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Abstract: A compliant 2x2 tactile sensor array was developed and investigated for 

roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with 

polymeric packaging providing in total 16 sensitive elements to external mechanical 

stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. 

Experimental analysis of the bio-inspired tactile sensor array was performed by using 

ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with 

regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 

mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the 

applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz 

with an overall maximum error of 1.7%. The tactile sensor could also perform contact 

imaging during static stimulus indentation. The experiments demonstrated the suitability of 

this approach for the design of a roughness encoding tactile sensor for an artificial 

fingerpad. 

Keywords: MEMS tactile sensor array; bio-inspired sensor; roughness encoding; dynamic 

touch; static contact imaging. 
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1. Introduction 

Artificial tactile sensors which aim to mimic human discrimination capabilities should encode 

information correlated with the stimulus spatial features, with its motion dynamics as well as with 

contact mechanics. Roughness is a fundamental feature for texture perception [1,2,3], which has been 

associated with the spatial modulation of the used stimuli (i.e. “surface coarseness”) [4]. In 

experiments on human perception of tactile roughness the type of used surfaces often have patterns 

(gratings or rising dots) with features that can be independently varied in size and spacing [5,6]. This 

way, unlike for natural surfaces in which the spatial pattern features vary randomly, the physical 

characteristics of the explored surface, on which roughness perception is based, can be studied and 

identified. 

The physical determinant of perceived roughness is not yet fully understood [2,4] and there is a 

varied set of spatial features that should be taken into account for studies on roughness perception 

(e.g., using ridged stimuli: groove width, ridge width, ridge orientation, ridge height, material 

compliance, surface lubrication and fine finishing, etc.). In human psychophysical experiments, for 

example, some groups highlighted the presence of a relatively narrow region where the sense of 

roughness increases together with the groove width of ridged stimuli, followed by a flattened 

perception in case of very coarse gratings (up to 8.5 mm of groove width) [7]. In parallel to this, using 

embossed dots, some researchers presented monotonic functions of roughness and dots spacing [5], 

while an inverse “U” shape was shown in [8]. 

Considering dynamic exploration of extremely fine textures, various researchers showed that 

humans can detect even up to microtextures [9], highlighting the role of fingerprint ridges as vibration 

promoters [10] and considering the Pacinian Corpuscles as vibration detectors [11]. Some groups 

joined the Katz’s duplex theory considering vibrations useful for revealing fine forms, and a spatial 

mechanism (i.e. the static image of the contact between the texture and the finger) as the basis for 

coarse surfaces roughness perception [12]. Importantly, in the last decade, other groups proposed and 

gave evidence to a unified peripheral neural mechanism highlighting the role of SA1 afferents with 

respect to the other mechanoreceptors [13,1]. 

The understanding of the neural mechanisms underlying roughness encoding is in progress, 

however evidence was given to the fact that temporal frequency changes of tactile information play a 

major role in roughness perception in humans [5]. Finite element analyses using human finger model 

during dynamic touch showed that spatial information of the textured surface are related to temporal 

frequency changes at the position of tactile receptors [14]. In touch activities, if humans have the 

ability to estimate somehow the relative hand velocity v between the textured surface and the exploring 

finger, the spatial period Δp of the surface can be perceived by detecting the temporal frequency of the 

vibration [15], such that: 

p

v
f


  (1) 

The findings and debate of researchers on human touch are directly linked with the development of 

artificial tactile sensors, which is one of the chief challenges in robotics. Many technologies have been 

investigated and can be analysed in comprehensive reviews on the topic [16,17]. For the above 
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reasons, with regards to the many reported efforts to reproduce human capability to detect texture, the 

developed sensors were mainly based on the analysis of the vibration gathered during dynamic 

exploration or on the contact imaging [18] by means of static indentation. An approach was to develop 

a finger-like multilayered texture sensor integrating five strain gauges for identifying the difference in 

roughness, softness and frictional properties of various materials [19]. Employing such device, the 

texture information of a surface was quantitatively detected by estimating the vibrational frequency 

excited by indenting and sliding a periodic stimulus with spatial wavelength in the millimiters range 

[20]. A similar method was previously shown in [21] for finer surfaces. Another noticeable solution 

was presented in [22], where a spatial filter function was used adaptively depending on sensor-stimulus 

relative motion parameters, thus pointing out the centrality of a spatio-temporal approach in tactile 

sensing. Hosoda and colleagues developed a soft fingertip with randomly distributed strain gauges and 

PVDF films at different depths [23], allowing for discrimination of five different types of materials. 

Other recent biomimetic fingertips focused on the transduction properties, which could be either 

acoustic [24] or electrical [25], of the packaging materials for converting the surface features of the 

explored textures into recorded vibrations. Finally, one of the most recent developments is represented 

by a high-resolution thin film sensor built by Maheshwari and Saraf [26] by means of a layer-by-layer 

self-assembly technique, that responds to an applied force either with electroluminescent emissions or 

with a change in current density. A charge-coupled device (CCD) camera was used to capture the 

electroluminescent emissions from the sensor providing imaging stress distribution with spatial 

resolution of about 40 µm. 

