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Abstract: This study describes a technique for measuring human grip forces exerted on a 
cylindrical object via a sensor array. Standardised resistor-based pressure sensor arrays for 
industrial and medical applications have been available for some time. We used a special 
20 mm diameter grip rod that subjects could either move actively with their fingers in the 
horizontal direction or exert reactive forces against opposing forces generated in the rod by 
a linear motor. The sensor array film was attached to the rod by adhesive tape and covered 
approximately 45 cm2 of the rod surface. The sensor density was 4/cm2 with each sensor 
having a force resolution of 0.1 N. A scan across all sensors resulted in a corresponding 
frame containing force values at a frame repetition rate of 150/s. The force value of a given 
sensor was interpreted as a pixel value resulting in a false-colour image. Based on remote 
sensed image analysis an algorithm was developed to distinguish significant force-
representing pixels from those affected by noise. This allowed tracking of the position of 
identified fingers in subsequent frames such that spatio-temporal grip force profiles for 
individual fingers could be derived. Moreover, the algorithm allowed simultaneous 
measurement of forces exerted without any constraints on the number of fingers or on the 
position of the fingers. The system is thus well suited for basic and clinical research in 
human physiology as well as for studies in psychophysics. 
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1. Introduction 

The ability to grasp objects enables humans to perform a wide range of manipulative movements. 
Skilled control of prehensile finger forces is an essential feature of tool use in daily life. In healthy 
subjects, grip force is scaled accurately to object properties so as to prevent a hand-held object from 
slipping [1-3]. Impaired hand function is a frequent observation in movement disorders. The 
characteristics of impaired finger force control include inefficient grip force scaling and imprecision of 
the temporal coupling between grip and load force profiles. Grip force analysis is a highly sensitive 
method for detecting even subtle impairments of finger force control or to document impaired 
dexterity and its rehabilitation in movement disorders [4,5]. 

To date, several techniques have been developed for measuring multi-grip forces simultaneously [6-14]. 
The most common measurement system employs three or more force/torque transducers in a fixed 
arrangement [6,7,9,10,14-16]. Although these systems measure force very accurately, their 
disadvantage for studies on patients with motor disorders is the fixed, and thus inconvenient, 
arrangement of finger positions as well as the reduced contact area. A different method of measuring 
grip forces has been presented by Pylatiuk and colleagues [13]. They attached sensors directly to the 
finger and palmar skin with double-sided adhesive tape, leading to altered skin sensitivity. Acute skin 
sensitivity, however, is required for the internal representation of the physical object properties [17-20]. 
Pylatiuk’s system is suitable for studies on prehension of force grips but less appropriate for studies on 
grip forces of precision grips. An early publication using sensor arrays for grip force measurements [8] 
described a system specialised for quantifying grip activity during handwriting. In this system a force-
measuring film was attached to a writing utensil. Due to its specialization this system had low spatial 
resolution and did not allow the separation of different finger grip forces over time. 

The present study presents a technique employing a sensor array to measure grip forces exerted by 
the human hand on an object. The use of the sensor array enabled grip force measurements over a large 
contact area (up to 170 cm2) with high spatial resolution (5.08 mm sensor distance), good force 
resolution (0.1 N) and reasonable temporal resolution (150 Hz). In addition, the forces exerted by any 
number of fingers could be measured simultaneously without any constraints on finger position. This is 
essential for studying patients with impaired dexterity. Our main research interest was the evaluation 
of grasping abilities of patients with cerebellar disease. For this reason, we created a new grasping task 
in which subjects had to pull an initially blocked and then unexpectedly released grip rod, which is a 
task comparable with picking a raspberry. Picking a raspberry requires perfectly adjusted, increasing 
grip forces to pull the raspberry off the bush without squashing it. This, however, was very difficult for 
cerebellar patients. The representative data presented here demonstrate the ability of the measurement 
system, and are not intended as a statement on grasping dexterities of patients with cerebellar disease. 
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2. Materials and Methods 

