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Abstract: Bacteriophage T4 nanoparticles possess characteristics that make them ideal 
candidates as materials for sensors, particularly as sensor probes. Their surface can be 
modified, either through genetic engineering or direct chemical conjugation to display 
functional moieties such as antibodies or other proteins to recognize a specific target. 
However, in order for T4 nanoparticles to be utilized as a sensor probe, it is necessary to 
understand and control the variables that determine their assembly and organization on a 
surface. The aim of this work is to discuss some of variables that we have identified as 
influencing the behavior of T4 nanoparticles on surfaces. The effect of pH, ionic strength, 
substrate characteristics, nanoparticle concentration and charge was addressed qualitatively 
using atomic force microscopy (AFM). 
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1. Introduction  
 
Recently, the use of plant and bacterial viruses (bacteriophages) as constitutive elements of 

diagnostic systems and devices has gained interest due to their wide range of sizes and shapes, their 
robustness and, the possibility to tailor their surface with functional moieties. This last feature can be 
attained through genetic engineering (display systems) or direct chemical conjugation on wild type or 
engineered viruses [1-7]. In sensor applications, viruses have been used as biorecognition elements in 
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surface plasmon resonance (SPR) [8-9], quartz crystal microbalance (QCM) [10],  
magnetoeleastic [11-13], and CMOS [14] sensors, among others. The selectivity is provided either by 
the viruses inherent recognition properties against certain bacteria or, by engineering their surface to 
express moieties for specific recognition against a target. Detection of B. Anthracis spores [12], 
Salmonella typhimurium [11], E. coli [14-16], Staphylococus aureus [9] and β-galactosidase from E. 
coli [8,10] has been demonstrated.  

Among the broad range of plant and bacterial viruses that have been investigated, the interest in the 
use phages and particularly bacteriophage T4 as a nano-material, has recently increased, due to its 
flexible, unrestricted display system [3,17-18]. In comparison, plant viruses such as the Cowpea 
Mosaic Virus (CPMV), are not suitable for use as display systems. Site directed mutagenesis can be 
done to express small peptides on a specific number of sites onto which a moiety can be conjugated. 
This limits their use as templates for chemical conjugation and even if used as biorecognition elements 
in sensors, the restricted number of moieties would significantly reduce the sensitivity. In other phage 
display systems such as the M13, phage lambda and bacteriophage T3, among others, the display of 
long peptides is restricted since it affects the assembly of the phage and hence its biological 
properties [3]. The basic makeup of bacteriophage T4 is a capsid which contains densely packed DNA 
and a tail with specialized structures (fibers) used to anchor onto the cell surface of E.coli and inject 
the DNA during infection. For material and sensor applications, non-infectious T4 nanoparticles, 
consisting only of the capsid, or the capsid and the whiskers, can be synthesized by deletion of the tail 
through genetic engineering. This deletion can be accompanied with surface engineering to express 
capture moieties specific for a particular target leading to functional T4 nanoparticles for use as 
biorecognition elements in sensor devices. Figure 1 shows a schematic representation of this concept. 

 
Figure 1. Schematic representation of A) bacteriophage T4 with all its native structures 
(capsid, tail, whiskers and tail fibers) and B) the non-infectious functional T4 nanoparticle 
decorated with a capture moiety resulting from genetic engineering of the wild type 
bacteriophage T4. 

Although, the use of T4 nanoparticles in biotechnology has been proposed and demonstrated for 
applications such as diagnostic imaging, vaccine development and detection of targets in liquid 
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phase [3,4,17,19], only the whole bacteriophage T4 (capsid and tail structure–Figure 1A) has been 
demonstrated as constituent of a CMOS based sensor for detection of E. coli [14]. For this purpose, the 
bacteriophage T4 was positioned on a dielectric layer, presumably with the tail structure facing 
outwards, in order to anchor onto the membrane of E. coli. To the best of our knowledge, there is no 
previous report on any attempt to use T4 nanoparticles as probes on any type of detection system. For 
T4 nanoparticles to be used as biorecognition elements in sensors it is necessary to control their 
assembly on a surface. In order to take advantage of the whole surface area of the capsid and hence, 
increase the sensitivity of the sensor, it would be highly desirable to have a one dimensional layer of 
functional T4 nanoparticles arranged in close proximity to each other, in a similar fashion as a mosaic. 
This concept is schematically shown in Figure 2. 