In this work, the investigated artificial tactile sensor integrates a MEMS array having a number of 

sensing elements (16 channels in about 20 mm2, i.e. 0.8 channels/mm2) similar to the innervation 

density of Slowly Adapting type 1 (SA1) mechanoreceptors in the hand (about 1 unit/mm2) [27]. The 

technological approach is based on a 3D MEMS core unit [28] with a soft and compliant packaging. 

As previously demonstrated, the microsensor can be integrated with a packaging architecture resulting 

in a robust and compliant tactile sensor for application in artificial hands, while sensitive enough to 

detect slip events, showing that silicon based tactile sensors can go beyond laboratory practice [29]. 

In the long term, the presented artificial approach aims, on one side, at developing a device capable 

of mimicking the texture discrimination properties of the human hand and which can be integrated in 

an anthropomorphic artificial hand, while on the other it is intended as an artificial model to be used as 

a test bench for neuroscientific hypotheses describing the mechanisms of roughness perception. This 

long term objective gets inspiration from the above mentioned work of Yoshioka and colleagues [13], 

in which it was shown that spatial variation in the firing rates of SA1 units-only can account for 

roughness perception even when the explored texture is finer than the SA1 innervation density. 

In order to go in such direction, the specific objective of the current work was to gather the 

vibrations which are supposed to be the basis for the encoding of roughness in dynamic touch, as well 

as to perform static imaging of the contact with the same array of tactile sensors. The present 

experimental analysis evaluates whether there is a substantial processing advantage in using more than 

one output of the array for finding out the common principal frequency produced during dynamic 

stimulus presentation. This way, by merging the estimation of the common frequency detected by 

more than one sensor unit together with the knowledge of the sliding velocity of the applied stimulus, 

texture related features could be extracted. The suitability of the sensor for both static contact imaging 
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and vibration detection was evaluated by means of an experimental protocol containing both 

motionless and dynamic contact phases involving forces and velocities in the range of those used by 

humans in discriminative touch . 

The paper is organized as follows. In Section 2 the design of the sensor array is shown, describing 

the elementary MEMS unit, the packaging and the readout electronics. In Section 3 the experimental 

protocol and the used data analysis methods are presented. Section 4 shows the experimentation with 

the array prototype, which has been carried out with ridged stimuli sliding at constant velocity and 

regulated normal force after and before a static indentation phase. Finally, results are discussed in 

Section 5 and future work insights are given in the Conclusions. 

2. Materials 

2.1. MEMS Sensor Array 

The elementary cell of the array was the 3D MEMS sensor described in [28], shown in Figure 1, 

which has a high aspect ratio 3D structure (1.5 mm×1.5 mm×625 μm). In the bare configuration of the 

sensor, the cylindrical mesa, located at the center of the cross-shape tethers, transmits an externally 

applied force to the sensor inducing stresses in the four tethers where four p-type piezoresistors are 

implanted. The fractional change in resistance ΔR/R of each piezoresistor of the microsensor is 

proportional to the longitudinal and the transversal stress components, while the design of the sensor is 

such that the transversal stress component in the implanted piezoresistors is neglectable with respect to 

the longitudinal one. In the current experimentation four microsensors were bonded on a silicon carrier 

chip connecting the 9 NiAu pads of each microsensor by means of a micro-soldering paste by using 

flip-chip bonding method. As stated in the Introduction in this study attention was paid in developing 

an array with a density of sensing elements that could be compared to the innervation density of 

Slowly Adapting type 1 (SA1) mechanoreceptors in the hand (≈ 1 unit/mm2) [27]. The tactile sensor 

array, depicted in Figure 1, had 16 channels as total tactile sensor outputs. It had a pitch of 2.3 mm 

(indicated by ΔX in Figure 1) for technological reasons, i.e. mainly because of the operation room 

needed for the flip-chip bonding method and layout of the carrier chip. The resulting area of the 

sensing array was of 21.16 mm2 inscribing each MEMS unit inside a square of area 5.29 mm2. The 

silicon carrier chip was wire bonded by means of 25 µm Al wires to a Printed Circuit Board (PCB) in 

order to connect the array to the external instrumentation. The perimeter of the array was secured with 

a two component epoxy glue in order to protect the wire bonding and to improve the stability of the 

silicon carrier chip.  

The MEMS tactile array was packaged with a synthetic material (as explained in the next section) 

that mechanically filters the external applied load and creates a distribution of stresses in the new 

configuration of microsensor and packaging, with respect to the externally applied stimulus. For the 

investigation reported in the present work, the outputs of the piezoresistors (i.e. the sensing elements) 

have been analyzed directly for their dynamic behaviour, whilst they have not been used to extract the 

three components of an applied force. This avoided to address the calibration of each MEMS before 

packaging, as done with this device in [30], or after packaging as for example performed in [31] with a 

different sensor together with the introduction of an analytical model for point contact loads. 
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2.2. Packaging 

The packaging of the bare silicon sensors array was developed so that the resulting tactile sensor 

could have compliance and softness characteristics inspired to those of the human fingerpad. Previous 

investigations for the application in an anthropomorphic artificial hand were considered, in which it 

was demonstrated that it is possible to integrate the silicon microsensor in a soft and compliant, but 

robust packaging [29]. In particular, the round shape of the packaging of the array was chosen based 

on the anthropomorphic features of the distal phalanx of the cybernetic hand CyberHand [32,33].  

