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Abstract: The purpose of this study was to evaluate the ocular pharmacokinetics, bio-distribution and
local tolerability of γ-cyclodextrin (γCD) based irbesartan 1.5% eye drops and candesartan 0.15% eye
drops after single and multiple topical administration in rabbit eyes. In this randomized, controlled
study, a total number of 59 New Zealand White albino rabbits were consecutively assigned to two
study groups. Group 1 (n = 31) received irbesartan 1.5% and group 2 (n = 28) candesartan 0.15%
eye drops. In both groups, single dose and multiple administration pharmacokinetic studies were
performed. Rabbits were euthanized at five predefined time points after single-dose administration,
whereas multiple-dose animals were dosed for 5 days twice-daily and then euthanized 1 h after the
last dose administration. Drug concentration was measured by using liquid chromatography-tandem
mass spectrometry (LC-MS/MS) in the retinal tissue, vitreous humor, aqueous humor, corneal tissue
and in venous blood samples. Pharmacokinetic parameters including maximal drug concentration
(Cmax), time of maximal drug concentration (Tmax), half-life and AUC were calculated. To assess
local tolerability, six additional rabbits received 1.5% irbesartan eye drops twice daily in one eye for
28 days. Tolerability was assessed using a modified Draize test and corneal sensibility by Cochet
Bonnet esthesiometry. Both γCD based eye drops were rapidly absorbed and distributed in the
anterior and posterior ocular tissues. Within 0.5 h after single administration, the Cmax of irbesartan
and candesartan in retinal tissue was 251 ± 142 ng/g and 63 ± 39 ng/g, respectively. In the vitreous
humor, a Cmax of 14 ± 16 ng/g for irbesartan was reached 0.5 h after instillation while Cmax was below
2 ng/g for candesartan. For multiple dosing, the observed Cmean in retinal tissue was 338 ± 124 ng/g
for irbesartan and 36 ± 10 ng/g for candesartan, whereas mean vitreous humor concentrations
were 13 ± 5 ng/g and <2 ng/g, respectively. The highest plasma concentrations of both irbesartan
(Cmax 5.64 ± 4.08 ng/mL) and candesartan (Cmax 4.32 ± 1.04 ng/mL) were reached 0.5 h (Tmax) after
single administration. Local tolerability was favorable with no remarkable differences between the
treated and the control eyes. These results indicate that irbesartan and candesartan in γCD based
nanoparticle eye drops can be delivered to the retinal tissue of the rabbit’s eye in pharmacologically
relevant concentrations. Moreover, safety and tolerability profiles appear to be favorable in the rabbit
animal model.
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1. Introduction

The renin-angiotensin system (RAS) plays a major role in the regulation of systemic
hemodynamics [1]. Therefore, angiotensin receptor blockers (ARBs) and angiotensin
converting enzyme (ACE) inhibitors are commonly used in the treatment of arterial hyper-
tension, heart failure or kidney disease [2,3]. Beside its well described effects on systemic
hemodynamic parameters, there is increasing evidence that the RAS also plays an im-
portant role in several physiological and pathological processes in the eye [4,5]. More
specifically, it has been shown that ARBs as well as ACE inhibitors lower intraocular
pressure (IOP) via intraocular angiotensin type I receptors [6,7]. In addition to this IOP
lowering effect, ACE inhibitors and ARBs were shown to have beneficial effects on diabetic
retinopathy progression and seem to be neuroprotective upon systemic administration,
independent of their blood-pressure lowering properties [8–12].

Therefore, the development of eye drops containing ACE inhibitors or ARBs has been
proposed in order to target the RAS directly in the eye to avoid systemic side effects such
as hyperkalemia, hypotension or cough [13,14]. However, the low bioavailability of eye
drop formulations containing ARBs and ACE inhibitors due to their lipophilicity and poor
water solubility limit their therapeutic options after topical administration, in particular
for the posterior segment [15].

To overcome these limitations, there is increasing interest in penetration enhancers,
which allow drug formulations to enhance drug delivery across biological membranes
that are otherwise impermeable or show limited permeability such as the cornea. Recently
introduced cyclodextrin (CD) based drug formulations may enhance drug penetration
and therefore increase bioavailability in the target tissues [16]. Indeed, previous evi-
dence indicates that γCD based eye drops micro- and nanosuspensions can deliver drugs
such as dexamethasone to both to the anterior and posterior pole both in rabbits and
humans [17,18].