2.1. Grip Rod and Force-Measuring Film 

Grip rod, force-measuring film and algorithms have been described in detail elsewhere [11,12]. A 
brief but comprehensive description of the system follows. The grip rod comprised a cylindrical metal 
bar (20 mm diameter), a linear motor (type: STA2505, Copley Controls, Canton, MA, USA) that could 
move the grip rod up to 100 mm axially and horizontally, a linear potentiometer to measure the 
position (type: REM 13-200-K, Megatron Elektronik, Putzbrunn, Germany) and a force transducer to 
measure the force exerted along the rod (type: U9B, Hottinger Baldwin Messtechnik, Darmstadt, 
Germany). In the pull or push direction the maximal force was hardware-limited to 25 N. The motor 
was controlled by custom-written software using LabVIEW (v. 8.2, National Instruments, Austin, TX, 
USA). The static friction of the grip rod was 0.6 N and the dynamic friction 0.3 N. To produce a 6-N 
square pulse the motor reacted in less than 15 ms.  

A standardised resistor-based pressure sensor array (type: 3000/HOT, Tekscan, MA, USA) was 
used as force-measuring film. It contained sensors in a rectangular order with a distance of 5.08 mm in 
each direction. The force range of each sensor was 0.89–13.3 N. Some 45 cm2 of the rod surface was 
covered by the force-measuring film which was attached on one side to the rod with double-sided 
adhesive tape. The measuring film was bent from above around the rod so that the edges in axial 
direction were situated at the top (see Figure 1a). The used areas of the measuring film contained 180 
sensors, 15 columns along the rod axis covering 75 mm of the grip rod length and 12 rows orthogonal 
to them covering 61 mm of the circumference. This allowed force measurements to be performed with 
extended fingers. Bending the measurement film around the rod elicited inhomogeneous noise with 
forces up to 1 N at a given single sensor (see Figure 1c). In the data image of Figures 1c-d the two 
edges of the sensor array in axial orientation (corresponding to Figure 1a) are indicated as red and blue 
lines, respectively. The grip rod end is indicated as a yellow line at the right edge of the image and the 
edge of used sensor area is indicated by the green line at the left border of the image. The force values 
were measured synchronously and stored as an image frame using F-Scan software (v. 5.24, Tekscan) 
on a desktop computer. Data were sampled at 150 frames/s. 

 
2.2. Detection of Grip Forces and Correlation of Finger Positions with Forces Significantly Detected 
 

Values recorded via the sensor array at any time ti are seen as pixels of a sensed image at ti and are 
presented as a false-colour image (e.g., Frame n and n+1 in Figure 1e). Based on this idea, significant 
grip forces [11] was achieved by a modification of Rogerson’s algorithm for change detection in 
remotely sensed images [21].  
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Figure 1. (a) Top view of the grip rod with the attached force-measuring film. (b) 
Determination of a rod slice element D1 = thumb, D2 = index finger, D3 = middle finger, 
FD1-3 = orthogonal grip forces of D1-3, LD1-3 = lever of D1-3. (c) Uncompensated noise due 
to bending without finger contact. (d) Remaining mean noise after Tekscan-software 
reduction. (e) Pairwise correlation of significant finger forces. For (c–e): Each square 
represents  sensor value of the sensor array and is seen as a pixel of a sensed image. (f) 
Schema of the “pick the raspberry task” with determing the different corresponding phases. 

 

The recording software is able to subtract a noise image from any recorded image. Nevertheless, 
measuring force values without any fingers in contact with the grip rod and applying the subtraction 
algorithm to the recorded values revealed a noticeable level of remnant noise in the data. This 
remaining noise level had to be taken into account when the grip rod was touched softly and 
consequently, the resulting signal-to-noise ratio was low. This consideration is taken into account in 
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the formulation of Equation 1 and the remaining mean noise level was measured separately in a noise 
film of at least 300 frames (Figure 1d). The algorithm was divided in three steps: (1) transformation of 
the image Fi from a N(μ,σ)-distribution in a N(0,1)-distribution, (2) smoothing the data with a 
Gaussian kernel to detect sub regions of local spatial association, (3) detection of significant pixel with 
Bonferroni correction [21,22]. 

