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Abstract: Data simulation is widely used in remote sensing to produce imagery for a new 
sensor in the design stage, for scale issues of some special applications, or for testing of 
novel algorithms. Hyperspectral data could provide more abundant information than 
traditional multispectral data and thus greatly extend the range of remote sensing 
applications. Unfortunately, hyperspectral data are much more difficult and expensive to 
acquire and were not available prior to the development of operational hyperspectral 
instruments, while large amounts of accumulated multispectral data have been collected 
around the world over the past several decades. Therefore, it is reasonable to examine 
means of using these multispectral data to simulate or construct hyperspectral data, 
especially in situations where hyperspectral data are necessary but hard to acquire. Here, a 
method based on spectral reconstruction is proposed to simulate hyperspectral data 
(Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method 
involves extraction of the inherent information of source data and reassignment to newly 
simulated data. A total of 106 bands of Hyperion data were simulated from ALI data 
covering the same area. To evaluate this method, we compare the simulated and original 
Hyperion data by visual interpretation, statistical comparison, and classification. The 
results generally showed good performance of this method and indicated that most bands 
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were well simulated, and the information both preserved and presented well. This makes it 
possible to simulate hyperspectral data from multispectral data for testing the performance 
of algorithms, extend the use of multispectral data and help the design of a virtual sensor. 
 
Keywords: Data simulation, hyperspectral data, multispectral data, spectral reconstruction 

 
 
1. Introduction  

 
Remote sensing is playing an increasingly important role in earth science research and 

environmental problem solving. A number of earth satellites have been launched to advance our 
understanding of Earth’s environment. Satellite sensors, both active and passive, capture data from 
visible to microwave regions of the electromagnetic spectrum. A wide range of satellite data, including 
multispectral data and hyperspectral data, such as Landsat Thematic Mapper 5/Enhanced Thematic 
Mapper (TM/ETM+); Global Imager (GLI); Moderate Resolution Imaging Spectroradiometer 
(MODIS); and Advanced Land Imager (ALI) and Hyperion, are frequently used in oceanography, 
hydrology, geology, forestry, and meteorology studies. Different studies and applications require 
different spatial, spectral, radiant resolution, and time-resolution data [1,2]. Hyperspectral sensors 
monitor hundreds of spectral bands and can provide near-laboratory quality reflectance spectra. The 
data produced, referred to as hyperspectral data, contain much more information than multispectral 
data and have greatly extended the range of remote sensing applications [3,4]. Unfortunately, 
hyperspectral data are much more difficult and expensive to acquire and were not available prior to the 
development of operational hyperspectral instruments. On the other hand, large amounts of 
accumulated multispectral data have been collected around the world over the past several decades, 
therefore it is reasonable to examine means of using these multispectral data to simulate or construct 
hyperspectral data, especially in situations where the latter are necessary but hard to acquire. Many 
studies have examined methods to simulate or construct hyperspectral and multispectral data spectra 
from field spectra or to aggregate spectra of hyperspectral bands into multispectral bands. However, 
few attempts have been made to simulate hyperspectral data from multispectral data [2, 5-9]. In this 
paper, we propose a method, based on a spectral reconstruction approach, to simulate hyperspectral 
data from multispectral data.  

Data simulation is widely used in remote sensing. It is often utilized to produce imagery for virtual 
or new sensors that are in the design stage. Simulated data can be used to assess or evaluate the 
spectral and spatial characteristics of the sensor, which are critical in the planning of a project [8]. 
NASA has developed a system to simulate imagery to meet customer needs and costs in a virtual 
environment (http://www.esad.ssc.nasa.gov/art/). Meanwhile, data simulation is often used to evaluate 
or assess the influence of different spectral or spatial resolutions on some applications and thus to 
select the appropriate resolution for a particular problem [10-13]. For example, by simulating 
hyperspectral data with different spatial resolution, Luo [12] evaluated the adaptability of linear 
spectral unmixing to different levels of spatial resolution. Jiao [13] simulated hyperspectral data to 
evaluate the influence of spatial and spectral resolution to vegetation classification. In addition, 
simulated data are often used to evaluate and test novel algorithms such as target detection and 
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identification algorithms in hyperspectral remote sensing. There is no easy method to simulate 
hyperspectral data for testing the performance of these algorithms. If simulated hyperspectral data can 
be easily obtained, it will greatly help the testing and development of new algorithms.  