The current study aimed to evaluate the non-clinical pharmacokinetics and bio-
distribution of γCD based competitive antagonists of the angiotensin II receptor irbesartan
1.5% eye drops and candesartan 0.15% eye drops after single and multiple instillations in
rabbits. These formulation are aqueous microsuspensions in which the solid particles are
metastable γCD/drug complexes that readily dissolve upon media dilution resulting in
sustained high drug concentrations in the tear fluid [19].

Furthermore, local tolerability and potential toxic effects to the ocular surface were
investigated in the same animal model. In summary, the data from the current study
will serve as a basis for the further development of γCD based angiotensin II receptor
antagonists in humans.

2. Results
2.1. Part 1: Biodistribution and Pharmacokinetics

Of the randomized rabbits, 58 out of 59 completed the study until the scheduled
euthanasia. One rabbit had to be excluded before the drug administration due to genital
lesions. The weights of rabbits at the time of arrival and before the randomization did not
differ significantly between groups (not shown).

2.1.1. Single-Dose Ocular Bio-Distribution

For both substances, the concentration gradient of calculated Cmax values in the four
analyzed tissues was as follows: corneal tissue > retinal tissue > aqueous humor > vitreous
humor. Table 1 summarizes the Cmax of the two different substances in the posterior eye
segment (retinal tissue and vitreous humor) together with aqueous humor and corneal
tissue results which have recently been published separately [20].



Pharmaceuticals 2021, 14, 480 3 of 10

Table 1. Cmax after a single dose of 1.5% irbesartan or 0.15% candesartan calculated for the four
analyzed tissues in the study (SE) and control eye (CE), RT: retinal(choroidal) tissue, VH: vitreous
humor, AH: aqueous humor, CT: corneal tissue, N/A: concentrations in all samples at all timepoints
were below the lower limit of quantification and therefore Tmax was not determinable. Cmax are
shown as means ± SD.

Study Drug-Tissue Cmax SE
(ng/g) Tmax SE (h) Cmax CE

(ng/g) Tmax CE (h)

Irbesartan-RT 251 ± 143 0.5 23 ± 34 0.5
Irbesartan-VH 14 ± 16 0.5 <5 0.5
Irbesartan-AH 121 ± 69 3 <5 0.5
Irbesartan-CT 3663 ± 988 1.5 49 ± 85 1.5

Candesartan-RT 63 ± 39 0.5 <2 0.5
Candesartan-VH <2 0.5 <2 N/A
Candesartan-AH 30 ± 14 3 <2 N/A
Candesartan-CT 3504 ± 801 1.5 2 ± 4 0.5

Cmax for all analyzed ocular tissues of the study eye was nominally higher in the 1.5% irbesartan group as
compared to the 0.15% candesartan group. For retinal tissue the Cmax were 251 ± 143 ng/g (irbesartan) and
63 ± 39 ng/g (candesartan) while vitreous humor Cmax were 14 ± 16 ng/g (irbesartan) and <2 ng/g (candesar-
tan), respectively.

Drug exposure of the untreated control eye was generally low, with retinal tissue
Cmax of 23 ± 34 ng/g (irbesartan) and <2 ng/g (candesartan) and both vitreous humor
maximum concentrations below the respective lower quantification limit. Control eye Cmax
of all tissues are presented in Table 1 together with the study eye Cmax.

2.1.2. Single-Dose PK-Profiles for Retinal Tissue and Vitreous Humor

Retinal tissue PK-profiles of both compounds in both eyes and tabulations of the
corresponding numerical values are shown in Figure 1 and Table 2, respectively. In the
treated study eye Tmax in retinal tissue was 0.5 h for both substances with a calculated
T1/2 of 3.32 h (irbesartan) and 5.39 h (candesartan). Retinal tissue AUC of irbesartan was
941 ng/g*h while the corresponding AUC of candesartan reached 210 ng/g*h. In relative
numbers irbesartan retinal tissue AUC was around 4.5 times higher than the corresponding
candesartan AUC. Vitreous humor drug exposure was low for both substances. Study eye
concentrations were above the respective lower limit of quantification at one time point for
irbesartan (14 ± 16 ng/g at T0.5) and at no timepoint for candesartan (Table 2).
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Table 2. Retinal tissue (RT) and vitreous humor (VH) concentrations of irbesartan and candesartan at
each time point in the study and the control eye. Data are shown as means ± SD in ng/g.