 
Figure 2. Schematic representation of a sensor surface which utilizes functional T4 
nanoparticles as biorecognition elements. The detection of the target could be done through 
optical or electrical transduction. 

 
 

The assembly of viral particles on surfaces has been investigated in detail for the well characterized 
Cowpea Mosaic Virus (CPMV) and the results obtained demonstrate that assembly is dominated by a 
different set of factors than those observed in small molecule epitaxial systems [20]. Although these 
results are of great value, they may not have a direct correlation with T4 nanoparticles, given the many 
differences in their shape, size and protein distribution. Based on these characteristics, and the 
differences in the overall surface charge profile, it is likely that the behavior of T4 nanoparticles differ 
significantly from that of CPMV. Up to the present time there has been no assessment, experimental or 
theoretical, of the variables involved in the assembly and organization of T4 capsids on surfaces.  

In considering the results presented here it is important to keep in mind that, from our perspective, 
for sensor development applications, ideal conditions are those that facilitate the distribution of the T4 
nanoparticles without aggregation and with maximum surface coverage. The aim of the work 
presented here is to discuss some of the variables that we have identified as influencing the behavior of 
T4 nanoparticles on surfaces. For this purpose, the effect of pH, ionic strength, substrate characteristics, 
nanoparticle concentration and charge was addressed qualitatively using atomic force microscopy 
(AFM). The questions that rise are, first, which if any of the variables under study dominates over the 
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assembly and organization of the T4 nanoparticles on a surface, and second, are these only variables 
involved in the organization and self-assembly of the T4 nanoparticles. The results presented in this 
work will provide insight into the variables that are likely to affect the behavior of T4 nanoparticles as 
a material, although it will not give a definite answer these questions. 
 
2. Results and Discussion  

 
The effect of buffer pH, ionic strength, T4 nanoparticle concentration and substrate characteristics 

on the assembly and organization of T4 nanoparticles was evaluated using atomic force microscopy 
(AFM). During these experiments we determined that media with high ionic strength (above 
or 100 mM), particularly the presence of excessive sulfate and sodium chloride, which result from the 
purification process, produced aggregation of the heads when used for permanent storage. Dilution of 
the stock solutions in salt free buffers followed by sonication did not alleviate the problem. However, 
we found that the use of 10 mM Tris-HCl was suitable in minimizing aggregation and for this purpose 
the rest of the characterization was performed using Tris-HCl based buffers.  
 
2.1. Effect of the Media pH and Surface Charge on T4 Nanoparticle Aggregation and Surface 
Coverage 

 
The selection of an aminosilanized substrate and the conditions for their preparation was based on 

the notion of providing a surface that would remain with a fixed charge within the range of pH tested. 
This would enable us to investigate the influence of the pH on the T4 nanoparticle by itself. It is worth 
mentioning that, at the present time the protein structure of the capsid has not been resolved and 
therefore it is difficult to determine the number of primary amines and carboxyl groups present. Also, 
the isoelectric point (pKa) of the T4 capsid as a single unit has not been determined and its charge at a 
given pH cannot be predicted. However, previous studies have determined the pKa value for the major 
head protein components and other structures and the results demonstrate a range between 6.2 and 4.8 
for the capsid proteins that were investigated [21,22]. Based on these results and the fact that the whole 
bacteriophage (capsid, tail and fibers) has an isoelectric point close to 4, we would expect that the 
capsid acquire a negative charge above this pH, however it is not possible to determine the exact 
distribution of positive and negative charges on the capsid. Figure 3 shows atomic force microscopy 
(AFM) topographical images of T4 nanoparticles deposited on aminosilanized glass using 10 mM 
Tris-HCl at different pH. 