The universal pattern decomposition method (UPDM) is a sensor-independent method which can be 
considered as a spectral reconstruction approach, in which each satellite pixel is expressed as the linear 
sum of fixed, standard spectral patterns for water, vegetation, and soil, and the same normalized 
spectral patterns can be used for different solar-reflected spectral satellite sensors [14]. Sensor 
independence requires that analysis results for the same sample are the same or nearly the same 
regardless of the sensor used. Based on this trait, here we present a method based on the universal 
pattern decomposition method (UPDM) to achieve the goal of simulating hyperspectral data from 
multispectral data, which can be considered either a method of spectral construction or spectral 
transform. The hyperspectral and multispectral data are NASA EO-1 satellite/Hyperion and EO-1/ALI 
data, respectively (see Section 3.2 for a brief introduction). First, we obtained ALI and Hyperion data 
covering the same area and performed atmospheric correction to obtain surface reflectance data; here 
Hyperion data served as standard or real data to evaluate the results in the subsequent analysis. Then, 
we obtained the decomposition coefficients thought to be sensor-independent for the same sample by 
applying the UPDM to ALI data; these coefficients were subsequently used to construct Hyperion 
data. Before performing UPDM, standard pattern matrices of both sensors were calculated based on 
the standard spectral patterns (see Section 2 for details). Finally, the simulated Hyperion data were 
compared with the real Hyperion data, i.e., test data, to evaluate and assess this method. 

 
2. Spectral Reconstruction Approach 
 
2.1. Review of the Universal Pattern Decomposition Method (UPDM) 
 

The spectral reconstruction approach is based on the UPDM, which is a sensor-independent method 
derived from PDM that has been successfully applied in many studies [14-21]. This method can be 
explained by multi-dimensional analysis, which is also mathematically and practically almost identical 
to the spectral unmixing method [22-26]. UPDM decomposes reflectance values at each pixel into a 
linear sum of standard spectral patterns for water, vegetation, soil, and any supplemental patterns using 
the following formula [20,21]: 

i44issivviwwi PCPCPCPCR +++=  (1) 

Here, iR  is the reflectance of band I measured on the ground or by satellite sensor; wC , vC , and sC  
are the decomposition coefficients for water, vegetation, and soil, respectively; 4C  represents the 
supplemental coefficients; and wP , vP , and sP  are the respective standard spectral patterns for water, 

vegetation, and soil for some typical sensor captured from the same standard pattern normalized in the 
same wave region of 350 nm–2500 nm for any sensor, and are therefore related to the properties of 
each sensor. 4P  is the supplementary standard pattern and is an optional component that can be 

controlled for the purpose of the study.  
For each sensor band, the standard spectral patterns of each band iwP � ivP , and isP  are calculated as 

follows: 
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where ( )λRk  represents the spectral reflectance patterns of standard objects and ∫dλ  refers to 

integration of the total wavelength range from 350 nm to 2500 nm. Obviously, ( )λRk  satisfies the 

following normalization equation: 

( ) ∫∫ = dλdλλPk  (k = w,v,s). (4) 

As the supplemental pattern is not fixed, it can be chosen according to the purpose of the study. As 
an example, we used a yellow-leaf spectrum to briefly show how a supplemental is added. Due to the 
multi-colinearity, the yellow-leaf pattern cannot be added directly. A residual yellow-leaf pattern is 
used as the supplementary spectral pattern (see [20]). By analogy to (3), ( )λP4  is defined as follows: 
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where ( )λr4  is the residual yellow-leaf value: 

