feature points and 

then applied a histogram equalization based signal regularization approach to reduce the computational 

errors associated with an analogous circuit operation. However, this CMOS imager is more suitable for 

embedded motion detection than for automotive lane detection in smart vehicles. 

In this work, the developed CMOS imager, without using extra Analog to Digital Converter (ADC), 

circuits for signal transformation, is a single, low-cost, and compact chip for image capture and lane 
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detection at the same time. The current industrial solution employs an embedded platform with 

Advanced RISC Machine based (ARM-based) CPU or DSP processor to support the computation 

intensity of lane detection algorithm. In this platform, large memory capacity [Random Access 

Memory (RAM) and flash Read Only Memory (ROM)], are required to run the real time Operating 

System (OS) and store the lane detection algorithm program. In our SoC-based approach, the lane 

detection algorithm is designed within the CMOS imager. Without the costs of ARM-based CPU (or 

DSP processor) and larger memories, the proposed imager should be a better low-cost and compact 

solution.  Further, this innovative component device can be easily integrated in a SoC-based intelligent 

automotive lane departure warning system. The designed mixed signal CMOS imager is capable of 

capturing images as well as producing vehicle lane maps at the same time. Moreover, it can be easily 

integrated with currently existing consumer electronic devices, such as Personal Digital Assistance 

(PDA), cell phone, digital camera, etc. for real-time lane detection applications. Figure 1 shows how 

our proposed automobile lane detector with integrated CMOS imager could be used in ITS in the very 

near future. 

 

Figure 1. The automobile lane detector integrated with CMOS imager for use in ITS. 

 
 

This paper is organized as follows. Section 2 describes the embedded modified algorithm for 

vehicle lane detection. The proposed CMOS imager architecture and the developed analog circuit 

design for lane detection are introduced in Section 3. The circuit design includes two new types of 

pixel cells, dual Gaussian filters, the analog module for peak finding with auto-regulated threshold, and 

the lane point allocation in digital form. Section 4 presents the experimental results, and the final 

section reports our conclusions.  

 

2. Vehicle Lane Detection Algorithm 

 

Lane detection is one of the important and fundamental issues in an intelligent transportation 

system. In this paper, the lane detecting algorithm [1] has been modified and converted into a hardware 

design built into a CMOS imager with a recognition rate of 96%. The algorithm consists of three steps: 

smoothing, feature extraction, and lane boundary detection. They are described in detail in this section.  

 

2.1. Gaussian Smoothing 

 

In the first step, we remove the noise by applying a Gaussian filter. The one dimensional (1-D) 
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Gaussian filter we use in this paper can be expressed as follows: 
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where x is a variable and  is the variance of the Gaussian distribution. To perform image convolution 

with the use of the Gaussian filter, we should digitize the distribution to a discrete form. Empirically, 

we choose =1 to digitize the distribution and obtain a modified 1-D mask as follows.  

(2) 

Figure 2 (a)(c)(e) show the intensity profiles of  a specific row in a original image with pepper noise 

of 0%, 0.5%, and 1%, respectively. The profiles resulting from the smoothed images by the modified 

1-D Gaussian filter are shown in Figure 2 (b)(d)(f). 

 

Figure 2. (a), (c), and (e) are the intensity profiles of the original image with pepper noise; 

and (b), (d), and  (f) are the profiles without noise.  

 
2.2. Feature Extraction 

 

In general, lane markers in the image have two properties: brightness and slenderness. Brightness 

means that the intensity of the lane mark is higher than that of the road surface under any weather 
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conditions. Slenderness guarantees that the appearance of the lane marker at each row in the image is 

narrow. According to the intensity peak points obtained due to the properties of brightness and 

slenderness, the position of the lane marker in the image can be found by analyzing and accumulating 

the intensity peak points row by row. 

The adopted peak-finding algorithm is modified to fit with the hardware requirements in analog 

design and applied to identify all hill candidates row by row. A hill can be formally defined as a range 

over which the values increase first and then decrease next without any internal ripples in the profile. 

Every hill candidate is associated with three variables as shown in Figure 3. Ps is the start position of 

first climbing up point; Pe is the end position of last climbing down point; and  Pp is the peak position 

of first climbing down point. Then, we define Left_Height = Pp(y)-Ps(y), Right_Height = Pp(y)-Pe(y), 

and Width = Pe(x)-Ps(x). 