From Figure 3, it can be seen that aggregation and surface coverage increases with a decrease in the 
buffer pH. We believe that the aggregation at low pH is due to a change in the overall charge balance 
on the capsid as a result of protonation and/or deprotonation of the various functional groups, mainly 
primary amines and carboxyl, which facilitates interactions among the nanoparticles. As mentioned 
before, from these results, the exact distribution of the charges and/or the orientation of the capsids 
with respect to each other in the aggregate cannot be determined. This is a complex scenario and 
interactions other than pure electrostatic ones might be influencing the capsid aggregation. PH 
dependent aggregation has been observed in other viruses, interestingly aggregates formed at low pH 
as well in structurally similar bacteriophages (bacteriophage T2) [23]. To test whether this effect was 
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reversible we dialyzed a T4 nanoparticle solution in 10 mM Tris-HCl at pH 5.6 against the 
corresponding buffer at pH 8.8 for 12 hrs at room temperature. We found that the degree of 
aggregation was reduced which is consistent with the results observed previously [23].  

 
Figure 3. Atomic force microscopy (AFM) topographical images of T4 nanoparticles 
deposited on aminosilanized glass. In each case a 1:50 dilution from the stock solution was 
made in 10 mM Tris-HCl at pH a) 5.6, b) 7.5 and c) 8.8. 

 
To understand the dependence of the surface coverage with the pH it is necessary to consider the 

charge of the primary amines on the aminosilanized substrate as well as on the amino acid residues on 
the capsid at a given pH. The pKa of the primary amines is ~9 and therefore they will likely bear a 
positive charge at pH below 9. On the other hand, the pKa of the carboxyl groups is ~2 and therefore 
they will likely bear a negative charge at pH above 2. All three conditions presented in Figure 3 favor 
a positive charge on the aminosilanized substrate (pH below 9) suggesting that the variation on the 
surface coverage is driven by a change in the electrostatic interactions between the T4 nanoparticles 
and the surface. For instance, at pH 5.6 the increase in the surface coverage may indicate that the T4 
nanoparticle aggregates behave as negatively charged entities favoring their electrostatic attraction 
with the strongly positively charged amine surface. This is in accordance with the expectation of the 
pKa value based on the capsid proteins component and the whole bacteriophage mentioned previously 
(~4). Conversely, at pH 8.8 the amine surface is only slightly positively charged and the electrostatic 
interactions between the T4 nanoparticles and the surface become weaker. This same principle can be 
used to explain the change in T4 nanoparticle aggregation with pH. At pH 5.6 and 7.5, where the 
carboxyl groups are negatively charged and the amine groups are positively charged the agglomeration 
might be driven by electrostatic attraction between the carboxyl and amines among neighboring 
nanoparticles. As the pH is increased to 8.8 amines on the T4 nanoparticle are only slightly charged 
and the interactions between amine and carboxyl groups are minimized hence reducing agglomeration.  
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In order to further investigate how the surface charge influences the surface coverage we performed 
experiments using bare (clean) glass, aminosilanized glass and freshly cleaved mica. We used a 
slightly higher concentration of the T4 nanoparticles (1:10 dilution) in 10 mM Tris-HCl buffer at pH 
8.8 in order to determine if there was any further enhancement in the surface coverage. The results are 
presented in Figures 4 a-c, respectively.  

 
Figure 4. Atomic force microscopy (AFM) topographical images of T4 nanoparticles 
deposited at a 1:10 dilution in 10 mM Tris-HCl at pH 8.8 on a) bare (clean) glass, b) 
aminosilanized glass and c) freshly cleaved mica. 

 
Comparison among the two glass substrates shows a higher surface coverage for the aminosilanized 

glass than for bare (clean) substrate. As mentioned before, the pKa of the primary amines is ~9, and 
even though there is less positive charge at pH 8.8 there is still some adsorption of particles on the 
surface. On the other hand, the pKa of the hydroxyl groups of the bare (clean) glass is 4 and therefore 
they will likely bear a negative charge at pH 8.8. Based on the pH dependence experiments presented 
in the previous section, we expected that at this pH the T4 nanoparticles were likely to behave as 
negatively charged entities and therefore electrostatic repulsion between the glass surface and the 
nanoparticles will occur. It is worth to emphasize that the fact that there is some surface coverage, 
even on the negatively charged surface, suggests that the adsorption of the T4 nanoparticles might not 
be purely electrostatic but rather a combination of various types of interactions. As with the bare (clean) 
glass, mica will likely be negatively charged at pH 8.8 since the pKa of the siloxy groups is 6.8. 
Interestingly, comparison between either of the glass substrates and mica shows that the later has a 
significantly better coverage than glass suggesting that in mica the electrostatic repulsion is overcome 
by other mechanisms, mainly by the presence of counterions. It is well known that counterions present 
in low ionic strength buffer, such as the one used in these experiments, facilitate the interactions 
between the mica surface and other proteins and macromolecules [24]. As a matter of fact, AFM 
imaging of negatively charged macromolecules (such as DNA) can be successfully done using 
muscovite mica since screening of the negatively charged backbone by counterions allows its 
adsorption on the substrate at neutral pH. We believe that a similar mechanism is taking place with the 
T4 nanoparticles. 