( ) ( ) ( ) ( ) ( )}{ λPCλPCλPCλRλr ssvvww44 ++−=  (6) 

( )λR4  is the measured spectral value for the yellow-leaf sample. For any sensor, i4P  values are 

calculated using (2) in the same way.  
For simplicity, we express UPDM in matrix form as follows [14]: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

n

s

v

w

nnsnvnw

svw

svw

n r

r
r

C
C
C
C

PPPP

PPPP
PPPP

R

R
R

MMMMMM
2

1

44

24222

14111

2

1

 (7) 

rPCR +=  (8) 

where R = [ ]Tn21 ,,, RRR L  is the column vector of observations; n is the number of spectral bands of a 
sensor; P = [ ]T4svw P,P,P,P  is the 4×n matrix, called the standard pattern matrix, in which the row 

vector is the standard spectral pattern for band number n, and P is unique and fixed for a sensor once 
the standard spectral patterns are given. C = [ ]T4sv ,,, CCCCw  is the column vector of UPDM 
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coefficients, and r is the residual column vector. C can be obtained by minimizing the sum-of-squared-
error criterion function: 

2

2
PCRJs −=  (9) 

( ) RPPPC T1T −
=  (10) 

The reduced 2χ  employed to evaluate the precision of fitting is defined as follows [21]: 

( ) )4(
1

22 −= ∑
=

nir
n

u
χ  (11) 

 
2.2. A Modification of UPDM 

 
Spectral sensitivity is an important parameter of any sensor and is normally expressed as the 

spectral response function (SRF), which is the relative responsivity of the sensor to monochromatic 
radiation of different wavelengths. Various studies have indicated the effects of sensor SRFs on 
analysis results in a variety of applications, and it is very important to take SRFs into account when 
comparing data from different sensors and applying physical models [27-31]. To take the effects of 
SRF into consideration, we revised (2) to calculate standard pattern matrix as follows: 
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where ( )λSi  represents the SRF of a sensor of band i. The other equations in UPDM remain the same. 

 
3. Study Area and Data 
 
3.1. Study Area 
 

The study area was located in Yueyang in northeastern Hunan province, P.R. China, where 
Dongting Lake, China’s second-largest freshwater lake, connects to the Yangtze River. The climate of 
the Dongting Lake area is between middle and northern subtropical. The annual mean temperature is 
about 16.4°C–17°C; the mean temperature in January is 3.8°C–4.5°C and in July is about 29°C. The 
annual precipitation is about 1,100 mm–1,400 mm, with more than half of the rainfall occurring 
between April and June. 

 
3.2. Remote Sensing Data 
 

The remote sensing data used in this study were ALI and Hyperion images. Hyperion and ALI, 
collecting data over the same area simultaneously, are two of the three sensors onboard the NASA EO-
1 satellite with sun-synchronous orbit at an altitude of 705 km. The cross-track width of an ALI scene 
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and a Hyperion scene are 37 and 7.7 km, respectively. The along-track scene length for both ALI and 
Hyperion will generally be either 42 km or 185 km, depending on the dimensions specified when the 
scene was scheduled. ALI was built to provide vital information for the next Landsat mission, with 1 
panchromatic band and 9 multispectral bands, most of which are comparable to ETM+ bands. The 
Hyperion sensor collects a total of 242 bands, and its final L1R product provides a total of 198 bands 
representing 427–2,395 nm continuous spectra with 10-nm spectral resolution.  

ALI and Hyperion data covering the study area were acquired on September 2, 2002. The center of 
the images is 29.38° N, 113.06° E. Frequent torrential rain in May and June 2002 led to localized 
flooding, which damaged crops and infrastructure along the shores of Dongting Lake. ALI data served 
as source data from which we attempted to simulate hyperspectral data, whereas Hyperion data served 
as test data, i.e., real data, to test and evaluate the final results. 

