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Abstract: Some outcomes of a feasibility analysis of a spaceborne bistatic radar mission 
for soil moisture retrieval are presented in this paper. The study starts from the orbital 
design of the configuration suitable for soil moisture estimation identified in a previous 
study. This configuration is refined according to the results of an analysis of the spatial 
resolution. The paper focuses on the assessment of the spatial coverage i.e., on the 
verification that an adequate overlap between the footprints of the antennas is ensured and 
on the duty cycle, that is the fraction of orbital period during which the bistatic data are 
acquired. A non-cooperating system is considered, in which the transmitter is the C-band 
Advanced Synthetic Aperture Radar aboard Envisat. The best performances in terms of 
duty cycle are achieved if the transmitter operates in Wide Swath Mode. The higher 
resolution Image Swath Modes that comply with the selected configuration have a duty 
cycle that is never less than 12% and can exceed 21%. When Envisat operates in Wide 
Swath Mode, the bistatic system covers a wide latitude range across the equator, while in 
some of the Image Swath Modes, the bistatic measurements, collected from the same orbit, 
cover mid-latitude areas. In the latter case, it might be possible to achieve full coverage in 
an Envisat orbit repeat cycle, while, for a very large latitude range such as that covered in 
Wide Swath Mode, bistatic acquisitions could be obtained over about 65% of the area. 
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1. Introduction 

A spaceborne bistatic radar system is defined when antennas for reception and transmission are 

physically separated and located aboard two spacecraft. The system could be either cooperating 

(transmitter and receiver designed for the specific bistatic application), or non-cooperating (receiver 

designed independently of the transmitter) [1]. Non-cooperating systems can use already-existing 

satellite instruments, such as Synthetic Aperture Radars (SARs), as transmitters (or illuminators) [2]. 

Bistatic applications were investigated in the fields of target detection [3,4] and planetology [5]. 

Concerning Earth Observation, the specular reflection from navigation satellites was exploited for 

scatterometric applications over the oceans [6]. The possibility to envisage bistatic configurations for 

SAR interferometry was studied in [7,8]. Recently, experiments involving the X-band have been 

carried out (e.g., [9–11]) to assess the additional information contained in the bistatic reflectivity  

of targets. 

As for land applications, Ceraldi et al. [12] demonstrated the potential to detect the signal scattered 

in the specular direction for retrieving bare soil parameters. However, they outlined that measuring the 

coherent component of the scattered signal by means of bistatic radars is problematic, because the 

spatial resolution becomes very poor around the specular direction, and ambiguities between surface 

points before and after the specular point occur [13]. Zavorotny and Voronovich stated, in a brief 

report [14], that considering a GPS signal impinging on a rough land surface, soil moisture is related to 

the ratio between horizontally and vertically polarized scattered waves. 

In a previous work [2], we reported on a theoretical investigation aiming at identifying the best 

bistatic measurement configuration, in terms of incidence angle, observation direction, polarization, 

and frequency band, for soil moisture content (SMC) retrieval. In addition, we evaluated the 

improvement of the estimation accuracy with respect to the conventional backscattering 

measurements. While in [2] we did not tackle the problem of verifying the identified radar 

configurations from a technical point of view, this work deals with spatial resolution, spatial coverage 

and duty cycle (i.e., the fraction of the orbit in which suitable bistatic data collection is ensured). It 

aims at evaluating whether an adequate overlap between the footprints of the transmitting and 

receiving antennas is ensured for the bistatic observation geometry that guarantees both an 

improvement of the quality of the SMC retrieval and a quite good spatial resolution.  

We point out that investigations on the design of a spaceborne mission implementing a 

configuration of bistatic radars devoted to specific environmental applications are generally lacking in 

the literature. Moreover, the literature generally deals with fixed bistatic configurations (i.e., the static 

design), without considering the orbital dynamics, while the feasibility of maintaining the selected 

configuration of sensors along the orbit of the spacecraft on which the receiver is installed, ensuring 

good performances in terms of operational parameters such as spatial coverage, is a  

crucial aspect. 

In the present study, the nominal bistatic mission is considered, so that problems such as the orbit 

and attitude controls are not tackled, thus implicitly assuming that the passive system is periodically 

controlled in order to maintain the designed bistatic formation.  