The hill candidate that satisfies the following three conditions is considered a hill and the midpoint 

of the hill is taken as the peak:  

,
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where hT  and wT  are two thresholds of the hill height and the hill width, respectively. In [1], the values 

of hT  and wT are determined empirically and considered fixed. As a result, the peak-finding algorithm 

is sensitive to image quality. Therefore, we design a circuit which is described later in Section 3 to 

decide the thresholds automatically.  All peaks in an image are the feature points for further lane 

boundary detection. The image exhibiting all extracted peaks is called the peak-point image.  

 

Figure 3. A schematic form describes a hill associating with three variables, Ps, Pe, and Pp. 

 
 

2.3. Lane Grouping 

 

We gather the peaks adjacent to each other to form a line segment. Intuitively, a line segment 

physically corresponds to one lane marker. In this step, some false peaks resulting from shadows or 

overpasses will be filtered out. To achieve this, a hardware module referring to as lane-point allocation 

module is designed and implemented to perform the noise filtering operation. The detailed 

functionality of lane-point allocation module is described in Section 3.4. Finally, we find line segments 

to perform the line-segment combination algorithm, which combines the adjacent line segments one by 

one to obtain the lane boundaries. 
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3. Architecture and Circuit Descriptions 

 

The developed chip as presented Figure 4(a) can be divided into two parts - analog circuits and 

digital circuits. The analog circuits include a 2-D pixel cell array, a Correlated Double Sampling (CDS) 

module, a Gaussian filter module, and a Peak-Finding module, whereas the digital circuits comprise a 

Line Point Allocation module, a column selector, and a row selector. Figure 4(b) gives a detailed 

explanation of the block diagram in Figure 4(a). The signal flow between the blocks and the whole 

circuit architecture are presented in these two subfigures. 

 

Figure 4. The proposed architectural circuit (a) block diagram (b) signal flow diagram of 

the proposed mixed signal CMOS imager integrated with lane detection algorithm. 

..

 
(a) 

 
(b) 

The peak-finding algorithm extracts the 1-D image intensity profile and locates the peak points at 

the maximal value with no internal ripple. If the original algorithm is directly used to implement the 

circuits, an Analog to Digital (A/D) converter is required to convert the analogue current into discrete 

gray-level values. An additional complicated digital Application Specific Integrated Circuit (ASIC) 
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design should be integrated to process the binary data for gray-level values, increasing the complexity 

of the system and the consumption of hardware resources to a great extent. 

 

3.1. Pixel Cells and Sensor Array 

 

The proposed sensor array prototype is composed of 66 x 66 pixel cells, which comprise 64 x 64 

effective pixels. The road and the lane lines are typically located in the bottom part of the processed 

image. This observation indicates that the top one fourth area of the analyzed image contains sky and 

cloud. To save hardware resource, the array circuit in this area has no function for the peak-finding 

operation. The sensor array was divided into two regions: upper and lower. The upper region of 16 x 

64 pixels is neglected during the process of lane pixels finding by automatically setting the intensity to 

“0”. Zero intensity means bypassing the pixel readout operation. The total number of readout 

operations is reduced to increase the computing efficiency, where the readout speed depends on the 

simulated clock rate. The lower region is horizontally partitioned into three sub-regions. Each sub-

region consists of 16 rows. The 12th row of every sub-region is replaced by a 1-D sampling array. The 

upper region also has one sampling array in the same manner. Consequently, the sensor array has four 

1-D sampling arrays. One is embedded in the upper region and the other three in the lower region. The 

currents of each sampling array are accumulated in the peak-finding module from which the mean 

current was collected. 

The developed sensor array contains two types of pixel cells, as shown in Figure 5. The pixel cell 

that belongs to the sampling array is called the sampling pixel cell, which consists of seven transistors. 

The other cell is referred to the normal cell, which comprises five transistors and is smaller than the 

sampling pixel cell. Hence, there are totally 62 rows of normal cells and 4 rows of sampling cells in 

the proposed 66 x 66 sensor array. Figure 6 shows the layout diagram of both of the pixel cells. To 

avoid interference through P-type layer between readout transistors and photodiode, we connect the 

guard ring of P-type layer to the ground. The width of the sampling cell layout was the same size as 

the normal cell layout in order to combine both types of the cell layout into the whole 2D sensor array 

row by row. 