(1) N(μ,σ) → N(0, 1).  
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(1)

Ri (pj) = residual of pixel pj in frame Fi; Fi (pj) is the raw value of pixel pj; ܰ݋ଓ݁ݏሺ݌ఫሻതതതതതതതതതതതതത = mean 
noise at pixel pj, measured separately across at least 300 frames of the noise film (see Figure 
1d). n Ri (pj) = normalised residual of pixel pj, in frame Fi. S. D. (Ri) = standard deviation of the 
residual of frame Fi. 95% c.v. = 95% upper confidence value of the system noise level 
measured in the noise film. 

(2) Smoothing each frame:  

Each frame is smoothed with a Gaussian kernel K(pj,pk) to improve the signal to noise ratio. 
The values zj of the smoothed normalised residual frame represent local statistics that have the 
purpose of detecting sub regions of local spatial association. The parameter σ (in pixel) is 
chosen to match the scale at which spatial association exists (Equations 3 and 4 from [21]). 
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with nRi(pj) = normalised residual of pixel pj in Frame Fi and K(pj,pk) as: 
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where d(pj,pk) = distance between pixel pj and pk. 

(3) Significant pixel detection. The third step was to detect the significance of force as a pixel in a 
frame, whereby the number of tests depended on the total number of pixels and the value of σ2 
of the Gaussian kernel (Equation 2). The larger the value of σ2, the greater was the spatial 
correlation between local tests. Rogerson provided an approximation (Equation 3) that allowed 
direct calculation of the observed maximum local statistics [21,22]: 
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(3)

by using α = 0.05, σ = 0.5, A = 12 × 15 pixel = 180 resulted in M* = 3.425. Any value zj in the 
smoothed normalised residual frame exceeding M* is significant at the 5%-level of first error. 

2.3. Pairwise Correlation of Single-Finger Forces between Frames 

Position and force-values were assigned semi-automatically to individual fingers [11]. The 
algorithm assumes that the fingers were not crossed, that changes in finger position between frames 
were small, and that changes in finger position were continuous. In at least one frame significant data 
were assigned manually to the fingers. Starting from this position the algorithm assigned data to the 
fingers automatically up to the start/end of the complete sequence or the next starting position given by 
the user. The algorithm correlated pairwise the assigned position between neighbouring frames. This 
process was divided into three steps (Figure 1e): 

1. By using the “Flood-fill-algorithm”, recognised coherent areas were marked (see 
http://en.wikipedia.org/wiki/Flood_fill). In this way significant pixels situated horizontally or 
vertically adjacent were combined (e.g., circle in Frame n of Figure 1e). The weighted centre of 
force was calculated for each marked area. 

2. Centres of areas lying inside a given distance (intraframe distance: 1.645 pixel) were 
considered to be of the same origin and were combined. In this way combined areas contacted 
at their corners only (e.g., circle in Frame n+1 of Figure 1e). 

3. Subsequently, the final weighted centres were compared and combined with the centres of the 
previous frame. The maximum distance between centres of the same finger was here 0.8 pixel 
(interframe distance). An example is given in Figure 1e. From the position of finger D1 (thumb) 
in Frame n followed the position of D1 in Frame n + 1. 

The force detection algorithm as well as the position correlation algorithm were written in Yorick 
interpreter language (v. 1.6.0.2, [23]). 

2.4. Dynamic Torque Analysis 

The term “torque” is used interchangeably in mechanics. In this study “torque” was used to 
designate a force moment resulting from normal finger forces which would tend to deviate the rod 
from the pull-direction and represent losses that subjects try unconsciously to minimise. 