 
4. Data Preparation and Spectral Reconstruction 
 
4.1. Preprocessing of Remote Sensing Data 
 

Vertical streaks between columns in the along-track direction of image data in a push-broom system 
are quite common. Such effects are evident in Hyperion data, especially in shortwave infrared (SWIR) 
channels. To remove the striping, we adopted a statistical balancing method that calculates the mean 
and standard deviation of a local selectable neighborhood of columns as the reference values to adjust 
the column data [32]. Local instead of global statistical moments are used to minimize changes made 
before atmospheric correction as global statistical destriping may alter mid-frequency spatial effects 
[32, 33]. Only a small subset of bands with the most severe streak effects was selected for such 
destriping. The intention here was still to minimize changes, although this conservative treatment may 
not remove striping effects fully.  

After destriping, Hyperion L1R data were atmospherically corrected using ACORN5.0 in mode 1.5 
to obtain surface reflectance data. As ALI data are of very good quality, atmospheric correction was 
performed directly using ACORN5.0 in mode 5.0 without similar preprocessing.  

Although both sensors are onboard the same satellite, the areas covered by the pixels of their 
images were not strictly identical. Hyperion data were geometrically corrected to ALI data using first-
order polynomial interpolation and bilinear resampling. 

 
4.2. Obtaining Standard Pattern Matrix 
 

As described in Section 2, it is necessary to calculate standard pattern matrices of ALI and 
Hyperion to apply UPDM. According to (12), SRFs of both sensors are also needed. The SRFs of ALI 
are available from the website of CSRIO (http://www.eoc.csiro.au/hswww/oz_pi/specresp.htm). We 
use the Gaussian function to simulate the SRFs for Hyperion. The Gaussian function is widely 
accepted for many detector instruments and is reasonably constant across detector arrays within the 
same optical system [34]. 

The Gaussian function ( )ii ,g σλ  can be represented by the central wavelength iλ  and the bandwidth 

iσ , which is a function of Full Width at Half Maximum (FWHM) (14). With the assumption that the 
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peak of the Gaussian function corresponding to the central wavelength is 1, the formula of ( )ii ,g σλ  is 
given as: 
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where the subscript i represents the band i of a sensor. All SRFs of Hyperion can be well constructed 
in this way involving two variables, i.e., central wavelength and FWHM, which are known parameters. 

After obtaining the SRFs of both sensors, the standard pattern matrices are calculated using (12). 
The standard spectral patterns used here were the same as those used previously [20]. The standard 
pattern matrix of ALI, denoted as AP , has an order of 49× , and the matrix of Hyperion, denoting as 

HP , has an order of 4106× . That is, information from all ALI multispectral bands is used to simulate 
Hyperion data. Due to the strong water vapor absorption, low SNR, and valid region of wavelength of 
standard spectral patterns used, a subset of 106 Hyperion bands were used in this study (Table 1). 

 
Table 1. Hyperion 106-band subset used in this study. 

Sequence NO. Bands  Wavelengths (nm) 
1-46 8-53 427-885 
47-54 87-94 1,013-1,084
55-61 107-113 1,215-1,276 
62-81 139-158 1,538-1,730 
82-106 195-219 2,103-2,345

 
4.3. Simulating Hyperion Data Based on UPDM from ALI Data 
 

UPDM is applied to ALI data to acquire the decomposition coefficients vector AC , which is 
considered to be sensor-independent, i.e., it holds the same value when UPDM is applied to Hyperion 
data: 

rCPR AAA +=  (15) 
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1
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T
AA RPPPC −

=  (16) 

where subscript A denotes ALI.  
To construct Hyperion data, we substitute AC  for HC  in the following equation: 
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where subscript H similarly denotes Hyperion. 
 