In parallel, a suitable curved geometry was identified in order to increase the portion of load gathered 

by the sensors in case of contact with a planar textured surface, as pointed out in [34]. As shown in 

Figure 1, the dimensioning parameters for the packaging where r0 and d, which were set to 8 mm and 

1.3 mm, respectively, for obtaining adequate sensitivity as well as partially overlapping sensing ranges 

between nearest-neighbour MEMS units and acceptable low-pass spatial filtering effect [35] with 

respect to the used stimuli. 

 

Figure 1. (a) 3D design of the tactile sensor array. (b) Top: The 2×2 MEMS array 

compared with human finger; bottom: a FIB image of the MEMS sensor. (c) Top view of 

the sensor array. (d) Schematic showing a cross section of packaging design and grating 

dimensions. Groove width gw ranged from 2.0 mm to 3.5 mm (see Table1), while ridge 

height h and ridge width rw had fixed values indicated (in mm) in figure. The phases of the 

experimental protocol are also indicated. 
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The 2×2 array was packaged with polyurethane (Poly 74-40, PolyTek, USA) and an outer thin 

protective layer of polyimide having thickness of 0.05 mm and shore A 82 hardness (ST1882, Stevens 

Urethanes, USA) in order to prevent the inner packaging from wearing. In fact, preliminary trials 

demonstrated that the ridged stimuli can damage the packaging of the array. In the present study, a 

type of polyurethane with shore A 40 hardness (instead of the previous shore A 45 [29]) was used 

attempting a step forward in human finger mimicry. Moulds hosting the array were built with rapid 

prototyping resin using a 3D printer, and the liquid part A and part B were poured immediately after 

being mixed and degassed. The polyimide layer was applied after polyurethane curing and showed 

excellent adhesion provided that the air between the cover and the thin sheet was removed. Moreover, 

the protective layer was secured by means of a frame also built in rapid prototyping resin. 

2.3. Readout Electronics 

Each piezoresistor was connected in series to a surface mount resistor (R1 … R16) located on the 

designed PCB, as shown in Figure 2(a). The values of R1 … R16 were all set to 820 Ω, which is close 

to the mean resistance of the piezoresistors of the 2×2 array, thus almost achieving sensitivity 

maximization from the quarter bridge voltage divider. The used quarter bridge topology produces a 

variation of the acquired voltage proportional to the fractional change in resistance of each 

piezoresistor. Capacitors (C1 … C16, all having capacitance of 1 µF) were placed in parallel to each 

completing resistor, resulting in a low-pass single pole filter at about 390 Hz (i.e. 

CRCRR piezopiezo 
1

)//(2

1
 ) for reducing the noise level at frequencies outside the band of interest. 

The piezoresistor-resistor arms were supplied by means of a 5V DC regulated voltage, and the node 

between each piezoresistor and the completing resistor was directly acquired without pre-amplification 

by means of a 16-channel 24-bit Analog to Digital Converter (ADS1258, Texas Instruments). Each 

channel was sampled at a frequency of 241 Hz, which could be varied via software up to 24.7 kHz 

selecting a subset of channels and changing the conversion options of the used ADC. Considering the 

chosen sampling frequency and the cut-off of the RC low-pass filter, the fulfillment of the Nyquist 

theorem for aliasing avoidance mainly relied on the expected baseband properties of the gathered 

signals (refer to Figures 4 and 5 in the following for a qualitative validation of such assumption). 

Digital data transfer between the ADC and the acquisition system was performed by means of SPI 

protocol. The data acquisition system was based on Field Programmable Gate Array (FPGA) 

technology (CycloneII, Altera) and had a 64 bit hardware timer running at 50 MHz, so that the 

acquisition of each channel had a time reference with resolution of 20 ns and practically unlimited 

length. Acquired data was buffered by a soft-core processor (NiosII, Altera) instantiated onboard the 

FPGA and transmitted at the end of each session to a Personal Computer with JTAG UART protocol, 

as shown in Figure 2(b). The storage of data was allowed within the Nios II Integrated Development 

Environment by enabling the option “Filing System to open files on the PC” in the Altera Host Based 

File System. 
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Figure 2. Schematic view of the readout electronics (a). Block diagram of the overall 

experimental setup (b). 

 
(a) 

 
(b) 

3. Methods 

3.1. Experimental Protocol 

The packaged array was mounted on a mechatronic tactile stimulator capable of indenting the 

sensor with force feedback control and stroking a stimulus over it with precise position control. The 

configuration of the array/stimulus interface and the experimental protocol are reported in Figure 1(d) 

while Figure 2(b) shows a diagram of the overall experimental set-up. 

Four types of stimuli were built with rapid prototyping resin material, with spatial periods Δp 

varying from a minimum of 2.6 mm to a maximum of 4.1 mm, as detailed in Table 1. 
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In order to evaluate whether the sensor outputs could be processed for automatically recognizing the 

instant of contact, data acquisition started prior to the phase during which the stimulus contacted the 

sensor array (phase A). In a second phase of the experiment, the stimulator was commanded to contact 

the tactile sensor (phase B). The sensor array was loaded setting at 1 N the reference of the normal 

force feedback controller given that such value is in the middle of the force range used by humans in 

fine forms discrimination during active dynamic touch experience [36]. 