In Section 2, the findings regarding the bistatic configurations most suitable for SMC retrieval are 

summarized and the selection of one configuration, based on the evaluation of the spatial resolution, is 
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described. In Section 3, the orbit design approach is depicted, while, in Section 4, the results of the 

analysis of the spatial coverage are presented and discussed. Section 5 draws the main conclusions. 

2. Selection of a Bistatic Configuration 

2.1. Configurations Suitable for Soil Moisture Retrieval 

Bistatic configurations are defined in terms of frequency, polarization, and transmitter-target-

receiver relative geometry. This geometry is shown in the left panel of Figure 1, in which the incident 

plane is assumed as a reference coordinate plane, and the configuration is identified through the 

incidence angle (i) with respect to the vertical, the zenith (s) and azimuth (s) scattering angles, and 

their acceptable ranges to be compatible with the considered application. 

Figure 1. Left panel: geometric elements that identify the transmitter-target-receiver  

(Tx-TG-Rx) bistatic configuration. Right panel: sketch of observing configurations suitable 

for SMC retrieval. 

 
 

In [2], we adopted a well-established electromagnetic surface scattering model, such as the 

Advanced Integral Equation Model (AIEM) [15], to numerically simulate the bistatic measurements, 

for the purpose of identifying the configurations suitable for soil moisture estimation. We underline 

that the AIEM model has a large range of validity, so that the study described in [2] was carried out 

under different conditions. L-, C- and X-bands were considered, both Gaussian and Exponential 

autocorrelation functions were adopted, and the parameters characterizing the surface roughness, i.e., 

the standard deviation of heights s and the correlation length l, varied within fairly standard intervals, 

encompassing most of the typical agricultural fields in bare soil conditions. The results we obtained 

can be therefore considered fairly general.  

The findings in [2] indicate that, especially at C-band, the quality of soil moisture retrievals 

improves by complementing bistatic measurements with monostatic ones provided by already-existing 

SARs. This could be expected because, for bistatic systems, the detected field is determined by a 

different behavior of the scattering with respect to the monostatic case, and in the specular 

configuration also by a coherent scattering mechanism as opposed to a diffuse one, thus providing 



Sensors 2009, 9              

 

7253

independent information on the target parameters. The need to take advantage of various sources of 

information for tackling the complex and usually ill-posed problem of SMC retrieval was indeed 

pointed out in numerous literature studies (e.g., [16], where polarimetric data were used).  

The range of valuable scattering directions, for a C-band radar, singled out in [2] is sketched in the 

right panel of Figure 1. Observations around nadir, at s below 4°–10°, form a cone (i.e., s can 

assume any value) whose vertical axis corresponds to the z-axis (in a Cartesian reference system), 

while the vertex is in the origin. Furthermore, for s less than 40°–50°, the zenith scattering angle can 

indefinitely be increased by including the specular direction and some grazing observations. The 

illuminator should observe the Earth with a quite small incidence angle, approximately between 15° 

and 35°. In [2] it was demonstrated that, at C-band, the standard deviation of the SMC retrieval error 

can be reduced up to a factor 3 with respect to that achievable with monostatic observations, by 

integrating backscattering and bistatic measurements.  

2.2. Spatial Resolution Analysis 

The ground range and azimuth resolutions could be very poor in some bistatic configurations, thus 

implying a bad radar image quality. For instance, the ground range resolution is critical in specular 

configuration [1,12]. Basing on these considerations, we have performed an evaluation of the bistatic 

spatial resolutions in order to put an additional constraint to the sensor configurations selected in [2]. It 

is worth noting that no adequate model has been found in the literature for such an exercise, because 

only few cases addressed the spaceborne receiver configuration. In [1], this matter was analyzed, but 

only for a two-dimensional (2-D) configuration restricted to the bistatic plane. General considerations 

and formulas valid for the 3-D case were provided in [13]. 

Starting from the relationships found in [13], we have derived the formulas for evaluating the 

ground range (gr) and azimuth (a) bistatic resolutions, by doing the following assumptions: i) flat 

and fixed Earth; ii) satellites orbiting at the same height (and therefore flying with the same velocity); 

iii) equal coherent integration times. Then, we have normalized the bistatic resolutions to the 

monostatic ones, obtaining equations depending on the relative geometry of the satellites carrying the 

sensors and independent from orbital and antenna parameters. In this section, we do not report all the 

mathematical manipulations, for the sake of conciseness, but only the result. More details can be found 

in the Appendix. The final equations are the following: 
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In Equations (1) and (2a), the back superscript indicates the spatial resolutions computed for the 

conventional monostatic case (i.e., the backscattering measurement) and δT and δR are the angles 
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complementary to those identified by the unit vector normal to the incidence plane and the velocity 

vectors (see Appendix). 