The change in the adsorptive properties of viruses as a result in the change in pH on modified 
surfaces (among them with a primary amine) has been systematically studied and has also been 
explained as a change in the ionization state of the surface and the residues of the virus capsid [25].  
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2.2. Effect of T4 Nanoparticle Concentration on Surface Coverage 
 
The effect of T4 nanoparticle concentration on the surface coverage was further investigated using 

aminosilanized substrates. The objective was to determine the effect of an increase in concentration on 
the surface coverage. Figure 5a-c show the results obtained when the concentration of T4 nanoparticles 
was varied from no dilution to a 1:50 dilution in 10 mM Tris-HCl at pH 8.8. This buffer was selected 
based on our previous experiments in order to minimize the T4 nanoparticle aggregation. Mild 
sonication for 5-10 seconds prior to the deposition on the surface was used in all the conditions to aid 
in the monodispersion of the nanoparticles.  

 
Figure 5. Atomic force microscopy (AFM) topographical images of T4 nanoparticles 
deposited on aminosilanized glass with a) no dilution, b) 1:1 dilution in 10 mM Tris-HCl at 
pH 8.8 and c) 1:50 dilution in 10 mM Tris-HCl at pH 8.8. 

 
 

Although the surface coverage increases at high concentration (Figure 5a) there is a lack of 
uniformity and the surface is characterized by alternating regions of void space and densely packed 
particles. We believe that the “disorganized” arrangement of the particles on the surface might be 
produced by non-uniform drying of the layer and is driven by similar inter-particle forces that rise 
upon solvent evaporation during the formation of films such as lateral capillary forces, flotation and 
convection forces. The drying process of water during the deposition process is related to the lateral 
transport and distribution of species across the substrate [26,27]. In a systematic study of lateral drying 
of colloidal particle films, Salamanca and co-workers demonstrated that as water evaporates, particles 
tend to form a closed packed region in which a capillary pressure is generated within the water-filled 
inter-particle void space. They suggest that uniform drying can be attained by maximizing the capillary 
force achievable thin films of large particle (>200 nm) suspensions at low evaporation rates [27]. To 
account for the possible effect of the evaporation rate on the uniformity of the layer, we performed the 
deposition within a humid environment for up to 72 hours to reduce the evaporation rate and allow 
enough time for the particles to distribute over the surface. However, we were not able to overcome 
the disorganized and non-uniform patterns observed in Figure 5a,b. These effects were ameliorated 
only when the concentration of the T4 nanoparticles was reduced (Figure 5c), suggesting that high 
concentrations favor interaction among neighboring nanoparticles that appear as agglomerates on the 
surface. It is also interesting to notice the extent of surface coverage at a large concentration even 
considering that, under these conditions (pH 8.8), the surface bears a less positive charge and, as 
explained before electrostatic interactions with the particles are minimized. At the moment, based 
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solely on these results and without any further information on the specific structure of the capsid, we 
cannot explain the aggregation and the increased surface coverage at high concentration. However, 
given the possibility that the capsid properties could be affecting the interaction with neighboring 
nanoparticles at high concentrations, we wanted to test if by changing the characteristics of the capsid 
this aggregation could be reduced. 

This was investigated by incorporating a PEG moiety onto the capsid proteins which has a twofold 
purpose: it modifies the capsid surface charge and increases its hydrophilicity. The results are 
presented and discussed in the following section. 
 