The loading resulted in a contact spike in the signals gathered from the MEMS array. The target 

force level was held for 1 s. After that, the sliding of stimulus started (phase C) along the x-axis 

[piezo1-piezo3 direction of Figure 1(b)] while maintaining enabled the force feedback controller, thus 

obtaining a stimulation with normal force held at 1 N and tangential force depending on the contact 

mechanics and on the motion dynamics. 

Three different translational velocities (15 mm/s, 30 mm/s and 48 mm/s) of the stimulus were 

chosen for overlapping with the range commonly used in related neurophysiologic studies [37]. The 

direction of motion (along the x-axis as shown in Figure 1) was always the same, as well as the sign of 

velocity and the starting absolute position. The sliding was applied for 60 mm, providing dynamic 

stimulations of 4 s, 2 s or 1.25 s depending on the applied velocity. At the end of the sliding motion 

there was a steady state of 1 s at 1 N (phase D) and, finally, the tactile sensor array was unloaded 

(phase E). The initial and final static phases of the protocol were performed with repeatable conditions 

in order to enable analyses on static imaging capabilities of the sensor in addition to the dynamic 

behaviour investigation. 

3.2. Common Frequency Detection 

Preprocessing 

During the sliding of the periodic ridged stimulus over the packaged sensor array (phase C; see 

Figure 1), the output signal mi,j from the i-th piezoresistor of the j-th MEMS unit of the 2×2 array 

clearly showed a principal frequency component f, while the contact and the unloading operations 

could be revealed by the first spike and the last step in the outputs, as shown in Figure 3. 

Defining as v  the sliding velocity of the grating, the relationship reported in Equation (1) is 

expected for f. 

Referring to Figure 1 (d) and Table 1, the spatial period Δpk of the of the k-th grating is given by the 
sum of the groove width and of the ridge width, thus: kkk rwgwp  . 

 

Table 1. Grating groove width (gw) and spatial period (Δp) with respect to the sample 

type. Ridge width (rw) was fixed to 0.6 mm for all types. 

Grating number 1 2 3 4 

gw (mm) 2.0 2.5 3.0 3.5 

Δp (mm) 2.6 3.1 3.6 4.1 

In order to be able to detect the common frequency between all the fitting curves of the output 

signals, attention was paid in respecting the Nyquist condition for the sampling frequency (
2
Cff  ) 
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with a safety factor, such that at least 13 samples per period were guaranteed even in the worst case 
stimulation conditions (i.e. minimum grating periodicity kp  and maximum speed of the stimulus, as 

shown in Table 2). 

 

Table 2. Expected principal frequency from sensor outputs depending on the spatial 

periodicity (Δp) and on the sliding velocity (v) of the applied grating. 

Expected 

frequency vs. Δp 

and v 

Δp = 4.1 mm Δp = 3.6 mm Δp = 3.1 mm Δp = 2.6 mm 

v = 15 mm/s 3.66 Hz 4.17 Hz 4.84 Hz 5.77 Hz 

v = 30 mm/s 7.32 Hz 8.33 Hz 9.68 Hz 11.54 Hz 

v = 48 mm/s 
11.71 Hz (not 

tested) 

13.33 Hz (not 

tested) 
15.48 Hz 18.46 Hz 

 

To ensure data quality, a simple procedure was implemented to remove prior to processing data that 

was not useful for the dynamic analysis of the recorded signals. The redundancy in the system was 

used by jointly observing the outputs of two piezoresistors from different MEMS sensors. Since the 

contact spike mentioned in Section 3.1 was less pronounced for some piezoresistors than for others, the 

best defined spike was extracted from either one of the two time series. 

To this end: 

      initjiinitji
j

ttmmedianttms  ,,maxmaxarg  
(2) 

selects the sensor s whose data was used for initial spike detection. Here, tinit = 0.8s is a time threshold 

before which the spike is expected to appear. The location of the spike tspike is then detected by: 

  tmt si
t

spike ,maxarg  (3) 

and used for both time series. According to the measurement protocol, the movement starts at t = 1.0s 

after the spike, and ends after 60mm of stimulus have been traversed. The effective sample length was 

set to Leff = 55mm for pre-processing operations, in order to avoid introducing invalid data in case of 

inherent timing variations. The start and the end of the valid range thus were: 

ttt spikestart   (4)

v

L
tt eff

startend 
 (5)

with ν denoting the sliding velocity of the grating. 

Ten different combinations of sliding velocity and grating periodicity were formed, as detailed in 

Section 4, Table 3. Four measurement runs of the sensor array were carried out for each combination, 

yielding a total of 40 runs. In the following, these data series are referred by number, with run 1 to 4 

belonging to combination one, run 5 to 8 to combination 2 and so forth. Figure 3 shows typical outputs 

of the procedure, which performed flawlessly on all 40 data sets. 
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Figure 3. Automatic contact detection applying Equations (2) and (3) and selection of the 

stimulus sliding phase (phase C, indicated in green in the plots) by means of Equations (4) 

and (5) using piezoresistor 1 of MEMS sensors 1 and 2 of the array. The plots refer to data 

series 12 (a) and 16 (b), where a grating of 4.1 mm spatial periodicity was applied with 

translational speeds of 15 mm/s and 30 mm/s, respectively, according to Tables 2 and 3. 