From the finger positions (see Figure 1a), a gripped rod slice element and its centre of mass (CoM) 
were defined. The rod slice element was the part of the rod between the remotest fingers (e.g., rod part 
between fingers D1 and D3 in Figure 1b). Levers were derived from the position of individual fingers 
and the centre of mass of the rod slice element. Individual torques were given by the vector product of 



Sensors 2009, 9              
 

 

6336

finger force and the lever, defined by the distance from the position of the finger on the rod on which 
the force was exerted to the centre of mass of the rod slice element. Torques of the individual fingers 
were calculated at each time (Equation 4a). From these data a total torque function was calculated over 
time for each finger (Equation 4b). The torques described here were situated all orthogonally to the 
pull axis in the x/y-plane according to Figure 1b. Hence, the rod would deviate from the pull-axis. 
However, given that the rod is blocked the torque produces a virtual deviation only. 

஽೔ܯ
ሺݐሻ ൌ ஽೔ܮ

ሺݐሻ ൈ ஽೔ܨ
ሺݐሻ

ሻݐሺఀܯ ൌ ෍ ሻݐ஽೔ሺܯ
௜

 
(4a) 

(4b)

with MDi(t): torque, LDi(t): lever, FDi(t): grip force of individual finger Di, MΣ(t): sum of all torques 
MDi(t) at time t. 

2.5. “Pick the Raspberry” Task 

The “pick the raspberry task” is a precision grip task that requires continuous adjustments of grip 
and pull forces [12]. Subjects were seated comfortably on a height-adjustable chair facing the rod. The 
upper arm was held almost vertical and the forearm was flexed at the elbow joint 90° in the sagittal 
plane. The forearm was in a neutral position between pronation and supination. Subjects were asked to 
pull the rod horizontally with a three-finger precision grip (see Figure 1a). Each trial was self-paced by 
the subjects and its start was detected when a pull force velocity threshold of 0.5 N/s was exceeded. 
After a randomly variable interval (1–5 s) the rod was released (unpredictable rod release/URR). After 
rod release, the rod moved due to the subject’s pull force. Subjects were asked to stop the pull 
movement of the rod with low grip force. The interval from recording start until the detected trial start 
was termed the grip phase, the following interval until the URR was termed the pull phase and the last 
interval was termed the pluck phase (Figure 1f). If during pull-phase the velocity (i.e., the pull force 
rate) exceeded an upper limit (5 N/s) subjects were informed by a red LED in front of them. The inter-
trial-interval was in the range of 10 s to 15 s. Prior to recording, subjects were allowed at least 10 trials 
for practice. The time course of the corresponding and natural task and the requested increase of the 
pull force are shown in Figure 1f. 

2.6. Simulation of the “Pick the Raspberry” Task 

The reliability of the force-measuring film was evaluated by simulating the mean behaviour of a 
control subject during the “pick the raspberry” task. For this purpose a continuously increasing motor-
driven force (2.5–10 N) was applied to the sensor array over an area of approximately 300 mm2 for 4.5. 
After the maximal force value of 10 N the motor-driven force was released immediately. Force range 
and duration of the simulation represents the average development of force of subjects participating in 
the experiments. From the results of the simulation was the detection threshold of the sensors and a 
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correction function calculated. The correction function was used for the calculation of the data shown 
in Figures 3–5. 

2.7. Subjects and Patients 

This study was performed with the permission of the ethics committee of the Ludwig in 
Maximilians-University of Munich (354-06). A total of eleven patients with cerebellar disease and 
sixteen healthy subjects participating after giving written informed consent were used to test 
thoroughly the measurement system. For demonstration purposes of the system under normal 
conditions (CTRL) and in typical situations of patients with motor disorder of the upper limbs (CBL1-
3) characteristic results from one healthy subject (CTRL: female, 28 years, right handed) and from 
three cerebellar patients (CBL1: female, 41 years, right handed, sporadic adult onset ataxia; CBL2: 
male, 45 years, right handed, autosomal dominant cerebellar ataxia, ADCA (III); CBL3: female, 70 
years, right handed, sporadic adult onset ataxia) are shown. 