 



Sensors 2009, 9                            
 

 

3097

5. Results and Discussion 
 

Following the process flow discussed above, 106 bands were simulated based on UPDM from ALI 
data. We used source data referring to ALI data, simulated data referring to the new generated 
Hyperion data, and original data or real data referred to as real Hyperion data. Here, we evaluated this 
simulating method by comparing simulated and original data with regard to three aspects. First, the 
general appearances of both types of data were compared by visual interpretation to determine whether 
they have similar visual effects. Second, the statistical characteristics of both types of data were 
compared to determine whether they show a good correlation. Finally, we performed classification of 
both types of data to evaluate how information is preserved in application.  

 
5.1. Comparing Simulated Hyperion Data and Real Hyperion Data by Visual Interpretation 
 

Based on UPDM, we used all nine bands of ALI data to simulate the final set of 106 bands of 
Hyperion data. According to the correlation coefficients between each pair of original and simulated 
bands, we selected four bands, band 13 (average central wavelength 477.69 nm), band 19 (538.74 nm), 
band 94 (1,083.99 nm), and band 148 (1,628.81 nm), to show their general appearance by visual 
interpretation (See Section 4.2 and Figure 4 for detailed discussion of correlation). Specifically, the 
wavelength of band 94 is not covered by any ALI band. Therefore, we wish to show not only those 
Hyperion bands covered by ALI bands that can be explained as divided from the ALI band, but also 
those that are uncovered, which are simulated or “created.” Band 13, band 94, and band 148 had 
higher correlation coefficients (0.98, 0.97, and 0.96), which indicate well-simulated bands, whereas 
band 19 had a lower correlation coefficient of 0.88, indicating a minor fraction of bands that are not 
simulated as well as others (Figure 1). 

By interpreting each pair of images in Figure 2, we can see no significant differences between the 
simulated and original data for band 13, band 94, or band 148. The tone, pattern, texture, shape, and 
border of objects in both images all look quite similar with no obvious differences. These observations 
indicated that, from the viewpoint of visual interpreting, the information of ground objects and features 
presented in real data were also well preserved and presented in our simulated Hyperion data. The high 
degree of similarity and coherence of band 94 showed that our method could well simulate even those 
bands uncovered by multispectral data. Band 19 showed lower degrees of similarity and identity, with 
the most obvious differences in the color of objects; however, the texture and shape were still 
consistent and coherent. The most obvious differences were related to some parts of the vegetation 
area. These differences may have been because our standard spectral pattern of vegetation was not 
collected in the study area and may therefore not accurately present the characteristics of vegetation in 
this area around the wavelength of band 19. It is thought that the simulated results would have been 
much better if field spectra for this area during the same period had been available. 

For comparison of detailed regions, we selected a small area covering the border of the pond circled 
by the rectangle in bands 94 and 148. This small region had a great deal of variety and many details 
and therefore served as a good test region (Figure 2). Similar to the observations discussed above, 
most details and variety were also well presented in the simulated data. For example, the texture of the 
pond, the pattern of vegetation distribution on the left part of this region, several small bright objects in 
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the lower right part, and the border between the pond and land remained consistent and coherent 
between the original and simulated data. The original data often appear slightly vaguer than the 
corresponding simulated data. This is attributable to the geometrical correction in which the bilinear 
resampling method can degrade the spatial resolution of the original Hyperion data. However, this 
effect cannot be removed completely, as instantaneous fields of view of both sensors are not 
completely identical.  

 
Figure 1. Visual comparison of simulated Hyperion data and original Hyperion data: (a) 
and (b) are band 13 of original Hyperion data and simulation Hyperion data, respectively; 
(c) and (d) are band 19; (e) and (f) are band 94; (g) and (h) are band 148. There are no 
significant difference between simulated and original data of band 13, 94 and 148 by visual 
interpretation while band 19 shows some obvious differences. 