The red line marks the detected spike, blue data are cropped for common frequency 

analysis. 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

An optional pre-processing step consisted in chopping the time series into time windows of size w. 

In most practical applications with gradually or abruptly changing surface characteristics, a trade-off 

will have to be found between the response delay given by the finite window size, and the accuracy of 

retrieval. Here this is investigated with non-overlapping windows to minimize redundancy, while in 

practice one could probably use strongly overlapping windows and thus higher update rates, if enough 

computation power is available. 
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Fast Fourier Transform 

The most important prerequisite for advanced use of the developed sensor array was to establish a 

robust retrieval procedure for the fundamental spatio-temporal frequency of the system. As a first step, 

the two selected piezoresistors voltage time series underwent a Fast Fourier Transform (FFT) 

separately, to find a first guess for the fundamental frequency f, namely at the maximum of the 

periodogram. Note that by selecting the maximum peak as the fundamental frequency using naïve 

Fourier analysis, a discretization error of up to: 

wN

f
f C

2

1

2

1

2

1
  (6) 

occurred, where fC = 241 Hz was the channel sampling frequency and N the number of data points in 

the time window. The first guess magnitude of the fundamental oscillation was also difficult to read 

from the spectrum, because it would have to include contributions from the slopes surrounding the 

central peak. The solutions implemented in the following overcame this inconvenience. While it would 

certainly improve accuracy to average the contributions surrounding the fundamental frequency peak 

and/or to take into account overtones that often can be seen in the spectra, this procedure would 

involve several heuristic decisions about thresholds and boundaries. 

Least squares fitting 

In order to overcome to the discretization problem mentioned above, during dynamic stimulation 

each sensor output was fitted with a sine wave by using Equation (7): 

  jijijiji ttfABm ,,,, 2sin    (7) 

where: 

 jim ,  is the signal obtained from the i-th piezoresistor of the j-th MEMS unit of the 2×2 array; 

 jiB ,  and jiA ,  are the offset and the amplitude of the sine waves used for fitting each jim , ; 

 jit , is an offset time which well fits the sine waves with data acquired during the exploration 

phase; 
 f  is the common principal frequency coming out from the output signals using the analysis 

described below; observe that f is expected to be the same for all the outputs of the sensor array. 

Therefore, a simpler second step was chosen, where a function of the form: 

 )(2sin),,,,( ,,,,,, jijijijijiji ttfABtBAfth  
 (8) 

was defined to be fitted to each channel’s time domain data (see also Equation (7)). This was done by 

performing a gradient descent on the error function (considering piezoresistor 1 of MEMS sensors 1 

and 2) overall the runs of a same combination of grating and velocity: 

     
k

kkkk tmtBAfthtmtBAfthE 2
2,12,12,12,1

2
1,11,11,11,1 )(),,,,()(),,,,(  (9) 

with k running over all data points in the chosen time window, tk the sampling instants and mi,j(tk) the 

signal obtained from piezoresistor i of unit j of the array. Thus there were seven fitting parameters: 
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A1,1, A1,2, B1,1, B1,2, t1,1, t1,2, and f. The purpose of this procedure was to both remove the discretization 

errors of the FFT, and introduce a priori information, because all the sensors were dragged over the 

same physical surface at the same speed, and then the same fundamental frequency was expected. It is 

possible to extend this method to include all valid piezoresistor readings from all sensors, if additional 

accuracy is required. To test this retrieval procedure, data from all measurement series was processed, 

averaging over the four measurements of each configuration of grating width and velocity. The data 

window width w was varied from 0.2 s to 1.0 s. For each w, the start of the time window was stepped 

through from tstart to tend-w in steps of 50 ms. 

3.3. Error Parameters and Repeatability 

The RMS error between the estimated frequency and the nominal one was used as a quality index 

for comparing the FFT results with the fitting procedure described above, i.e.: 

  



qn

alnoestimatedmethod Cfqnf
qn

wC
,

2
min )(),(

1
),(  (10) 

where the subscript method may be FFT or LSq depending on the usage of Naïve Fourier analysis or 

time domain least squares fit, respectively, for estimating the principal frequency. Moreover, n loops 

over all time windows in a measurement run, and q over all four runs belonging to parameter 

combination C and window size w. Also, a relative error parameter was used by dividing the RMS 

error of Equation (10) by the nominal frequency fnominal(C) and expressing the result as a percentage. 

Repeatability was checked by pairwise cross-correlation of the measurement timeseries of 

piezoresistor i of MEMS unit j during the stimulus sliding phase (cf. Figure 3) of the four runs sharing 

one parameter combination C, and averaging the results. Hence, with l and p denoting two of those 

four runs:  

 
  






















 






pl

t

tt pji

pjipji

lji

ljilji
ji

ka

a

mtmmtm

k
Cr

,,

,,,,

,,

,,,,
,

)()(

1

1

12

1
)(


 (11) 

is the average Pearson cross-correlation coefficient. Measurements m had to be shifted by up to half a 

cycle relative to each other to account for phase differences due to the lack of synchronization between 

the starting of data saving and the starting of stimulation between different runs. Therefore, the inner 

sum runs over the remaining overlap region ta to ta+k, for which the mean signal m  and the standard 

deviation σ are calculated. 