 
3. Results and Discussion 

 
This study presents a technique employing a sensor array for measuring grip forces exerted by the 

human hand on a cylindrical object. Force values of all sensors were interpreted as pixel values of a 
false-colour image. The detection of grip forces was based on a modified change detection algorithm 
for remote sensed image analysis which distinguished significant force-representing pixels from those 
affected by noise [11]. The position of identified fingers was tracked in subsequent frames to construct 
spatio-temporal grip force profiles of an individual finger. The algorithm allowed simultaneous 
measurement of forces exerted without any constraints on the number of fingers or on the position of 
the fingers. The system is thus well suited for studying grip forces exerted by both healthy subjects and 
patients with impaired dexterity. 

3.1. Reliability test of the Force-Measuring Film 

The “pick the raspberry” task was simulated to evaluate the reliability of the force sensors (see 
Section 2.6). The results from ten repetitions are shown in Figure 2a. The red lines show the motor-
driven forces; the green lines show the measured forces. The sensor array follows the motor-driven 
forces sufficiently precisely over the range of forces of interest, as can be seen by the averaged motor-
driven and measured forces (blue and yellow lines, respectively). After reaching the maximal force 
value of 10 N the motor-driven force was released immediately. This was followed by a vibration of 
the system due to technical constraints. Even this reaction was measured adequately by the  
sensor array. 
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Figure 2. Simulation of force change during the “pick the raspberry” task. (a) Motor-
driven forces of ten repetitions (red lines) and mean value (blue line) are shown as well as 
the measured forces (green lines) and their mean value (yellow line). (b) Real error of force 
sensor over motor-driven force with mean value (red line) and upper 1%-confidence band 
(green line). (c) Compensatory correction function for measured forces. 

 

 
While the motor-driven forces were exposed to noise, the real error of the sensor array was 

determined by following equation: 

ݎ݋ݎݎ݁ ݈ܽ݁ݎ ൌ ݎ݋ݐ݋ሺ݉ܯܧܵ െ ݊݁ݒ݅ݎ݀ ሻ݁ܿݎ݋݂ െ  ሻ (5)݁ܿݎ݋݂ ݀݁ݎݑݏሺ݉݁ܽܯܧܵ

with SEM(measured force), SEM(motor-driven force): standard error of the mean of the measured or 
motor-driven force, respectively. 

Figure 2b shows the result. The real error of the sensor array was independent of the motor-driven 
force in the range of interest. The mean error was 35.4 mN (red line in Figure 2b). Setting a 1%-level 
for detecting significant changes of force values an upper confidence value of 91.3 mN (green line in 
Figure 2b) was calculated. Hence, the detection threshold of the sensor array in this application can be 
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given as 0.1 N. Since the sensors underestimate the effective motor-driven forces a correction function 
was introduced. The correction function, which increased linearly within the force range 2.5–5 N, 
remained stable at 1.2 for values above 5 N (Figure 2c). 

 
Figure 3. Spatio-temporal grip profiles of a healthy subject and three patients with 
degenerative cerebellar disease. Each plot shows the data of a single trial from 3.5 s before 
rod release up to URR at t = 0. (a) Demonstration of the requested three-finger grip. (b-f) 
Space-time cube of grip forces with 3D-graph of finger position and grip force vectors at 
discrete time intervals (see text). (b) Grip forces of a healthy subject (CTRL), with the inset 
showing spatio-temporal grip profile of the index finger only. (c) Grip forces of a 
cerebellar patient (CBL1) with moderate hypermetric grip forces. (d) Grip forces of a 
cerebellar patient (CBL2) with strong hypermetric grip forces. (e) Grip forces of a 
cerebellar patient (CBL3) with hypermetric grip forces and the use of a four-finger instead 
of a three-finger grip (left hand). (f) Grip force data of the same patient as in (e) with 
hypometric grip forces sliding with the fingers along the rod (right hand). For b-f: blue - 
thumb, green - index finger, red–middle finger, magenta–ring finger. 
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3.2. Spatio-Temporal Profiles of Individual Finger Grip Force Development 

The sensor array described here allows the measurement of human grip forces of any number of 
fingers exerted at any position of the grip rod. This arrangement allowed the development of individual 
grip forces and the change of positions of all gripping fingers to be studied. A three-finger grip is 
demonstrated as well as the area of sensor array used, limited by coloured edges (Figure 3a) as 
described in Section 2.1. 