Study Drug T0.5 T1.5 T3.0 T6.0 T12.0

1.5% irbesartan

RT-Study eye (ng/g) 251 ± 143 177 ± 89 134 ± 51 37 ± 34 21 ± 2
RT-Control eye (ng/g) 23 ± 34 <5 <5 <5 <5
VH-Study eye (ng/g) 14 ± 16 <5 <5 <5 <5

VH-Control eye (ng/g) <5 <5 <5 <5 <5

0.15% candesartan

RT-Study eye (ng/g) 63 ± 39 33 ± 22 27 ± 9 9 ± 4 9 ± 3
RT-Control eye (ng/g) <2 <2 <2 <2 <2
VH-Study eye (ng/g) <2 <2 <2 <2 <2

VH-Control eye (ng/g) <2 <2 <2 <2 <2

2.1.3. Multiple Dose Bio Distribution

The mean concentrations (Cmean) in aqueous humor, corneal tissue, retinal tissue and
vitreous humor of both eyes 1 h ± 30 min after the last dose of irbesartan or candesartan
are presented in Table 3. Similarly to the single dose results, irbesartan eye drops reached
nominally higher overall concentrations than candesartan eye drops in the treated eyes. The
study eye Cmean of retinal tissue was 338 ± 124 ng/g for irbesartan and 36 ± 10 ng/g for
candesartan while the vitreous humor mean concentrations were 13 ± 5 ng/g (irbesartan)
and <2 ng/g (candesartan).

Table 3. Tissue concentrations of irbesartan and candesartan after multiple doses of 1.5% irbesartan or
0.15% candesartan in the study (SE) and the control eye (CE). Data are shown as means (Cmean) ± SD.

1.5% Irbesartan 0.15% Candesartan

Tissue Samples SE (ng/g) CE (ng/g) SE (ng/g) CE (ng/g)

RT 338 ± 124 7 ± 8 36 ± 10 <2
VH 13 ± 5 <5 <2 <2
AH 231 ± 68 <5 70 ± 22 <2
CT 9027 ± 2156 39 ± 30 7468 ± 908 <2

2.1.4. Blood-Plasma PK

The highest plasma concentrations of both irbesartan (Cmax 5.64 ± 4.08 ng/mL) and
candesartan (Cmax 4.32 ± 1.04 ng/mL) were reached 0.5 h (Tmax) after single administration.
The plasma half-life and AUC for irbesartan were 17.60 h and 17.64 (ng/mL)*h, respectively.
For candesartan a T1/2 of 9.74 h and AUC of 8.75 (ng/mL)*h were calculated. After the
last dose of one of the study drugs mean plasma levels (Cmean) of 4.21 ± 1.59 ng/mL for
irbesartan and 4.78 ± 1.48 ng/mL for candesartan were observed.

2.2. Part 2: Toxicity and Local Tolerability

All six rabbits completed the study according to the protocol. No reduction in corneal
sensitivity was observed during the course of the study. Further, no signs of discomfort
became evident during the whole study period. In detail, no conjunctival edema, conjunc-
tival redness, abnormal secretion, corneal opacity or iris involvement could be detected
using the modified Draize test scoring system. Dilated fundoscopy was unremarkable at
all examinations on study days 1, 15 and 29 in all animals. All assessed vital signs (body
weight, heart rate, respiratory rate, body temperature) remained within the normal range
throughout the study.
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3. Discussion

Irbesartan and candesartan are specific competitive antagonists of the angiotensin II
receptor (AT1 subtype) and have been proposed as a potential treatment option for ocular
diseases. Here, we report high ocular tissue concentrations combined with low systemic
drug exposure after topical administration for both γCD based candesartan and irbesartan
eye drops. Further, both drug formulations were well tolerated on the ocular surface and
did not cause severe adverse events in the selected rabbit animal model.