4. Experimental Results 

This Section reports the experimental results obtained indenting and sliding the used ridged stimuli 

according to the parameters given in Table 2. The first part reports the preliminary naïve Fourier 

analysis which was performed in the process for establishing a robust retrieval procedure for the 

principal frequency induced by the grating spatial periodicity and sliding speed. Those preliminary 

results, as expected, were affected by considerable and oscillatory discretization errors depending on 

the chosen observation window. The second part shows the results with the proposed least squares 
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fitting procedure, which guaranteed very high accuracy and quite fast error convergence increasing the 

observation window. Furthermore, the results with the least squares fitting are compared with the Fast 

Fourier Transform ones. Qualitative and quantitative evidence of data repeatability is given in the third 

part. Finally, the last subsection concerns results on the static imaging capabilities as another major 

feature of the designed sensor.  

Fast Fourier Transform 

The preliminary naïve Fourier analysis showed a considerable discretization error, according to 

Equation (6). This error can be quite significant for small windows, since the fundamental frequencies 

considered lie in the order of 1 to 10 Hz in this experiment. Figure 4 shows a typical Fourier analysis 

covering the full range of a sliding measurement (phase C, depicted in Figure 1). As a rather extreme 

example, the results using FFT with a 0.35 s time window analysis can be seen in Figure 5. 

 

Figure 4. Naïve Fourier analysis (lower plot) over the full length of a typical dataset 

considering a single channel of a sensor unit of the array (upper plot). The maximum 

Fourier peak is selected as a frequency estimate, which leads to a discretization error of  

up to half a bar width (cf. Equation (6)) if the true frequency happens to lie in between two 

bars. 

 

 

Figure 5. As Figure 4, but for a different data series and a narrower window of 0.35 s, 

showing higher discretization error with naïve Fourier analysis. 
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Least Squares Fitting 

Figure 6 shows a graphical representation of the fitting procedure using the maximum allowed time 

window for the considered run. Such figure clearly shows the retrieval of the principal frequency 

coming out from the used combination of stimulation parameters. The frequency estimate errors, 

defined in Section 3.3 for comparing the FFT results with the fitting procedure described at the end of 

Section 3.2, are shown in Figure 7 and Table 3. Results from all windows and experiments were 

averaged for each point in the graphs. 

 

Figure 6. Result of the least squares fitting procedure considering piezoresistor 1 of 

MEMS sensor 1 (blue line) and piezoresistor 1 of MEMS sensor 2 (red line, shifted for 

easing the graphical representation) with a maximum width time window. The plot refers 

to data series 20, where a grating of 3.1 mm spatial periodicity was applied with 

translational speed of 15 mm/s, according to Tables 2 and 3. 

 
 

Table 3. Average RMS errors obtained by FFT (εFFT) and least square fit estimation (εLSq) 

using the full data range. The top row indicates the expected frequency, fnominal , depending 

on the measurement run. The combination C of spatial period ∆p and velocity v associated 

to each measurement run is also indicated. 

Measurement run 
1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40 

fnominal 

[Hz] 
4.17 8.33 3.66 7.32 4.84 9.68 15.48 5.77 11.54 18.46 

C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

∆p 

[mm] 
3.6 3.6 4.1 4.1 3.1 3.1 3.1 2.6 2.6 2.6 

v 

[mm/s] 
15 30 15 30 15 30 48 15 30 48 

piezo1,1 vs. piezo2,1 

εFFT 0.072 0.135 0.113 0.182 0.078 0.168 0.286 0.033 0.053 0.063 

[%] 1.72 1.62 3.1 2.49 1.62 1.73 1.85 0.57 0.46 0.34 

εLSq 0.038 0.105 0.027 0.058 0.052 0.123 0.257 0.053 0.124 0.272 

[%] 0.91 1.26 0.73 0.79 1.08 1.27 1.66 0.93 1.07 1.47 
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Table 3. Cont. 

piezo4,1 vs. piezo2,1 

εFFT 0.072 0.135 0.1 0.152 0.075 0.165 0.257 0.036 0.059 0.189 

[%] 1.72 1.61 2.74 2.08 1.56 1.7 1.66 0.62 0.52 1.03 

εLSq 0.04 0.127 0.029 0.063 0.06 0.126 0.262 0.055 0.123 0.266 

[%] 0.97 1.52 0.,78 0.87 1.24 1.31 1.69 0.95 1.07 1.44 

 

Figure 7. Frequency estimation errors per combination of grating and velocity, averaged 

over all experiments and window positions, versus the width of the observation window. 

Errors for fFFT (blue line) refer to the initial guess obtained through naïve Fourier analysis, 

while the ones for fLSq (green line) are related to the estimates gained by the minimization 

of Equation (9). 

 
 

As expected, errors in the initial guess fFFT ranged from about 
w2

1
 
to almost zero, as the pattern of 

FFT-frequencies moved over the nominal frequency for each setup. However, the second estimation 

step using the least squares fit was very stable and converged for almost all windows larger than 0.4s. 