Based on the algorithm (see Sections 2.3–2.4) spatio-temporal profiles of individual finger forces 
were calculated. Each individual finger was described by a series of data four-tuples containing the 
position of finger on the rod, the time of recording, and the measured force. This 4D-data problem is 
visualised as a space-time cube of grip forces with x-axis as the circumference, y-axis as axial length 
of the rod, and z-axis as time (Figures 3b–f). The sensory-array is unrolled and the edges of the used 
array are shown in the same colours as in Figure 3a. The position of each finger of a control subject 
(CTRL) over time is illustrated as a 3D-curve in space and time (Figure 3b). In addition, the individual 
finger positions are projected also in the x/y-plane. Grip forces of individual fingers are shown as 
arrows which length represents the measured grip force. For visualisation purposes grip forces are 
shown at time intervals of 100 ms. The arrows always start at the space-time point of measurement and 
are always directed along the y-axis. The projection in the x/y-plane is omitted for clarity. 

Spatio-temporal profiles were constructed from single trials of different subjects. They are shown 
for an analysis time from 3.5 s preceding the unpredictable rod release (URR) to the URR (t = 0) in 
Figure 3b–f. The control subject produced a stable, isometric three-finger grip as can be derived from 
the projection of the position in the x/y-plane (Figure 3b). The grip was stabilised mainly by the thumb 
(blue line) and the index finger (green line) with additional assistance from the middle finger (red line). 
The continuous, moderate increase of grip forces over time is illustrated as in the additional space-time 
cube with the grip force vectors of the index finger only (Figure 3b). 

Patients with cerebellar degeneration showed a different picture. CBL1 showed a pattern similar to 
that of the healthy subject but had clearly higher grip forces and a larger finger aperture (see the 
distance of the fingers in the x/y-plane, Figure 3c). CBL2 exerted high grip forces over the total 
analysis time (Figure 3d). This latter patient stabilised the grip with the thumb and the index finger, as 
did CTRL, although he exerted a high grip force with the middle finger as well. Another patient (CBL3, 
Figure 3e,f) showed completely different behaviour depending on the hand used. With the left hand, 
the patient produced hypermetric grip forces and used the ring finger as well (magenta line in  
Figure 3e). In contrast, when using the right hand, the patient produced hypometric grip forces, just 
touching the rod and sliding along the rod with his fingers. 

Consequently, measurement systems with fixed finger positions are suitable for studies with healthy 
subjects, but are of limited use for patients with motor disorders. For the latter group, measurement 
systems with enlarged contact area and reduced finger aperture are essential [4,5,11,12]. Although all 
subjects exhibit different strategies when gripping the rod and following the task instruction, all 
corresponding grip forces have to be recorded by the measuring system. The data presented in Figure 3 
yield the potential of the sensor array technique, with the effectiveness of our system shown at the best 
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in Figure 3e,f. When using the left hand CBL3 employed four fingers instead of three and when using 
the right hand the patient did not exert sufficient grip forces to prevent sliding along the rod. This kind 
of behaviour can be studied only via a sensor array-based system as introduced in this study. Grip 
force measuring systems with fixed finger positions are used frequently [6,7,9,10,14-16] but are unable 
to detect losing a test object, as occurred with CBL3 (Figure 3e), or the employment of an additional 
finger (Figure 3e). 
 