Starting from the above formulas, and supposing that the satellites’ velocity vectors are directed 

normally to the incidence plane (i.e., δT = δR =90°), maps of gr/gr
back and a/a

back have been 

generated as function of s (in the range [0°-60°]) and s (in the range [0°–180°]), for a fixed value of 

θi. Figure 2 shows the maps for the minimum and maximum values of θi recommended for estimating 

soil moisture (i.e., 15° and 35°). 

Figure 2. Maps of gr/gr
back (left panels) and a/a

back (right panels), for θi = 15° (upper 

panels) and θi = 35° (lower panels) in the (θs,φs)-plane. Ground range resolution has been 

upper limited to 4 times the backscattering value for the sake of figure clarity. 

 

 
 

By observing Figure 2, it can be noted that the ground range resolution is more critical than the 

azimuth one. The latter does not exceed 2a
back, while gr can be several times larger than gr

back, 

especially near the specular direction (as expected). As an additional constraint to the bistatic sensors 

configurations selected in [2], we have chosen gr < gr
back, thus finding that s must be limited in the 

interval [90°−270°], that is in the backward quadrant (see Figure 1 right panel and the Appendix). We 

have therefore considered the following ranges for the zenith and azimuth scattering angles:  

s  [0°−8°] and s  [90°−270°].  
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3. Orbit Design 

According to the chosen frequency (i.e., C-band), we have made reference to the ASAR instrument 

onboard Envisat. The real operative Image Swath Modes (ISMs) and Wide Swath Mode (WSM) have 

been taken into account for the analysis. ISMs guarantee a fairly high resolution, but have a smaller 

near and far range capability that implies worse monostatic (and thus bistatic) spatial coverage. WSM 

presents opposite characteristics. Table 1 reports some parameters of the ASAR illuminator in Image 

and Wide Swath modes. Note that, among the seven Envisat/ASAR Image Swath Modes, only four 

were selected, because the other ones observe the Earth with incidence angles larger than 35°, which 

are not compatible with our requirements for SMC retrieval. 

We have firstly designed the orbit of the receiver by choosing its observation geometry at the 

equator based on the requirements for SMC estimation (i.e., the static design) and then the orbits of 

both platforms have been propagated to evaluate the antenna footprint superimposition, i.e., the spatial 

coverage of the bistatic acquisitions. Note that the time when the passive satellite is over the equator 

has been assumed as the initial one [17]. 

Table 1. Some parameters of the ASAR illuminator in Image Swath and Wide Swath 

Modes. Note that both the swath and the ground range resolution refer to the 

backscattering acquisition; regarding the latter, its value is related to a nominal incidence 

angle (e.g., 23° for ISM2). 

Mode Swath [km] Near Range [deg] Far Range [deg] Range Resolution [m] 
ISM1 105 15.0 22.9 30 
ISM2 105 19.2 26.7 30 
ISM3 82 26.0 31.4 30 
ISM4 88 31.0 36.3 30 
WSM 405 15 37 100 

 

We have made a number of assumptions. Firstly, that the bistatic system is non-cooperative, so that 

orbit, attitude (including yaw-steering) and antenna pointing of the active system are not subordinated 

to the bistatic acquisition requirements. This is of course a worst case assumption, which aims to use 

existing radar as source of opportunity. Secondly, the transmitting antenna is right-looking. Moreover, 

the satellite carrying the receiver (hereafter denoted also as the passive satellite) flies in formation with 

that carrying the illuminator (the active one), on a parallel orbit, thus establishing a “parallel orbit 

pendulum” configuration, in which the platforms move along orbits with the same inclination, but 

different ascending nodes. In principle, also the “leader-follower” configuration, in which the 

spacecraft fly on the same orbit, but with different crossing times of ascending node, would be 

possible. However, it does not allow any of the bistatic observation geometries previously selected if a 

non-cooperative bistatic system and a side-looking illuminator are assumed. 

Another hypothesis we have made for the static design of the orbits is that the receiver performs 

bistatic acquisitions only along the ascending pass, since the crossing of the orbits near the poles 

makes the transmitter to illuminate out of the footprint of the receiver. Note that an eventual left/right 

looking capability of the receiver would dramatically change the bistatic angles with respect to the 
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required ones, whereas only a cooperative transmitter with left/right looking capability would enable 

valuable data acquisition in the descending pass. 