Using the entire available time series for each experiment, about 1.5s to 5s, leaded to the average 

errors shown in Table 3. To check consistency, results using piezoresistor 1 from MEMS sensors 1 and 

2 in Equation (9) were compared to those using piezoresistor 1 from MEMS sensors 2 and 4. The 

errors obtained seem to agree very well, as shown in Table 3. 
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Repeatability 

Figure 8 shows plots of the same channels within different runs having the same experimental 

conditions. Moreover, the cross-correlation coefficients defined in Section 3.3 confirmed a high degree 

of repeatability within one set of parameters C.  

 

Figure 8. Time plot of the readings from piezoresistor 1 of MEMS sensors 1 and 2 of the 

array. The plots refer to data series 6 (a) and 7 (b), where a grating of 3.6 mm spatial 

periodicity was applied with translational speed of 30 mm/s, according to Tables 2 and 3. It 

is noticeable to observe the high repeatability, as well as the similarity with Figure 9(a), 

which only differs for the stimulus translational speed and thus results in an expansion of 

the time scale during phase C. 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

As an example, for piezoresistor 1 of MEMS sensor 1 the average Pearson correlation coefficients 

ranged from 0.87 to 0.97, while for piezoresistor 1 of MEMS sensor 2 their values went from 0.80 to 

0.89 depending on the chosen parameters combination C. Moreover, all the coefficients for the 
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channels close to the leading edge (e.g. MEMS sensor 1) of the stimulus during the sliding motion 

(phase C) were always higher than the ones for the channels at the falling edge (e.g. MEMS sensor 2) 

of the stimulus; this phenomenon is discussed in Section 5. The frequency modulation due to the 

variation of the stimulus can be appreciated in Figure 9, while a comparison between Figure 8 and 

Figure 9(a) points out the effect of stimulus velocity variation. 

 

Figure 9. Time plot of the readings from piezoresistor 1 of MEMS sensors 1 and 2 of the 

array. The plots refer to data series 1 (a) and 31 (b), where gratings of 3.6 mm and 2.6 mm 

spatial periodicity were applied with translational speed of 15 mm/s, respectively, 

according to Tables 2 and 3. The frequency modulation due to the variation of the stimulus 

can be easily appreciated. The steps corresponding to the loading and unloading of the 

stimulus (phases A-B and D-E) may be more or less evident in a specific unit of the array 

depending on whether the ridge of the stimulus falls under a sensor unit or not, showing the 

static imaging potentiality of the tactile sensor array. 
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Static Imaging 

In parallel to the analysis of the frequency shift due to the variation of dynamic stimulation 

conditions, another major experimental result concerned the static imaging capabilities of the 

developed tactile sensor array. This further outcome was possible by choosing a proper experimental 

protocol, which included static phases in the initial and final parts of stimulation with repeatable 

conditions overall the runs. Figures 3, 8 and 9 show such results. 

5. Discussion 

The experimental results shown for dynamic artificial touch with medium-coarse periodic gratings 

demonstrated the perfect coherence between the principal frequency commonly revealed by the 

packaged MEMS sensor units and the expected one, as shown in Table 3 and Figure 7, as well as the 

consistency between the surface geometry and the static image of the stimulus-sensor interface. 

Looking at the background of neurophysiological and psychophysical touch studies briefly reported 

in the Introduction, the technological and the signal processing outcomes of this work may be 

classified as a successful preliminary attempt to artificially achieve roughness encoding in case of 

medium-coarse patterning, i.e. a deterministic link (see Table 3) was obtained between the “spatial 

coarseness” of the presented stimuli and the features extracted from the sensor outputs. 

These results pointed out the better processing quality guaranteed by using structured information 

from different units of a tactile sensor array instead of naïve Fourier analysis separately on each 

channel, overcoming frequency discretization limitations. These limitations are shown in Figures 4 and 

5, which differ both in the time window length used for FFT and in the grating periodicity. The latter is 

the reason for the 1.4 Hz difference between the nominal frequencies, which could not be detected 

with FFT due to the low resolution of the FFT in the relevant frequency range (width of bars ~0.5 Hz 

in Figure 4 vs. ~2.5 Hz in Figure 5). As a consequence, using the naïve FFT approach to retrieve the 

frequency in a 0.35 s time window for both data series, would result in the two gratings being not 

distinguished, as shown in the respective plots of Figure 7. On the contrary, with the least squares 

fitting procedure the separation was well feasible, and the common frequency expected when indenting 

and sliding at constant speed periodic ridged surfaces across an array of sensors was accurately 

estimated. The technological approach together with the proposed frequency estimation method 

guaranteed an error from 1.7% down to 0.5% over the range of spatial frequencies considered, 

independently of the combination of MEMS sensor units used (see Table 3). Moreover, as shown in 

Figure 7, limiting the evaluation to fixed size time windows reduced the accuracy somewhat, but the 

method stayed stable down to 0.4 s window size, making it potentially suitable for most near real-time 

settings. The applied method revealed to be robust even if, in addition to the observable principal 

frequency shift associated to the combination of the used grating and stimulus sliding velocity, the 

signal power had overtones (the first three or four harmonics of the fundamental frequency) introduced 

by both the non-linear packaging and the sharp edges of the periodic ridged surfaces. On the contrary, 

the fitting based on Fourier analysis resulted in an oscillatory behavior of the error respect to the 

observation window length. Further stability and precision with the gradient descent fitting method 
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could be gained by taking into account all four MEMS sensors and tuning the sampling rate according 

to the target application.  