 

Figure 5. Two types of pixel cell (a) normal cell (b) sampling cell. 

 
(a)                                           (b) 
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Figure 6. Layout of pixel cell (a) normal cell (b) sampling cell. 

 
(a)                                        (b) 

 

In this work, the Row/Column selector that addresses and guides the pixel values from the sensor 

array to the Gaussian filter module includes 64 D-type Flip Flops (DFFs). The True-Signal-Phase-

Clocked (TSPC) DFF [11-12, 15] was modified by adding three transistors to obtain one reset function, 

as shown in Figure 7. The adopted TSPC DFF can be triggered by double edges rather than triggered 

by positive or negative edge. Also, the total number of transistors in a TSPC DFF is less than that in 

the popular DFFs. This benefits a high capacity design of a larger sensor array. Consequently, with 

most of the original features of the adopted TSPC DFF, our proposed design satisfies the requirements 

of large capacity, high speed, and high extensibility to favour the design of a larger sensor array in the 

future. The extension of sensor array may be from 64 x 64 to 640 x 480 or to 320 x 240. The common 

used resolution and the software processing speed for lane detection based on embedded system 

platform are 320 x 240 and 10 fps, respectively. 

 

Figure 7. Modified DFF with three extra transistors, M1, M2 and M3. 

Q

M2

M3

M1

D

CLK
RESET

 
 

3.2. Dual 1-D Gaussian Filters 

 

The developed analogue circuit for a 1-D Gaussian filter includes 64 Gaussian mask cells and a 

current divider. The 1-D Gaussian filter module includes a couple of 1-D Gaussian filters as shown in 

Figure 8. The filter smoothes the selected pixel by considering its right and left neighbors and then 

eliminates noisy points from the original image. Each Gaussian mask cell consists of seven transistors 

and two OR gates. In the proposed design, the channel width ratio of transistors M4, M3, and M2 (or 

M7, M6, and M5) is 1:4:6, from right to left, as shown in the upper-left Gaussian mask cell in Figure 8. 
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The relative W/L size of the M4, M3, and M2 transistors are 4/0.5, 16/0.5, and 24/0.5, respectively. 

The control unit which coordinates the counting and clocking operations of the row and column 

selectors is shown in Figures 4(a) and (b). It also monitors the timing sequences between the dual 

filtering units. The operation of the left and the current Gaussian filter successfully provides a 

modified 1-D mask smoothing function of 1:4:6:4:1 as described in Eqn. (2). The smoothed results, 

IG(i,j) and IG(i-1,j), output from the dual 1-D Gaussian filters, are integrated into the peak-finding 

module as shown in Figure 4. 

 

Figure 8. Proposed analogue circuit of the dual 1-D Gaussian filters. The channel width 

ratio of transistors M4, M3, and M2 (or M7, M6, and M5) is 1:4:6, from right to left. 

 
 

3.3. Peak-Finding Module with Auto-Regulated Threshold 

 

Extension of the analogue design of current-mode comparator [13-14, 16] enables the peak-finding 

module, shown in Figure 9, to accumulate and average currents from the aforementioned sampling 

arrays. Additionally, this module can simultaneously regulate the threshold value and extract peak 

value. The averaged current from the sampling array, Iavg, was generated according to Eqn. (3): 
1,

0 , 1

1
( ( / ) * , ),avg

n N

i j

I Ip S N n i j
n



 

   (3) 

where n is the number of sampling arrays and also indicates the number of the sub-regions in the 

sensor array. Moreover, N is the total number of rows in the designed imager. S represents the 12th row 

in each sub-region. Finally, Ip presents the output current from the pixel cells of one sampling array. In 

this work, n and N are set to 4 and 64, respectively. 