The orbit of a spacecraft is described by means of the well-known six Keplerian parameters: semi-

major-axis, eccentricity, inclination, right ascension of the ascending node (), perigee argument, and 

mean anomaly (M). We have considered Envisat as the active satellite, so that its orbital parameters are 

fixed. The passive satellite semi-major-axis, eccentricity, and inclination have been chosen coincident 

with those of the active one, in order to reduce orbit maintenance operations. In addition, the same 

perigee argument has been considered, to minimize the instantaneous satellite velocity differences and 

in turn, the along-track relative displacements [17]. 

The remaining design parameters ( and M) define the difference between the orbits of the two 

satellites. The differences between the ascending node right ascensions () and the mean anomalies 

(M), i.e., the relative position of the satellites (shown in Figure 3), have been computed by means of 

the formulas provided in [17]. M has been chosen in order to enable the passive satellite to be located 

in the incidence plane of the illuminator at the initial time, thus fixing the observation geometry when 

the receiver is over the equator. Such a condition corresponds to s = 180°, in this case. 

Figure 3. Relative position of the satellites at the initial epoch (γ is the yaw-steering angle 

of the active satellite). 

 
 

Figure 3 shows the position of the active and passive satellites when the latter is over the equator 

and the line joining the two positions (i.e., the baseline). This direction has to be comprised within the 

azimuth aperture of both the transmitting and receiving antennas. To calculate  and M, we have 

assumed i equal to the maximum among those suggested in [2] (i.e., 35°), in order to increase the 

range of latitudes for bistatic acquisitions [17]. As for s at the initial epoch, we have firstly considered 

that the receiver should be in the backward quadrant because of the constraint we have imposed for 

spatial resolution. Then we have made the hypothesis that, for a soil moisture application, the 

minimum bistatic swath should be 10 km.  

By choosing s = 0° at the initial epoch, the time interval during which s is in a useful range  

(i.e., [0°–8°]) when the orbits are propagated is maximized (note that at the equator the baseline is at 

its maximum, as will be discussed in Section 4). However, looking at Figure 4, that shows the 

observation geometry at the initial time, it can be noted that such a choice would imply a very small 

bistatic swath at the equator (theoretically, only one point), because for s = 0° the receiver is just 

above the boundary of the area illuminated by Envisat, with the maximum allowable zenith angle (i.e., 
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35°), and cannot accomplish a forward observation. For the same reason, the ISMs whose far range 

looking angle is less than 35° (see Table 1) do not perform bistatic acquisitions over the equator, as 

will be shown in Section 4. The receiving near range point (NRRX) has to be located within the area 

illuminated by the transmitting antenna (see Figure 4) and its distance to the transmitter far range point 

(FRTX) cannot be less than 10 km. Hence, the best choice for the initial s turned out to be 1°, which is 

(approximately) the minimum zenith scattering angle for which the overlapping between the footprints 

of the antennas occurs with the selected minimum width of the bistatic swath. Table 2 reports the 

selected configuration and the orbital parameters at the initial epoch, that is the static design.  

The Satellite Tool Kit (available at: http://www.agi.com) has been successively used to propagate 

the orbits, taking into account only the orbital perturbations due to the J2 geo-potential harmonic, to 

maintain a heliosynchronous orbit and assuming negligible the orbital decay (i.e., the effect of the 

differential aerodynamic drag), as done in [18]. 

Figure 4. Bistatic observation geometry at the initial time in terms of zenith incidence (i) 

and scattering (s) angles, receiver (Rx) and transmitter (Tx) near range (NR) and far range 

(FR) points, and heights (H) of the satellites. 