 
(a)                          (b)                        (c)                           (d) 

 

 
(e)                           (f)                         (g)                           (h) 
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Figure 2. Visual comparison of the magnification of a detailed region circled by the white 
rectangle in Figure 1. (e)-(h): (a) and (b) are band 94 of original Hyperion data and 
simulated Hyperion data; (c) and (d) are band 148. The texture of the pond, the pattern of 
vegetation distribution on the left part of this region, several little bright objects on the 
lower right part, the border between pond and land keep consistent and look same between 
original data and simulated data. Original data is a bit vaguer because of the resampling 
method in geometrical correction.  

 
(a)                                  (b)                                    (c)                                  (d) 

 
5.2. Comparing Simulated and Real Hyperion Data by Statistical Analysis 
 

The reflectance of original 9-band ALI multispectral data and the simulated 106-band Hyperion 
data from ALI is obviously different. However, the reflectance of original Hyperion data and that of 
the simulated Hyperion data is very similar, the latter spectral curve are a little more smooth than that 
of the former.  

For simple statistical comparison, we used the mean and standard deviation of each band from both 
datasets (Figure 3). Although the mean and standard deviation of each pair of bands of both datasets 
showed a large degree of variation, we still obtained some good observations. For most bands, the 
trends of variation in the mean and standard deviation and their dynamic ranges were similar.  

 
Figure 3. Mean and standard deviation of 106 bands of original and simulated data: (a) 
shows the mean and standard deviation of original bands, and (b) shows the mean and 
standard deviation of simulated bands (for convenience in plotting, we used the sequence 
numbers 1–106 to refer to bands. The corresponding bands are listed in Table 1). 
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We also calculated the correlation coefficients between each band of original data and the 
counterpart in the simulated data (Figure 4). As shown in Figure 4, most bands had correlation 
coefficients >0.95 (n = 70, bands 10–16, 22–34, 39–53, 87–94, 107–113, and 139–158), and a small 
fraction had correlation coefficients <0.90 (n = 9, bands 8, 19, 35–37, and 216–219); among the latter, 
band 36 had a the lowest correlation coefficient of 0.69. A higher coefficient suggested much better 
simulation of the corresponding band, whereas a coefficient lower than 0.90 indicated poor simulation.  

 
Figure 4. Correlation coefficients between simulated and original Hyperion data of 106 
bands. 
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To further evaluate this method, we sampled 1000 pixels at random to perform linear regression 

with a fixed slope of 1 on a subset of bands, which corresponded to different levels of correlation 
(Figure 5). These were band 13 (correlation coefficient 0.98, average central wavelength 477.69 nm), 
band 19 (0.88, 538.74 nm), band 36 (0.69, 711.72 nm), band 52 (0.99, 864.35 nm), band 94 (0.97, 
1,083.99 nm), band 113 (0.96, 1,275.66 nm), band 148 (0.96, 1,628.81 nm), and band 208 (0.92, 
2,234.12 nm). Generally, the linear fitness of these bands was consistent with the band correlation 
coefficient. They could be assigned into three groups according to the fitness performance. The first 
group included bands 19 and 36, with correlation coefficients <0.90. Their data points showed loose 
scattering and did not cluster tightly around the fitted line, and their 2R values (0.789 and 0.472, 
respectively) were much lower than those of other bands. As indicated by its lowest correlation 
coefficient, band 36 showed the poorest performance with the greatest RMS of 0.123 and lowest 2R  of 
0.472. The wavelength of band 36 was 711 nm, corresponding to the red edge. The rapid change in 
vegetation reflectance around the red edge may degrade our model performance and cause the lowest 
correlation coefficient and poor performance. This may also have been responsible for the low 
correlation coefficients of bands 35 and 37, as they were also around the red edge. Adding some 
supplementary spectral patterns accounting for this rapid change into UPDM or replacing the 
vegetation standard spectral pattern with ground-measured vegetation spectra in the study area may 
improve the results. The second group consisted of bands 52, 94, 113, 148, and 208, all of which had 
correlation coefficients >0.9. The data points for these bands clustered around the fitted line very well 
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with quite high 2R  values (0.973, 0.949, 0.936, 0.934, and 0.879, respectively), and their fitted lines 
were very close to the line 1:1. These observations indicated that these bands were well simulated and 
highly similar to the original bands. The best performance was observed for band 52; its fitted line was 
y = x + 0.00209 (R2 = 0.973), indicating that the simulated band was almost the same as the real data. 
Band 13 alone was considered a separate group for which the intercept of the fitted line (0.0286) 
relative to the dynamic range of data (0.06–0.13) was much greater than that for the second group, 
causing it to move away from the line xy = . However, the data points of band 13 fit the line quite well. 
The high values of 2R  (0.956) and correlation coefficient (0.98) also suggested good linearity.  