CD based pharmaceutical technologies have significantly evolved since the early
80’s. Chemically speaking, CDs are water-soluble cyclic oligosaccharides which can form
nanoparticles [16]. As such, a large variety of CDs and their derivatives have been devel-
oped, for example, 2-hydroxypropyl-βCD, sulfobutyl ether βCD and 2-hydroxypropyl-
γCD, each with different chemical and physical properties [21]. As their major principle
of action, CDs are capable of forming guest–host inclusion complexes, whereby lipophilic
drugs with poor aqueous solubility can be entrapped in the hydrophobic cavity without
being covalently bound. Thus, aqueous solubility is improved due to the hydrophilic
properties of the external surface of the CD molecule [18,21]. CDs enhance drug perme-
ation from the tear fluid by enhancing drug permeation through the mucus layer and,
thus, increasing the availability of dissolved drug molecules immediate to the lipophilic
membrane barriers (i.e., cornea and conjunctiva).

The use of CDs in topical ocular drug formulations has been recently reported to
improve the solubilization of various substances including corticosteroids, medications for
glaucoma treatment and immunosuppressive agents [17,22,23]. In particular, CDs enhance
ocular permeability of poorly soluble drugs through the lipophilic corneal epithelial mem-
brane and increase their bioavailability in the anterior chamber [24]. The data of our study
indicates that this holds also true for the two formulations tested in our study.

As such, our data show an anterior chamber concentration with a Cmax of 121 ng/g
for irbesartan and 30 ng/g for candesartan, respectively. Further, our results indicate that
at the level of the retina drug concentration reached 251 ± 143 ng/g for irbesartan and
63 ± 39 ng/g for candesartan with a maximum effect 30 min after single administration.
In this context, IC50 for candesartan and irbesartan is reported to be between 0.4 nM and
1.3 nM, respectively with candesartan showing a minutely but consistently higher affin-
ity [25,26]. Thus, assuming a molar weight of 428.54 g/mol for irbesartan and 440.45 g/mol
for candesartan, retinal tissue Cmean in our multiple dose experiments were 789 nM (irbe-
sartan) and 82 nM (candesartan) while single dose Cmax values correspond to 586 nM
(irbesartan) and 144 nM (candesartan), exceeding the IC50 concentration about 500-fold
for irbesartan and 100-fold for candesartan. This suggests that with both candesartan
and irbesartan eye drops, pharmacologically relevant concentrations can be reached in
the back of the eye. Our data also indicates a higher biodistribution of irbesartan in the
ocular tissues, which may be related to the higher drug load of the irbesartan γCD -based
nanoparticles. Additional studies are needed to further investigate this issue. Further,
significant concentrations of the study drugs in all assessed tissues and compartments were
found in the study eye, while systemic absorption was relatively low. This is both reflected
in the low plasma concentrations and in the finding that almost no evidence of the drug
was found in the control eye.

Our finding that γCD based formulations may be a potential option for increased
drug delivery to various tissues of the eye including the posterior pole is also supported
by previously published studies using a variety of different CD based drug formulations.
Indeed, several lipophilic drugs have been tested using CD formulations to achieve higher
drug concentrations in the posterior and anterior pole of the eye [27–31]. As such, Larsen
and colleagues showed that different CD based formulations of prednisolone are able to
improve the drug solubility, increase drug concentration and in turn, ameliorate bioavail-
ability [32]. Further, an in vivo study in rabbits by El-Gawad and colleagues reported that
eye drop formulations containing CD/econazole complexes showed higher ocular bioavail-
ability than econazole alone, indicated by higher AUC, Cmax, and relative bioavailability
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values [33]. Comparable observations have been reported by Abdelkader et al., where a
diclofenac complex with CD has been reported to feature a higher transfer rate through the
cornea compared to free drug administration [34].

Our data show that γCD irbesartan and candesartan nanoparticle eye drops are well
tolerated on the ocular surface. In particular, our 4 weeks ocular tolerance study showed
an excellent safety profile with no signs of adverse effects on the ocular surface or deeper
tissues of the eye. Again, these results are in keeping with previous studies on γCD based
eye drops. On the report of several studies, the natural γCD has a favorable toxicological
profile, high solubility and good complexation capacity when compared with other CD
derivatives [35]. In particular, previous data from animal models indicate that formulations
of γCD/cyclosporine are tolerated well on the eye up to 3 months of administration [23].

Although a variety of different competitive antagonists of the angiotensin II receptor
are in principle available for clinical use, the decision to use irbesartan and candesartan
based γCD eye drops in our study was based on pre-formulation experiments. Data from
these pre-formulation studies showed that irbesartan had the highest affinity for the γCD
cavity among the tested compounds which included telmisartan, olmesartan, irbesartan
and candesartan. Further, although the complexing efficiency of the candesartan γCD
complex was lower, candesartan has been chosen as potential second drug for further
development because of its good receptor affinity and potent in-vivo drug effects.