The auto-regulated threshold circuit compares Iavg with four preconfigured currents to determine the 

threshold current accordingly. In Figure 9, the above-mentioned functional sub-module includes a 

voltage divider and four-threshold current mapping circuits. The reference voltage, Vref, was 

partitioned by Ri, i=1, 2, 3, 4, and 5, to control four Threshold Mapping Circuits (TMCs). Each TMC 
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consists of a current comparator [13-14,16] and two additional transistors. The transistor M1 sends 

various Irefn to the current comparator, as specified by Eqn. (4), depending on Vrefn applied to the 

threshold mapping circuit. If Irefn exceeds Iavg, then VCn will be high and M2 is turned on. This happens 

whenever the sub-threshold current, Isth, increases.  If Irenf is less than Iavg, then the VCn will be low and 

M2 is turned off. Similarly, it happens whenever Isth approaches to a relatively low value: 

 
3.3V,  

0V,  

refn avg

Cn

if I I
V

otherwise


 


  

5

1
5

1

r e f n
m n

r e f

m

R m
V V

R m

 



 
 
 
 
 
 




 

2
0 ,

1

1

1
( ( ) )

2

M

r e f n n r e f n S T

M

W
I V V V

L
u c    (4) 

where n can be 1, 2, 3 or 4, and TV , WM1, LM1, nu , and  0c are the threshold voltage, channel width, 

channel length, carrier mobility, and gate capacity of M1, respectively. 

 

Figure 9. The Proposed Peak-Finding and Lane-Point Allocation Modules. 

 
 

The threshold current ITH is determined by the summation of four TMCs inside the auto-regulated 

threshold circuit indicated in Figure 9. Equation (5) presents the calculation of the four sub-threshold 

currents, Isth,i, where i = 0, 1, 2, and 3. In this situation, each M2 of the TMC should be operated in 

saturation: 
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The threshold for extracting the features of lane markers is automatically determined by the 

hardware module of Auto-Regulated Threshold Circuit (ARTC), as shown in Figure 9 as well. The 

proposed sampling pixel cell shown in Figure 5(b) together with the normal cell shown in Figure 5(a) 

are combined into one couple of circuit cells for one image pixel design. This is a new integrated 

scheme, which has never appeared in the literature as far as we know. It provides Ips to ARTC. The Ips 

reflects the background picture information so that the adaptive threshold can be tuned automatically. 

Another current comparator decides whether the current value of the pixel exceeds the threshold value, 

revealing the existence of a peak point. If the current pixel is a peak point, then the output value will be 

1. Otherwise, it should be 0, as presented in Eqn. (6): 



 


otherwise

jiIIjiIif
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GG TH

p
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),1(),(,1
),(  (6) 

where IG(i,j) and IG(i-1,j) are the current and the previous values output by the dual 1-D Gaussian 

filters, respectively. 

 

3.4. Lane-Point Allocation  

 

In the final processing stage, two digital functions are combined in a single equation, Eqn. (7) to 

find the lane markers. In this work, we consider the lane marker as the line segment forming by 

adjacent peak points in different rows. The Lane-Point Allocation module implementing the Eqn. (7) 

filters out some spurious peak points and selects the correct ones to form the lane markers:  
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The purpose of the first term in the right-hand side of Eqn. (7) is to filter out the peak point at ),( ji  

whose left adjacent point is labeled as a peak point, that is, 1),1(  jiPp . This preserves the resulting 

lane marker is one-pixel-width. The last term of Eqn. (7) verifies whether the peak point is at the lane 

marker or just spuriously isolated one resulting from noise. 

For covering all possible lane markers with different slopes, a 3 x 7 mask centered at the peak point 
),( ji is used to check the existence of other peak points within this mask either at the row )1( j or 

)1( j . If no adjacent peak points exist, the last term of Eqn. (7) will be zero and 0),( jiLb  which 

indicates this pixel does not belong to the lane marker. The module with one First-In-First-Out (FIFO) 

to perform such functionality is shown in the lower part of Figure 9. In order to detail the evaluation of
),( jiLb , two examples that illustrate different results are shown in Figures 10(a) and 10(b), 

respectively. The black squares in both examples are the obtained peak points. 
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Figure 10. Two examples for evaluating ),( jiLb  in Lane-Point Allocation Modules (a) 

example for Lb=0 (b) example for Lb=1. 
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4. Experimental Results 

 

Images from the real world were captured as testing images to perform the simulation thus confirm 

the functionality of the proposed chip. Figure 10 displays the simulation results of the key signals in 

Section III in four windows. The pictures at the first two rows of Figure 11 are the simulation results 

for current variation of the sample IG(i,j) and the previous sample IG(i-1,j) after dual 1-D Gaussian 

filters, respectively. The picture at the third row of Figure 11 presents the binary output results 

concerning the peak points, Pp(i,j), generated by the peak-finding module and the binary signals that 

represent the detected lane points produced from the Lane-Point Allocation module in the final stage 

are shown in the picture at the last row of Figure 11. 