2.3. Effect of T4 Nanoparticle Capsid Properties on the Surface Assembly 

 
Aggregation of the T4 nanoparticles at high concentrations represents an important issue for sensor 

development since it affects the control over their organization and assembly as a one dimensional 
layer. Evidently, based on the results presented here and the published literature, the characteristics of 
the capsid, mainly its charge, influenced by its protein composition, is one of the determinant factors 
on the aggregation and surface coverage. In order to evaluate the feasibility to control aggregation by 
modifying the capsid surface charge, we derivatized the surface with poly(ethylene glycol) (PEG) and 
deposited the modified T4 nanoparticles in the manner previously described, onto freshly cleaved mica. 
Figure 6 shows a comparison of the AFM topographical images between the PEG-derivatized T4 
nanoparticles (Figure 6a and c) and the corresponding unmodified ones (Figure 6b,d).  

Individual nanoparticles with delimiting borders can be identified in Figures 6a and 6c which 
correspond to the PEG derivatized T4 nanoparticles. It is interesting to notice the striking difference in 
size and shape, particularly evident in the low scale scanning (Figure 6a,d), between the PEG 
derivatized and the unmodified nanoparticles. From Figure 6a and 6c, it is evident that the PEG 
modification changes the interaction among particles and reduces their aggregation. Although we 
cannot explain the apparent difference in size and shape between the PEG derivatized and the 
unmodified nanoparticles solely based on these experiments, we speculate that the layer formed with 
the PEG derivatized nanoparticles could have a higher level of hydration which reduces the 
evaporation rate, helps preserve their size and shape even after drying the surface. We also believe that 
a change in the surface charge of the capsid after derivatization likely affects the electrostatic 
interactions between the capsids by reducing attractive forces. Additionally, the layer of hydration 
provided by the PEG moiety might be acting as a lubricant between the particles facilitating their 
distribution over the surface. The unmodified particles will be more susceptible to the effects of 
dehydration which leads to shrinking or collapse of the capsid. Also, the proximity to each other due to 
the high concentration of the sample might accentuate their electrostatic interactions facilitating the 
aggregation. Collapsed, aggregated capsids will certainly exhibit a different size range and shape. Just 
recently, the effect of dehydration on the structural integrity of viral capsids was characterized 
theoretically and experimentally by Carrasco and co-workers [28]. Collapse of viral capsids seems to 
be largely influenced by the forces exerted by water during the drying process. Of particular relevance 
is the formation of water menisci inside and outside the capsid that generate strong enough capillary 
forces to deform or even break the capsid. The presence of a suitable layer of hydration around the 
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capsid, such as the one provided by the PEG moiety, seems to be critical factor to preserve the capsid 
integrity and to control their organization and arrangement on the surface.  

 
Figure 6. Atomic force microscopy (AFM) topographical images of poly(ethylene glycol) 
(PEG) derivatized (a and c) and a reference unmodified T4 nanoparticles on mica (b and d). 
The same nanoparticles concentration was used in both conditions. 

 
The change in the charge of the PEG derivatized nanoparticles was further confirmed through an 

observable difference in the electrophoretic mobility between the PEG derivatized and the unmodified 
nanoparticles in an ethidium bromide stained agarose gel (data not shown). The PEG derivatized 
nanoparticles migrated further towards the anode than the unmodified ones suggesting an increase in 
their overall negative charge as a result of the reaction of the NHS-ester of the PEG with the primary 
amines on the capsid. An additional variable that has not been discussed is the possibility of the 
nanoparticles laying in a preferential orientation on the surface, either horizontally or vertically. 
Analysis of the height measurement from the topographical images on samples deposited at low 
concentration indicates that the nanoparticles are lying horizontally. The average length of single 
particles was between 100 to 120 nm while the height was ~60 nm. The difference in height with 
respect to the expected theoretical value (~90 nm) is likely the result of dehydration and partial 
collapsing of the nanoparticles as previously explained. An additional parameter that has to be 
considered when analyzing these results is the interaction of the AFM probe with the nanoparticles. 
This interaction will vary depending on the hydrophilicity of the surface. However, it is difficult to 
attribute any particular aspect of the results presented here to the nanoparticle-tip interactions without 
further and more detailed experimentation. 