 
Figure 5. Linear regression analysis of simulated and original data. Charts from (a) to (h) 
are for bands 13, 19, 36, 52, 94, 113, 148, and 208, respectively.  
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(g)                                                                         (h) 
 

To evaluate the general results of the whole dataset, the vector angles between simulated and 
original data of each pixel were calculated. The images were displayed as cosine values of the angle, 
and a higher value corresponded to a smaller angle (Figure 6). Most pixels reached values >0.95, 
especially for the deep red area. We also noted that the areas in yellow and canyons had lower values, 
indicating slightly greater differences between simulated and original data. Interestingly, these areas 
all corresponded to river or pond areas. Water has much lower reflectance than land, especially in the 
infrared region. This results in a lower SNR of data in water areas, and the noise may lead to poorer 
simulation. This result was similar to the finding in [16]. Some borders of different ground objects or 
line features with narrow width also have lower values caused by the resampling method. 

Combining the above discussion and analysis, most simulated bands, with the exception of a small 
fraction with quite low correlation coefficients, showed strong correlations and high linearity with the 
original bands. The vector angle image also showed a high degree of similarity and good simulation 
for most areas. These observations indicated that our method is valid for simulating Hyperion bands 
from the viewpoint of statistics. 
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Figure 6. Cosine values of vector angles between simulated and original data of each 
pixel.  
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5.3. Comparing Simulated Hyperion Data and Real Hyperion Data by Classification Application 
 

We also performed classification using the spectral angle mapper method on the whole original 
Hyperion data (106 bands), simulated Hyperion data (106 bands), and ALI data (9 bands) to evaluate 
the general performance of our simulation method in classification application (Figure 7). That is, we 
wish to determine whether, being reconciled with the hyperspectral data, simulated data can preserve 
the information of ALI data.  

The aim of our method is to simulate hyperspectral data from multispectral data to make it 
comparable to the real hyperspectral data. Our method involves transformation to present the 
information of multispectral data in the new simulated hyperspectral data, but not creating or adding 
new information. This is quite reasonable, as we could never create any new information just using 
mathematical techniques. The situation here is quite similar to the PCA method, which never creates 
any new information but reassigns inherent information.  

From the classification images, we can see that the classification results on simulated data are 
similar to those on ALI data, indicating that the information of ALI data is well preserved in the 
simulated data using our method. That is, the inherent information of ALI data is not lost after being 
reassigned. In addition, the classification on original Hyperion data is also similar to the results of 
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simulated Hyperion data shown by the overall classification accuracies, which are calculated using the 
classification results on original Hyperion data as the reference image to compare and evaluate the 
classification results of simulated Hyperion data and ALI data (Table 2). The overall accuracy of the 
classification on simulated data was 87.6%, and the kappa coefficient was 0.808, whereas the accuracy 
on ALI data was 86.8% and its corresponding kappa coefficient was 0.797.  