 

Table 2. Selected bistatic configuration (in terms of zenith incidence angle, and zenith and 

azimuth scattering angles), and orbital parameters at the initial epoch (static design). 

zenith incidence angle i [deg] 35 
zenith scattering angle s [deg] 1 

azimuth scattering angle s [deg] 180 
Semi-major-axis [km] 7,159.48 
Eccentricity 0.00115 
Inclination [deg] 98.5 
Perigee argument [deg] 90 
Ascending nodes difference () [deg] 4.20 

Mean anomaly difference (M) [deg] 0.91 

4. Discussion of the Outcomes 

To produce coverage data, an appropriate software tool, which accounts for spacecraft propagated 

orbits, yaw-steering maneuvers of both spacecraft, sensors pointing geometry, Earth rotation and 

estimates the targeted area, has been developed. At each time point of the simulation, whose overall 
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period is 35 days, i.e., the orbit repeat cycle of Envisat, the software evaluates the area of the Earth 

surface observed simultaneously by the two antennas on the basis of their aperture angles and of the 

satellites’ positions. The portion of this area which is actually observed according to the observation 

geometry selected in section 2, i.e., I < 35°, s  [0°−8°] and s  [90°−270°], is the area target. To 

perform the simulation, we have considered the transmitter able to illuminate according to the real 

access capabilities of the reference mission (i.e., Envisat, see Table 1). As for the receiving antenna, 

we have assumed a main lobe azimuth aperture of 6° (see [17]) which is capable to point toward the 

area illuminated by the transmitter by means of attitude maneuvers or electronic steering. The latter 

does not ensure the zero Doppler condition of bistatic measurements, but its purpose is the 

superposition of the antenna footprints.  

Table 3 reports the results. It can be noted that WSM presents the best results in terms of duty cycle 

(~40%) thanks to the greater access capability. Higher resolution modes achieve duty cycles not less 

than 12% (actually 11.9%) and that can exceed 21%, which is a still acceptable performance, 

considering that we are in the hypothesis of a fully non-cooperative system, i.e., the maximum duty 

cycle is 50% for a fixed looking side of the transmitting antenna. It is worth noting that we have 

decided to discard the swaths smaller than 10 km in the computation of the fraction of orbital period 

during which the bistatic data are acquired and this choice implies an overall decrease of the resulting 

duty cycle.  

Table 3. Coverage statistics and duty cycle, assuming Envisat in different Swath Modes as 

illuminator. Minimum and maximum acquisition latitudes, and mean width of the bistatic 

swath (minimum is 10 km) are reported. Note that for ISM1, ISM2 and ISM3, two latitude 

belts are identified. 

Mode ISM1 ISM2 ISM3 ISM4 WSM 
Duty Cycle [%] 13.0 12.9 11.9 21.5 40.1 
Lat. Min. 1[deg] −71.7 −66.2 −53.2 −43.5 −71.7 
Lat. Max. 1[deg] −48.5 −-39.6 −24.2 42.9 71.6 
Lat. Min. 2[deg] 48.9 40.5 25.6   
Lat. Max. 2[deg] 71.7 66.2 51.3   

Swath [km] 39.9  37.2  29.2  24.1 39.1 

 

ISM1 and WSM reach the highest latitudes (almost 72° in both the geographic hemispheres). In 

addition, the far range capability of the considered transmitter operating mode limits the latitude range 

of bistatic acquisitions. As stated when discussing Figure 4, since the passive satellite orbit is defined 

according to the maximum incidence angle identified for the application (i.e., 35°) during static design, 

the operational modes ISM1, ISM2 and ISM3 do not perform bistatic acquisitions at low latitudes but 

they focus on mid-latitude belts.  

Figure 5 shows the Earth maps with the acquired targeted areas (red dots) for WSM (upper panel), 

ISM4 (central panel) and ISM2 (lower panel). The ground tracks of the active and passive satellites are 

plotted in green and blue, respectively. Although our simulation considers the entire Envisat orbit 

repeat cycle (35 days), Figure 5 regards a time-window of one week, for the sake of clarity. The 

different latitude bands covered in WSM, ISM4 and ISM2 are clearly visible.  
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Figure 5. Data acquisition (red dots) for a one week scenario considering a passive system 

acquiring ASAR signal in WSM (upper panel), ISM4 (central panel) and ISM2 (lower 

panel). Green/blue lines are the Envisat/passive satellite ground tracks. 

 

 

 

To quantify the spatial coverage of the bistatic measurements, we have evaluated the ratio between 

the sum of the areas of bistatic targets and the area of the Earth surface within the covered latitude 

range. Such a computation sums up all the areas imaged during a complete Envisat cycle of 35 days, 

including also zones already observed in previous orbits. This result is therefore an estimate of the 

fractional coverage that does not ensure that every point within a specific latitude range is actually 
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covered by a bistatic acquisition, but that can indicate whether full coverage could be potentially 

obtained in such a range. The ratio is minimum for ISM4 and is in the order of 65% for WSM, while 

for ISM1 and ISM2 our evaluation indicates that full coverage might be achieved within 35 days. 