From the results obtained in this study, we believe that the variables that play a significant role in 
the assembly of T4 nanoparticles are the capsid charge, which changes with the media pH, and the 
level of hydration. The protein composition of the capsid determines its charge distribution which 
changes with the media pH. Therefore modification of the capsid (by chemical conjugation) could be 
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used to tailor effects such as aggregation and surface coverage. On a solid surface, changes in the 
media pH will modify the interactions not only between the neighboring capsids, but also between the 
capsids and the surface. Manipulation of the capsid charge through change in the residue chemistry 
and/or media pH could be used as handles to tailor the conditions for optimal surface coverage and 
reduced aggregation. The level of hydration also influences the interaction between neighboring 
capsids, and therefore their assembly, by modifying the forces exerted during the drying process. 
Additionally, hydration determines the integrity and shape of the capsid. It is worth mentioning that 
the effect of hydration was not considered at the beginning of this study. However, the experiments 
performed with the PEG moiety, which were initially intended to modify the surface charge, provided 
us with this interesting finding which we believe is critical for sensor development.  
 
3. Experimental Section  

 
Reagents and solutions. All solutions were prepared with Milli-Q water. Tris-HCl buffer (10 mM) 

at pH 8.8 was purchased from Ambion (Applied Biosystems/Ambion, Austin, TX, USA). 1 M Tris-
HCl buffer at pH 7.5 was purchased from Sigma Aldrich (St. Louis, MO, USA) and diluted to 10 mM 
with Milli-Q water. Trizma hydrochloride was purchased from Sigma Aldrich to prepare 10 mM Tris-
HCl and the pH adjusted to 5.6 with 0.1 M sodium hydroxide. Sulfuric Acid, hydrogen peroxide 
(30% wt), 3-(aminopropyl)triethoxysilane (APTES), 100% absolute ethanol and dimethylsulfoxide 
(DMSO) were purchased from Sigma Aldrich and used as received. Phosphate-buffered saline (0.01 M) 
was purchased from Sigma Aldrich and prepared by dissolving one foil pouch in 1 liter of Milli-Q 
water (0.138 M NaCl, 0.0027 M KCl, pH 7.4). For poly(ethylene glycol) derivatization,  
Methyl-PEO4-NHS ester reagent (arm spacing of 16.4 Å) was purchased from Thermo Fisher 
Scientific (Rockford, IL, USA) and dissolved in 1.1 ml of anhydrous dimethlysulfoxide (DMSO).  

 
Preparation of the T4 non-infectious capsid. T4 K10 (38- 51- denA- denB-), a kind gift from Dr. 

Lindsay Black at University of Maryland at Baltimore Medical School, was first propagated in the 
suppressor E. coli host strain, CR63, to obtain the infectious phage [29]. The infectious phage were 
then used to produce non-infectious capsids in the non-suppressor host E. coli strain, Rosetta, modified 
from a previous procedure [30]. In brief, Rosetta grown in M9S (OD600 = 0.5) were infected with K10 
phage at moi = 3 for 2 hrs at 37 ºC. Cells were spun down and resuspended in 10 mM Tris-HCl (pH7.5) 
supplementing with 2 mM MgCl2 and 1 mM CaCl2. CHCl3 (1/20 of total volume), DNaseI (20 µg/mL) 
and RNase I (50 µg/mL) were then added to the cell suspension and shaked at 37 ºC for 1 hr. The cell 
debris was removed after spinning at 8,000 rpm for 30 min. The cell lysate was concentrated through 
micorcon YM-100 membrane according to the manufacturer’s procedure (Millipore Corp., Billerica, 
MA, USA). The membrane was then washed with 10 mM Tri-HCl and 2 mM MgCl2 for six times. The 
non-infectious capsids retained on the membrane were resuspended in 10 mM Tri-HCl buffer for  
AFM imaging. 

 
Derivatization of T4 nanoparticles with poly(ethylene glycol). For derivatization with poly(ethylene 

glycol), 10 μl of the stock solution were re-suspended in 480 μl of 1X PBS prepared as described 
before. Ten μl of Methyl-PEO4-NHS ester reagent was then added and the T4 nanoparticles were 
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incubated at room temperature for 3 hours on a dry block thermomixer (Eppendorf, West Bury, NY, 
USA). After incubation, desalting and removal of excess pegylation reagent was performed using a 
micorcon YM-100 membrane according to the manufacturer’s procedure (Millipore Corp.). The T4 
nanoparticles were resuspended in 10 mM Tris-HCl with 2 mM MgCl2 at pH 7.5. 