As depicted in Figure 8 and confirmed by the calculated average Pearson cross-correlation 

coefficients, the gathered data had high repeatability across different runs of the same experimental 

conditions. Furthermore, as seen in Figure 8 already, MEMS sensor 1 produced higher voltage 

amplitudes, leading to a better Signal-to-Noise (S/N) ratio, which in turn caused the higher correlation 

between runs with respect to MEMS sensor 2. This effect may be associated to the shape of the 

compliant packaging, which could induce higher stresses in piezoresistors of the sensor unit located at 

the leading edge. Reversing the scan direction (not shown) exchanged the roles of MEMS sensors 1 

and 2 in this regard. Moreover, it is noticeable to observe the excellent similarity between the plots 

shown in Figure 8 and the plot of Figure 9 (a). These graphs only differ for the stimulus translational 

speed and thus result in a compression in the time scale during phase C. 

The modulation of the principal frequency due to the variation of the stimulus can be appreciated in 

the time domain plots of Figure 9. Moreover, as detailed in Figure 10, couples of piezoresistors of a 

sensor unit which are located one in front to the other along the direction of motion [piezoresistors 1 

and 3 in Figure 1(b)] responded with opposite sign to the stimulus. Therefore, even with packaged 

silicon sensors and dynamic stimulations, the symmetries of the static calibration matrix observed in 

[30] for the bare MEMS sensor were still present in this work. 

 

Figure 10. Time plot showing the opposite sign of the variation of the readings from 

piezoresistors 1 and 3 of MEMS 1 during sliding. The plot refers to data series 1, where a 

grating of 3.6 mm spatial periodicity was applied with translational speed of 15 mm/s, 

according to Tables 2 and 3. 

 
Finally, as regards the consistency between the surface geometry and the static artificial touch 

representation, it is remarkable to observe the output signals variations relatively to the steps between 

phases A (starting of data acquisition) and B (sensor loading) and between phases D (steady state after 

stimulus sliding) and E (sensor unloading). Figures 3, 8 and 9 point out that the step heights varied 

between different runs depending on the used grating (but not on the velocity). This was due to the fact 



Sensors 2009, 9                            

 

3180

that a variation of the grating periodicity modified the portion of the ridge under each MEMS unit, 

being the initial and final position of the stimulus carrier always the same for all runs during phase C. 

6. Conclusions and Future Work 

The experimental analyses performed in this work demonstrated the suitability of the developed 

tactile sensor for revealing medium-coarse spatial features of the explored surface, both with dynamic 

and static stimulation. Future work will focus on performing similar experiments incorporating the 

developed technology in a bio-inspired mechatronic finger. Given that the feasibility of using a 

polyimide thin protective layer has been shown in this investigation, the actuated finger may use a 

polyimide glove (mimicking the human stratum corneum) for preventing the sensor to be worn or 

damaged by water or grit. Moreover, because of the possibility to integrate the readings from the array 

with proprioception information during active touch tasks, the combination of information regarding 

the estimated common frequency and the velocity of the finger could solve Equation (1) and provide 

quantitative measurements revealing texture properties of the explored stimuli. Investigations will also 

be performed in implementing processing strategies to separate the velocity and periodicity 

information contained in Equation (1) directly from the measurements of the array, thus avoiding the 

need to use the knowledge of the stimulus sliding velocity (in case of passive touch experiments) or 

proprioception information from an actuated finger (in case of active touch ones). Experiments will be 

performed with other stimuli, addressing not only a medium-coarse spatial periodic pattering, but also 

more general fine textures (e.g. sandpapers, gratings with oblique or aperiodic ridges or 2D patterning, 

…) and the frequency content due to the kind of material. In that case, the focus could move from 

principal frequency analysis to spectral analysis over the full frequency range, or to wavelet transform 

if the frequency content is supposed to change with respect to time and/or stimulus-sensor relative 

positioning. Moreover, the fact that the MEMS sensor is triaxial may be exploited in future work with 

stimuli having 2D patterning: in this paper, the raw sensor outputs were directly analyzed guaranteeing 

great accuracy in principal frequency retrieval without encoding the force vector at MEMS-packaging 

interface or at packaging-stimulus interface.  

These planned experiments will require some modifications to the packaging design (e.g. lower 

thickness, material with different hardness or viscosity, introduction of fingerprints, etc.) in order  

to achieve even a higher sensitivity and selectivity for each MEMS unit [31,34] and a reduction of  

the low-pass spatial filtering effect introduced by the materials embedding the sensor [35] while  

still providing robustness for application in artificial hands dexterously interacting with the 

environment [29,32]. 

Finally, future investigations will experiment with artificial tactile sensors the unified paradigm 

proposed by Yoshioka and colleagues [13] for the perception of fine and coarse textured surfaces, in 

order to go towards a common theory for human and robot mediated coding and decoding of tactile 

stimuli. 
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