Finally, Figure 6 shows the trends of the baseline absolute value |B| (distance between the satellites) 

and of its components (Bx,By,Bz) throughout one orbit, that we obtained as a consequence of our 

design. The baseline is evaluated on the orbital reference frame centered in the centre of mass of the 

active satellite, with x-axis towards its instantaneous velocity vector, y-axis normal to the orbital plane 

and z-axis in direction of the Earth center. The distance between the satellites achieves its maximum 

value at the equator and the minimum one near the poles. By represents the main component of B and 

changes its sign at the orbit interceptions near the poles, when the satellites change their relative 

orientation, while it achieves the maximum value at the equator. Also Bz goes to zero at the orbits 

interceptions and the minimum baseline at the orbit crossing, i.e., the safety distance between the 

satellites, has turned out to be equal to 35.5 km, a result similar to that found in [18] in which Envisat 

was used as the active satellite. Observing Figure 6, it can be noted that the maximum value of the 

baseline (at the equator), is slightly larger than 500 km.  

Figure 6. Baseline length (absolute value) and components in the active satellite orbital 

reference frame versus the orbital period percentage. One orbit is considered for the sake 

of figure clarity. 

 

5. Conclusions 

Some outcomes of a coverage analysis of a spaceborne bistatic mission for SMC estimation have 

been presented. The study has started from the identification of the bistatic configurations suitable for 

SMC retrieval, in terms of frequency and ideal transmitter-target-receiver relative geometry 

accomplished in a previous study. An evaluation of the spatial resolution of the bistatic system has 

been firstly carried out. It has led us to restrict our analysis to observations around nadir and in the 

backward quadrant. Then, the study has assessed the feasibility of the nominal mission in terms of 

spatial coverage and duty cycle, assuming a non-cooperative system, with Envisat/ASAR as illuminator. 
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We have shown that the Wide Swath Mode has the best duty cycle (~40%). Higher resolution 

image modes yield acceptable results in terms of this parameter (never less than 12%), considering 

that, in our hypothesis of fully non-cooperative system, the maximum achievable value is 50%. It has 

been found, that, for high resolution modes, the minimum and maximum latitudes do not necessarily 

identify one latitude belt, so that their setting may allow focusing on a particular geographic region, 

such as mid-latitude areas. In a selected latitude band, it might be possible to achieve full coverage 

within the Envisat orbit repeat cycle (35 days), while for a larger latitude range, almost covering the 

entire planet, it is unfeasible.  

The improvement of soil moisture retrieval that we have demonstrated, in a previous work, to be 

achievable through a bistatic mission, may be actually obtained by designing a simple and cheap (even 

in terms of power requirements) receiver that flies in formation with a standard C-band SAR. 

Combining the active monostatic with the bistatic measurements can strengthen the contribution of 

single frequency radar observations in many disciplines needing an evaluation of soil moisture, such as 

hydrology, agriculture and climate change monitoring. 

The methodology based on a study of the sensitivity to a geophysical target parameter of bistatic 

radars, followed by a system performance analysis can be useful for other applications (e.g., vegetation 

biomass retrieval) and for future missions. For instance, this approach can provide support to a 

possible employment of a passive receiver flying in formation with the forthcomong European Space 

Agency (ESA) Sentinel satellites. In particular, the wide swath capability of the Sentinel-1 C-band 

SAR is expected to improve the coverage performances of the bistatic mission with respect to that 

computed for Envisat.  

6. Appendix–Spatial Resolution 

In this section, Equations (1) and (2) are derived starting from the relationships found in [13]. The 

hypotheses of flat Earth and same satellite heights hold true. We make reference to the geometry 

shown in Figure 7. 

Figure 7. Geometry for evaluating the bistatic spatial resolution. T, R and P represent the 

positions of transmitter, receiver and target, respectively.  
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By assuming the incidence plane as a reference, let us consider a three-dimensional Cartesian 

coordinates system in which the (x,z)-plane is coincident with the incidence one and the (x,y)-plane is 

considered to be the (flat) Earth surface. Let us fix: i) the transmitter position T (xT, yT, H) in such a 

reference frame; ii) the incidence angle θi; iii) the elevation θs and azimuth s scattering angles. Then, 

we can determine, as function of these parameters, the following ones: iv) the ground target position P 

(xT + θi, 0, 0); v) the receiver position R (xT + Htanθi + Htanθscoss, yT + Htgθssins, H). 