3.3 Dynamic Development of Torque 

 
The individuality with which different subjects solve the task is illustrated in Figure 3. Although 

different pull forces were recorded they result from the same total grip forces. The development of grip 
forces during the trials illustrated in Figure 3b,c obtained from CTRL and CBL1 are compared now 
(Figure 4a,b). The total grip forces (black line) of both subjects reached approximately the same 
maximal value at URR. However, at URR CTRL produced 20 % more pull force than CBL1 (data not 
shown). This indicates that the grip of CTRL was more efficient than that of CBL1. Analysing the 
development of individual grip forces it can be seen that the CTRL had an equilibrated force relation 
over all fingers (thumb–blue line, index finger–green line, middle finger–red line) whereas the patient 
tended to employ the thumb as the main force-exerting finger (approx. 50% of total grip force at URR) 
and used the other fingers less effectively. Individual grip forces alone were not sufficient to explain 
the difference in economy of the two different grips. Due to the finger position the individual finger-
grip forces produced not only pull force in horizontal direction but also torques, which would cause the 
grip rod to deviate from the pull axis. These torques are losses and are uneconomic in the 
biomechanical sense.  

From the finger positions on the rod, we calculated the centre of mass of the rod slice element 
touched and the corresponding levers of each finger. Figure 4c,d shows the individual levers of the 
data presented in Figure 3b,c, respectively. The maximal rod slice element given by the finger 
positions is determined by 2 circles within the work space cube (Figure 4c,d) with a clearly larger rod 
slice element for the patient (Figure 4d) than for the control subject (Figure 4c). From lever and grip 
forces the torque of each individual finger can be calculated as well as the total torque (see 
Equation 4b, Section 2.4). The individual torques (coloured vectors) and the total torque vector (black 
vector) for both subjects are illustrated in Figures 4e,f. In addition, the projections of the torques in the 
x/y-plane are shown. The individual torques as well as the total torque of the control subject (Figure 4e) 
are clearly smaller than those of the cerebellar patient (Figure 4f) indicating a more economic grip than 
that of the patient.  
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Figure 4. Dynamic torque development of a healthy subject (CTRL, left column) and a 
cerebellar patient (CBL 1, right column). (a, b) Grip force development of individual finger 
grip forces and total grip force (black line); same data as in Figure 3 b,c. (c, d) Levers of 
individual fingers. (e, f) Development of individual finger torques and total torque (black 
vectors). The inset in Figure 4e shows the extension of the projected torque vectors shown 
in the grey area. For a-f: colour convention as in Figure 3. 

 
The economy of grip behaviour was calculated for all trials expressed by the total grip force, the 

pull force, and the total torque (Figure 5). The averaged data show that the patient tended to exert 
higher grip forces than the control subject (Figures 5a,b) but produced less pull force (Figure 5c,d) 
with higher variation. At URR CBL1 produced 10.3 ± 5.2 N pull force whereas CTRL produced  
12.0 ± 2.3 N. This inefficiency, expressed by the production of high torques, represents losses and thus, 
is uneconomic (Figure 5e,f). 
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Figure 5. Averaged responses of grip force, pull force and torque of the healthy subject 
(CTRL) and the cerebellar patient (CBL1). (a, b) Averaged total grip force (thick black line) 
± standard deviation (yellow area) (c, d) Averaged total pull force ± standard deviation.  
(e, f) Averaged total torque ± standard deviation. All recordings are aligned to the 
unpredictable rod release.  

 

Taken together, our system allows insights into both the temporal coupling of grip force and pull force 
and into the economy of grip behaviour due to different finger position in unrestraint conditions. This 
latter is an essential aspect in the understanding of impaired dexterity of patients with motor disorders. 

4. Conclusions 

Standardised resistor-based pressure sensor arrays for medical and industrial applications allow the 
position, the size of the contact area and forces exerted by individual fingers touching an object to be 
determined. The system described here is approved as medical device in several countries. The size of 
the force-measuring film can be adapted readily to different common objects and can be attached to 
surfaces by adhesive tape. This makes it a suitable, easy-to-use instrument. The enlarged contact area 
of our system allows measurements of forces exerted by any number of fingers simultaneously without 
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any constraints on finger position with respect to time. Hence, it allows insights into the temporal 
coupling between grip force and pull force as well as into the economy of grip behaviour due to 
different finger position under unrestraint conditions. Analysis of gripping an object in a completely 
natural manner reveals differences in the efficiency of grips between healthy subjects and patients with 
motor disorders. This is an essential aspect in basic and clinical research for detecting and 
understanding impaired dexterity of patients. 
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