 

Figure 11. Simulation results for IG(i,j), IG(i-1,j), Pp(i,j), and Lb(i,j). 

 
 

The developed chip was manufactured in the TSMC 0.35 m mixed signal process of 2P4M CMOS 

technology. NMOS capacitors are added to the power line layout regions to reduce power noise. Figure 

12 displays the layout of this chip, where the chip size is 2191.4 m(H) x 2389.8 m(V) and the image 

size of the pixel array is 1217.7 m(H) x 1455.05 m(V), respectively. 
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The images in Figure 13 are used to validate the outcome of the proposed CMOS imager. We apply 

the adopted lane detection algorithm to detect the lane boundaries in C/C++ programming and the 

resulting image is shown in Figure 13(d). The output of the algorithm contains a few noisy pixels but 

most pixels on the right lane boundary are missed in the detection processing.  Figure 13(b) is the 

result of the peak-finding module. Obviously, the use of auto-regulated threshold successfully extracts 

the peak points of the right lane markers. Figure 13(c) is the result of lane boundary map from the 

lane-point allocation module in the developed CMOS imager, which successfully detects better lane 

boundaries on both sides only at the expense of introducing a few noisy pixels. The sum of all these 

building blocks is similar to that of the algorithmic result.  

Metal 4 is used as the shield layer to protect the layout areas, except for those regions for 

photodiodes against etching caused by light effect. Also metal 4 was used as the power line for a 

smaller current drop, which results from the low resistance effect of the metal 4. Some redundant  

 

Figure 12. Layout diagram of the proposed CMOS imager. 

 
 

Figure 13. Comparison of experimental results (a) Raw image; (b) is the result of the peak-

finding module; (c) is the result of the proposed CMOS imager; (d) is the result of software 

implementation. 
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The dual pixel cell design with background image information capturing function to automatically 

control the threshold currents is an innovative idea of this paper. The threshold values in [1] were 

given manually by expert. Because the manually given expert values are usually better than the 

automatically generated threshold currents, the detection rate of the proposed imager (less than 96%) 

is then somewhat worse than that of the software in [1]. On the other hand, in Figure 12(c), more 

feature points of the right lane boundaries which compare to those in the C/C++ version (see Figure 

12(b)) are detected, but with noisier feature points. This means that the developed hardware can 

occasionally obtain better results in some scenes. 

Table 1 gives the design parameters of the developed CMOS imager. The dimensions of the chip 

are 2191.4 m x 2389.8 m, and the package is in a 40-pin DIP. The pixel cell size is 18.45 m x 21.8 

m and the size of the core of the photodiode is 12.45 m x 9.6 m. Also, the resulting fill factor is 

29.7%. 

Table 1. Specification of the proposed CMOS image sensor. 

Item Values 

Effective pixel Count 64 (H) x 64 (V) 

Pixel Size 13.1 μm (H) x 22.05 μm (V) 

Aperture Size 9.6 μm (H) x 12.45 μm (V) 

Fill Factor 29.7 % 

Image Size 1217.7 μm (H) x 1455.05 μm (V) 

Chip Size 2191.4 μm (H) x 2389.8 μm (V) 

Operation Clock  25 MHz 

Operation Voltage 3.3 V 

Power consumption 159.4 mW 

 

5. Conclusions 

 

A current-mode mixed signal design of the CMOS image sensor with an integrated peak-finding-

based lane detection algorithm is developed herein. This investigation includes a 2-D normal sensor 

array embedded with four additional modularized circuits for use in smart vehicles. There are four 1-D 

sample arrays for accumulating the sample currents to adapt the background picture information 

accordingly; dual 1-D Gaussian filters coupled as an analogue image-smoothing module; an analogue 

peak-finding function associated with a novel auto-regulated threshold operation, and a FIFO based 

digital scheme for lane-point allocation.  

Most CMOS imager designs have been proposed with a focus on high resolution, high dynamic 

range, and noise suppression, rather than embedded integration for particular applications. In this 

investigation, we have developed a low-cost and SoC-based compact chip prototype of CMOS imager 

that can capture images of roads form the real world and simultaneously identify the lane markers 

under various weather conditions in real time. To our knowledge, this idea and the proposed prototype 

chip have never appeared in the previous literature. 
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