 
Preparation of glass and mica substrates. Circular borosilicate glass cover slips (12 mm in diameter, 

0.13–0.17 thick) were purchased from SPI Supplies (West Chester, PA, USA). Prior to use, the cover 
slips were cleaned in a 3:1 v/v solution of sulfuric acid (H2SO4): hydrogen peroxide (H2O2) 30% wt 
(piranha etch) at 85 oC for 15 minutes. The cover slips were then rinsed thoroughly with DI water, 
dried with nitrogen and stored in ethanol until their use. Aminosilanization was performed 
immediately after cleaning of by immersion in a 10% solution of APTES prepared in 95% ethanol for 
1 hr, at room temperature with gentle stirring. After aminosilanization, the cover slips were rinsed 
twice with 95% ethanol, twice with Milli-Q water, dried with nitrogen and cured in a dry oven at 
120 oC for 3 hrs. The aminosilanized cover slips were stored in air tight containers and used within 24 
hours of preparation. Muscovite mica discs (12 mm diameter) were purchased from SPI supplies (West 
Chester, PA, USA) and cleaved prior to deposition of the T4 nanoparticles. 

 
Sample preparation. Fresh dilutions of T4 nanoparticles were prepared immediately before 

deposition on glass or mica substrates at required concentrations from a stock solution  
of 5 × 1012 particles/ml. For the pH dependence experiments a 1:50 dilution of the stock solution was 
made in 10 mM Tris-HCl at either pH 5.6, 7.5 or 8.8. For the nanoparticles concentration dependence 
experiments, undiluted samples were used directly from the stock and serial dilutions of 1:10  
through 1:50 were done using 10 mM Tris-HCl at pH 8.8. Five μl of the prepared T4 nanoparticles 
were deposited on aminosilanized glass, clean glass or freshly cleaved mica and kept in a humid 
environment at room temperature for 12 hours. After adsorption of the T4 nanoparticles onto the 
surface, the substrates were allowed to dry at room temperature and then carefully rinsed with  
Milli-Q water.  

 
AFM imaging and data analysis. Imaging was performed using a Multimode Scanning Probe 

Microscope (Veeco Instruments, Plainview, NY, USA) in air under tapping mode using a commercial 
silicon cantilever (NanoScience Instruments, Phoenix, AZ, USA), 125 μm long, with an apex 
curvature radius of 5-6 nm, a resonant frequency of 300 kHz and spring constant of 40 N/m. The 
scanning rate was 0.5 Hz, at 0o angle. Image processing was performed using Research NanoScope II 
software version 7.20. All images were filtered using the flattening built-in tool from NanoScope II 
software. Length and height values of the nanoparticles were obtained by utilizing the built-in tool for 
cross sectional analysis. Height and length values of at least twenty individual T4 nanoparticles were 
obtained from the section data and averaged. 
 
4. Conclusions  

 
In this work we have investigated some of the variables that influence the organization and 

assembly of T4 nanoparticles on surfaces using Atomic Force Microcopy (AFM). Knowledge of these 
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variables is relevant for their use in sensor applications. Our findings suggest that, the surface of the 
T4 nanoparticle capsid plays a significant role in determining their organization however we do not 
believe that this is the only variable involved. The best conditions under which an organized assembly 
of T4 nanoparticles seems to be favored are using freshly cleaved mica as a substrate, in a low ionic 
strength buffer at pH 8.8 (10 mM Tris-HCl) with T4 nanoparticles modified with a 
Polyethylene(glycol) (PEG) moiety. While the pH of the media and the characteristics of the surface 
play an important role, we found that the aggregation of the T4 nanoparticles was significantly reduced 
upon modification of the capsid surface with a PEG moiety. We believe that the organization and 
assembly of T4 nanoparticles could be controlled to form a one dimensional layer by modifying the 
nanoparticles interaction through a change in the capsid charge along with the characteristics of the 
substrate onto which is deposited. Our observations that a hydrated environment might be aiding in 
preserving the integrity of the capsid leads us to believe that AFM analysis in liquid is required to 
obtain more conclusive information about these and other variables. 
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