The present study also has some limitations that warrant further discussion. First,
given that drug concentration measurement required post-mortem enucleation and dissec-
tion of the eye, only five animals are available per timepoint. A larger number of animals
would certainly allow for a higher precision and reliability of calculated PK parameters
but must be outweighed against ethical and animal welfare considerations. However,
we feel that the current data is solid enough to allow valid conclusions regarding the
tissue PK and tolerability of the surface. In the future, more sophisticated methods such
as ocular microdialysis as described previously may provide approaches to help reduce
animal numbers [36]. Other methods for molecular imaging to determine biodistribution,
such as position emission tomography (PET), single-photon emission computed tomog-
raphy (SPECT), magnetic resonance imaging (MRI) or Confocal Raman spectroscopy are
also currently under development and may provide non-invasive alternatives to assess
biodistribution in vivo [37,38]. Secondly, our tolerability data is limited to a twice-daily
administration at a maximum time span of 28 days. Therefore, long-term adverse effects
becoming evident after that time point cannot be excluded.

In conclusion, the data provided in this study demonstrate that γCD based irbesartan
1.5% and candesartan 0.15% eye drops deliver a significant amount of drug substance
to several ocular tissues including the posterior pole of the eye. It confirms that it is
possible to achieve effective trans-ocular delivery of lipophilic drugs, such as irbesartan
and candesartan, by producing a complex with CD nanoparticles. Together with the good
tolerability profile, the results suggest that γCD may be useful for the formulation of a
variety of poorly water-soluble drugs that have not been available as commercial topical
eye drops.

4. Materials and Methods
4.1. Test Animals

Female New Zealand White (NZW) albino rabbits were used in this study. All test
animals were acclimatized at least one week prior to the study and housed under the
following standardized conditions: artificial day tonight rhythm 12:12, room temperature
20 ◦C ± 2 ◦C and humidity 55 ± 5% with food and water ad libitum. This study was
carried out in compliance with the European Directive 2010/63/EU, the Austrian Tierver-
suchsgesetz (BGBL I Nr. 114/2012) and the Austrian Tierversuchsverordnung (BGBL II Nr.
522/2012) (approval numbers: BMBWF-66.009/0206-V/3b/2018, BMBWF-66.009/0135-
V/3b/2019, approved on 13 July 2018, 08 April 2019) and in accordance with the Good
Scientific Practice Guidelines of the Medical University Vienna.
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4.2. Study Drug Compounds

In the CD nanoparticle suspensions, 1.5% irbesartan and 0.15% candesartan as de-
scribed previously in detail [39], were applied as eye drops in this study. Pre-formulation
studies with different candesartan (0.1–0.2%) and irbesartan (1.0–2.0%) concentrations were
performed to find the optimal drug concentration for the animal experiments. Based on
this data, it was concluded that the optimal formulations were 0.15% candesartan and 1.5%
irbesartan eye drops, both of which exhibited good physicochemical parameters as well as
physical and chemical stability. Details regarding stability are given in supplemental Table
S1. Eye drops were stored protected from light at room temperature (25–30 ◦C).

4.3. Experimental Paradigm
4.3.1. Part 1: Bio Distribution and Pharmacokinetics

A total number of 59 rabbits were included in this part of the study. All rabbits were
consecutively assigned to one of the two study groups. In group 1, 26 rabbits received
a single dose of 1.5% Irbesartan eye drops whereas 5 rabbits received multiple doses of
the same irbesartan eye drops. Group 2 animals were dosed with 0.15% candesartan eye
drops, while 23 rabbits received a single dose and 5 rabbits received multiple doses of the
eye drops. Single dose rabbits of both groups were additionally randomized to one of
five euthanasia time points: 0.5 h ± 5 min, 1.5 h ± 5 min, 3 h ± 10 min, 6 h ± 15 min or
12 h ± 30 min after instillation. In all animals, 35 µL of the study drug were instilled in
the conjunctival sac of the right eye with a calibrated pipette using single-use dispensers.
Single dose animals were instilled only once while multiple dose animals were instilled
twice daily for a total of 5 days. In all animals only the right eye was treated. To assess drug
concentrations, eyes were enucleated at the end of the study period. Before enucleation,
rabbits were euthanized in deep anesthesia (ketamine 60 mg/kg, xylazine 16 mg/kg, s.c.)
by an intravenous over-dose of pentobarbitone sodium (300 mg/kg i.v.) and enucleation
was performed immediately after euthanasia. Single dose animals were enucleated at one
of the five specified time-points. Multiple dose animals were euthanized 1 h ± 30 min
after the last drug administration. From each animal both eyes were enucleated and stored
at −80 ◦C. For separation of the different ocular tissues, the eyeball was removed from
−80 ◦C storage and corneal tissue, aqueous humor, vitreous humor and retinal/choroidal
tissue were dissected. The tissues were collected separately in individual tubes, which
were weighed and then stored at −80 ◦C.