 
Figure 7. Classification results of original Hyperion data, simulated Hyperion data, and 
ALI data: (a) shows the classification image of original Hyperion data, (b) shows the 
classification image of simulated Hyperion data, and (c) shows the classification image of 
ALI data. (Class label “pond” refers to water, which has characteristics of pond water; 
label “plant 1” refers to sparse plant area; and Label “plant 2” refers to dense plant area). 

   
(a)                                    (b)                                                 (c) 

 

Table 2. Classification accuracies of simulated Hyperion data and ALI data using the 
classification results of original data as reference image. 

Class 
Simulated Hyperion ALI 

Product  Accuracy
(pixels) 

User Accuracy
(pixels)  

Product Accuracy 
(pixels) 

User Accuracy
(pixels)   

River 4,957/5,092 4,957/5,156 4,965/5,092 4,965/5,195 
Pond 2,838/3,473 2,838/3,479 2,883/3,473 2,883/3,584 
Plant1 24,713/28,839 24,713/27,835 23,896/28,839 23,896/26,669 
Plant2 21,448/23,997 21,448/24,366 21,769/23,997 21,769/25,681 

 Bare 
Land 

2,076/2,599 2,076/3,164 2,042/2,599 2,042/2,871 

Kappa 0.808 0.797 
Overall  87.6% 86.8% 
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The classification results showed that our method successfully preserved the inherent information 
and presented it in the new data.  

 
6. Summary and Conclusions 
 

We have proposed a method to simulate hyperspectral data from multispectral data based on the 
spectral reconstruction method UPDM. A total of 106 bands of Hyperion were simulated from ALI 
data covering the same area. Visual comparison showed that the simulated data successfully presented 
the information of ground features and objects described by the original data for interpretation. To 
further evaluate our method, we compared the simulated and original data by statistical methods. The 
results indicated that most bands had very high correlation coefficients, suggesting a high degree of 
similarity and good consistency of the simulated bands to the original bands. The detailed results of 
linear regression analyses further verify that, for the bands with high correlation coefficients, the data 
points were generally clustered very tightly and fit the line 1:1 very well. These observations indicated 
that most bands showed good linearity and similarity to the original data. The high cosine values of the 
vector angle between the simulated and original data of each pixel also demonstrated the general good 
performance of our method.  

However, a small fraction of bands showed lower correlation coefficients, corresponding to poor 
simulation. This may have been because our standard spectral patterns were not collected in the study 
area. It may be possible to improve the results by adding supplementary patterns and replacing the 
standard spectral patterns with those derived from ground-measured spectra. 

The aim of our method is to simulate hyperspectral data from multispectral data and make them 
comparable to the real hyperspectral data. Similar to PCA, our method attempts to preserve and 
reassign the inherent information of multispectral data to the simulated data and to make full use of 
them, but not to add or create extra new information. The similarity between classification results 
derived from ALI data and simulated Hyperion data showed that the inherent information of ALI data 
were well preserved by reassignment to simulated Hyperion data.  

Simulated data could serve as a powerful tool in algorithm testing and assessment and could act as a 
potential surrogate when real hyperspectral data are unavailable. Validation and evaluation of such 
algorithms should be conducted using hyperspectral images covering a wide range of spatial 
complexities, but acquiring enough hyperspectral data to meet this need can be difficult. Our method 
can provide simulated hyperspectral imagery with the spatial complexity of real-world imagery, thus 
allowing for extensive yet lower-cost testing of algorithms over a wide variety of environmental 
conditions. In addition to algorithm development and testing, our method can also be applied to 
simulate the imagery of new sensors still in the design stage.  

Although this pilot study demonstrated the good general performance of our method from the 
viewpoint of visual interpretation, statistical comparison, and classification application, further studies 
of both the theory and applications should be performed to improve this method. For example, we may 
add some supplementary spectral patterns or consider the variability of standard spectral patterns, 
attempt to derive standard spectral patterns from ground-measured spectra, and select different 
standard spectral patterns for different applications. 
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