Denoting by x0, y0 and z0 the versors of the considered Cartesian system, the vectors directed from 

the transmitting (uT) and receiving (uR) antennas to the target are (see Figure 7): 

 00tan zxu HH iT    (3) 

 000 sintancostan zyxu HHH ssssR    (4) 

The transmitter-to-target and receiver-to-target ranges are the modules of uT and uR, respectively: 

 iT H cosu  (5) 

 sR H cosu  (6) 

Now we can consider the relationship for the ground range resolution proposed in [13]: 

 
effxyW

gr
B

c

u


2
  (7) 

where c denotes the velocity of light, Bw is the pulse bandwidth and xy is the projector onto the 

horizontal plane. 2ueff is defined as [13]: 

 











R

R

T

T
eff u

u

u

u
u2  (8) 

Accounting for Equations (3)–(6) it turns out: 

 000 )cos(cossinsin)sincos(sin2 zyxu sississeff    (9) 

The application of the xy operator leads to the following relationship: 

 00 sinsin)sincos(sin2 yxu ssisseffxy    (10) 

By substituting the norm of 2xy ueff in (7), we can derive the final expression of gr: 

 
ssisi

W
gr

Bc




cossinsin2sinsin 22 
  (11) 

Considering that the ground range resolution of a conventional monostatic radar is c/(2Bwsini), the 

gr/gr
back ratio is given by (1). 

It is worth noting that, if θs is equal to 0°, the gr/gr
back ratio does not depend on s and is equal to 2 

for every θi. Moreover, if we consider s equal to 0° (or around it), when θs increases starting from 0°, 

the gr/gr
back ratio grows too much and is always larger than 2. On the other hand, if we assume s 

equal to 180° (or around it), when θs increases starting from 0°, the gr/gr
back ratio decreases and is 
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always smaller than 2. These considerations can be useful to choose the sensors observation geometry 

in order to achieve a satisfactory ground range resolution. 

To derive the azimuth resolution, we have to consider the transmitting (vT) and receiving (vR) 

satellite velocity vectors: 

 )sin(cos 00 yxv TTTT v    (12) 

 )sin(cos 00 yxv RRRR v    (13) 

where vT and vR are the amplitudes of vT and vR, respectively, and T and R indicate the angles 

between these vectors and the incidence plane (see Figure 7). 

The expression for the azimuth resolution proposed in [13] is: 

 
effxy

a
ω


int2

  (14) 

where int  is the time interval during which the target is observed,  is the electromagnetic wavelength 

and the vector effω  is given by [13]: 

 
R

Rn

T

Tn
eff u

v

u

v
ω 2  (15) 

In (15), vTn represents the component of vT normal to uT and vRn denotes the component of vR 

normal to uR. vTn can be expressed as: 

 00
2 cossincoscossin zxv

u

u

u

u
vvv TiiTTiTT

T

T

T

T
TTTn vv  










  (16) 

By replacing (12) in (16) it turns out: 

 000
2 cossincossincoscos zyxv TiiTTTTiTTn vvv    (17) 

The projection of vTn on the (x,y)-plane is: 

 00
2 sincoscos yxv TTTiTTnxy vv    (18) 

The calculation of vRn is similar to that accomplished to derive vTn: 
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 (19) 

By replacing (13) in (19) and by applying the operator that project onto the horizontal plane,  

it turns out: 

 0
2

0
2 )]cos(sinsin[sin)]cos(cossin[cos yxv RsssRRRsssRRRnxy vv    (20) 

By taking into account the relationships (5), (6), (15), (18) and (20), we can determine the 

projection of the vector 2ωeff, on the horizontal plane: 
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 (21) 

Having assumed that the two spacecraft fly at the same height, we can make the simplifying 

hypothesis that the velocity vectors have the same amplitude (i.e., vT = vR), thus obtaining: 

 ),,,,(2 RTssiTeffxy Fv  ω  (22a) 

where: 
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22222242

RssTsTisRTRTisi

RssssTTiiRTssiF
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 (22b) 

The final expression for the azimuth resolution of a bistatic system is derived by replacing (22)  

in (14): 
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   (23) 

The azimuth resolution of a conventional monostatic SAR is given by: 

 
iT

back
a v

HD


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cos22

int  (24) 

where D is the dimension of the antenna. Therefore, the a/a
back ratio turns out to be given by (2a). 
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