Blood Sampling

A venous blood sample of 2 mL was collected from the saphenous vein before the
(first) drug administration and prior to euthanasia to determine systemic drug exposure
at baseline and after drug administration. The blood was centrifuged for 10 min at a
temperature of 10 ◦C and a speed of 3000 rpm. The resulting supernatant was separated
and stored in a tube at −80 ◦C until further processing.

Determination of Drug Concentrations

Both, the eye-tissue and plasma samples were shipped to Nucro-Technics (Nucro-
Technics, 2000 Ellesmere Road, Unit #16, Scarborough, ON, Canada) for quantitative
analysis. For this purpose, a new liquid chromatography/tandem mass spectrometry
method for simultaneous quantification of candesartan and irbesartan in rabbit eye tissues
including cornea, aqueous humor, vitreous body and retina was developed. The exact
method and validation are described in detail elsewhere [40].

4.3.2. Part 2: Local Tolerability

Local tolerability and potential adverse effects of 1.5% irbesartan were assessed in a
group of 6 rabbits. One drop equaling 35 µL of 1.5% irbesartan was instilled twice daily
into the conjunctival sac of the right eye of each rabbit at 8:00 a.m. ± 1 h and 4:00 p.m.
± 1 h for a total duration of 28 days using a standard eye drop dispense bottle provided
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by the manufacturer. The left eye was left untreated and served as control. A five-item
modified Draize test [41] scoring system was used to assess local tolerability of the study
drug. It included conjunctival edema (chemosis), redness in conjunctiva, secretion, corneal
opacity and iris involvement. Ocular assessment was done before and after the first dose on
the first study day, on the second study day and thereafter on a weekly basis using a hand-
held slit lamp. Further, dilated fundoscopy (indirect ophthalmoscopy) was performed
before the first dose and afterwards every second week (study day 15 and 29) using topical
0.5% tropicamide eye drops for pupil dilation. Corneal sensibility was quantified using a
Cochet–Bonnet esthesiometer (Luneau Ophthalmologie, Chartres Cedex, France) [42] at the
same time points as fundoscopy. Heart rate, respiratory rate, body temperature and body
weight were monitored in regular intervals throughout the study. After 28 days, animals
were euthanized in anesthesia as described above.

4.4. Statistical Analysis

This study was designed to assess pharmacokinetics and local tolerability, no formal
sample size calculation has been performed. Descriptive statistics was used for all quan-
titative data to describe drug concentrations after the single and multiple dosing in the
different tissues. Using the drug concentrations measured in the tissue samples maximal
drug concentration (Cmax), time of maximal drug concentration (Tmax), half-life time (T1/2)
and area under the curve (0 h–12 h; AUC) were calculated. For pharmacokinetic calcula-
tions Phoenix WinNonlin 8.1 (Certara, Princeton, NJ, USA) was used, and the statistical
analysis was done using CSS Statistica 6.0 (Tulsa, OK, USA).

To facilitate calculation of the PK parameters, a plausibility check was performed
and values below the lower limit of quantification (BLOQ; plasma: <0.05 ng/mL; tissue:
<5 ng/g (irbesartan), <2 ng/g (candesartan)) were set to 0. Moreover, one 6 h irbesartan
plasma concentration, which differed more than 10-fold from the mean of the other irbesar-
tan 6 h concentrations (65.24 ng/mL vs. 1.16 ng/mL) was defined as an outlier and was
therefore not taken into consideration for the presented PK profile. All baseline plasma
sample values were set to zero.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14050480/s1, Table S1: Percent (%) drug remaining in eye drop formulations stored for 6
months under accelerated and long-term storage conditions (n = 3, Mean ± S.D.).
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