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Abstract: In the past two decades, significant efforts have been put into designing small molecules to
target selected genomic sites where DNA conformational rearrangements control gene expression.
G-rich sequences at oncogene promoters are considered good points of intervention since, under
specific environmental conditions, they can fold into non-canonical tetrahelical structures known as
G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small
molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein,
which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes
along with their highly polymorphic behavior may account for this scenario, suggesting the need
for more focused drug design strategies. Here, we will summarize the G4 structural features that
can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the
well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary
structures might cooperate to control genome architecture at a higher level. If this holds true, the link
between drug–DNA complex formation and the associated cellular effects will need to be revisited.

Keywords: G-quadruplex; folding landscapes; gene promoters

1. Introduction

The long history of anticancer chemotherapy started with the identification of small
molecules that were able to impair biological processes involving DNA function by either
directly targeting the double helix or acting at the interface of DNA processing enzymes.
These compounds showed good efficiency and many of them are still first-line treatments
for several cancer diseases. However, the main drawback of these drugs lies in their low
selectivity for cancer cells, with the consequent occurrence of severe off-target effects.

An entirely novel perspective for cancer therapy appeared with the discovery of telom-
erase, a protein soon identified as a fundamental actor in aging and cancer regulation [1].
Notably, telomerase activation has been detected in most tumor cells but not in normal cells;
thus, it appears to be a suitable target for selective therapeutic approaches. In addition,
it turns out that telomerase processes only on a unique DNA template, a single-stranded
DNA repeat at the 3′-end of telomeres (e.g., TTAGGG in eukaryotes). In the medicinal
chemistry field, these findings represented a revolution. Indeed, telomeric repeats can fold
into G-quadruplexes (G4s), which are nucleic acid secondary structures that significantly
differ from the canonical double helix [2]. Indeed, in G4s, canonical A-T or G-C base
pairs are substituted by G-tetrads—structural elements consisting of four guanines paired
through Hoogsteen hydrogen bonds that form planar arrays. These wide aromatic surfaces
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stack over each other, arranging in a tetrahelix with four grooves further stabilized by
monovalent cations, such as K+ or Na+.

The discovery of alternative DNA folding at telomeres highlighted G4s as easily
druggable targets to prevent telomerase activity, thus leading to selective anticancer therapy.
Indeed, the impairment of the maintenance of telomere length was expected to be toxic only
for those cancer cells that rely on telomerase to support cell survival. As a result, several
drug discovery projects started to transform the already known double-stranded DNA
binders into G4-targeted agents able to either selectively induce or stabilize G-quadruplex
folding [3,4]. In order to direct intercalating agents towards telomeric G4s, the first strategies
were devoted to increasing the ligands’ aromatic surface and decorating them with more
than two cationic side chains with appropriate steric hindrance. Promising results were
achieved, and several compounds with a significant preference for G4s versus the canonical
double helix were identified. Consistently, these derivatives were capable of inhibiting
telomerase activity while they did not largely affected other DNA processing enzymes.
Nevertheless, deeper investigations of the cellular effects that occurred following drug
treatment indicated a systematic unbalance of multiple biological pathways.

This general output suggested that G4s might be involved in biological processes
other than telomere maintenance. Consistently, bioinformatic analyses have highlighted
the fact that putative G4-forming sequences are enriched at other genomic loci besides
telomeres [5,6]. More recently, the results from several ChIP-Seq, CUT&Tag, and related
sequencing studies in cells have supported this evidence as well [7,8]. In particular, it
was demonstrated that they often cluster at the proximal promoters of oncogenes. Thus,
the possibility of silencing oncogene expression by inducing or stabilizing G4s outside
of the telomeres was extensively explored [9,10]. This strategy presumed that the occur-
rence of a non-canonical structure in this region would prevent the proper recruitment of
transcriptional machinery. This correlation was supported by studies in cells transfected
with a plasmid where the luciferase promoter alternatively accommodated the G4-forming
domain or a related mutated sequence that was unable to form a tetrahelix. The early
experimentally tested examples concerned MYC, VEGF, and BCL2 [11–13].

Additionally, it has been observed that specific proteins in cells can stabilize G4
formation at gene promoters. Among them, nucleolin has been identified as a G4 binding
protein occurring at the MYC promoter and, more recently, at the promoter of the androgen
receptor gene [14,15]; the overexpression of nucleolin in the cell has been confirmed to
impair protein production by these genes.

It is noteworthy that, for all these models, gene silencing was amplified by cell treat-
ments with ligands able to bind and stabilize G4s. These data provided an opportunity to
drive the selective reduction in oncoprotein production by using small molecules. Unfor-
tunately, the targeting of G4s turned out to be a multifaceted event, since several genes
can accommodate G4s at their promoter; this leads to a widespread silencing of protein
expression upon cell treatment with G4 binders [16]. As long as the overall reduction
in protein production covers only oncogenes, the lack of selectivity might be considered
beneficial for therapeutic purposes, likely resulting in a stronger anticancer efficiency and
limited failure of treatment with mutations occurring at a single target site. However, this
is not always the case, since G4 stabilization can silence both oncogenes and oncosuppres-
sor genes. Moreover, although no clear rational mechanisms have been provided, it has
emerged that at specific sites, G4 may even induce an increment in gene expression [16,17].
Overall, it appears that the combination of these responses might lead to unpredictable
effects. This evidence further supports the need to move towards the design of targeting
agents able to discriminate a single or a limited number of G4s among the large number
present in living cells. As an example to summarize the complexity of this landscape in
cells, it is worth mentioning that 17,950 robust G4s were recently mapped in pluripotent
hESCs [18].

Since the rational design of selective targeting agents requires detailed structural
information about the target of interest as well as the telomeric G4, the high-resolution
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structures of many G4s occurring at different genomic sites have been characterized and
compared. Currently, by simply focusing on DNA G4s, 321 structures have been deposited
(https://www.rcsb.org/, accessed on 24 February 2022), with the large majority being
related to human sequences. Among these, the presence of two or more G-tetrads along
with the occurrence of four grooves are conserved structural features. However, according
to the specific primary sequences, G4s may show unique features, including, for instance,
the relative arrangement of the strands, the organization of connecting loops, and the
presence of capping elements. Thus, these variable tridimensional elements have become
a basis for the rational design of small molecules aiming at selectively recognizing each
single G4.

Despite the enormous efforts devoted to drug design that have led to the identification
of a large number of G4 binders, we are still far from the goal of recognizing a single G4,
and no compound is currently near to reaching clinical use.

A primary reason for this poor outcome lies in the polymorphic behavior of the G4-
forming sequences. This feature has been known since the initial structural studies focusing
on telomeric G4s were conducted. In fact, the first reported high-resolution structures
of telomeric G-quadruplexes referred to a parallel and antiparallel G4 arrangement [19].
Subsequently, other telomeric G-quadruplex structures have been discovered under physi-
ological conditions, i.e., hybrid G4s or G4s with just two G-tetrads [20–23] (Figure 1). The
large number of solved structures reflects the immediate responsiveness of telomeric G4s
to environmental changes (e.g., relative concentrations of metal ions, mainly K+ or Na+,
and crowding conditions) and sequence frame selection, especially base composition at
the 5′ and 3′ ends [24–26]. Even though this strategy could provide valuable tools for
rational drug design, there is still a lack of accurate information on the relevance of all
these conformations and their possible functions in vivo. As a result, as it was recently
shown using in cell NMR, the recognition of G4s by small molecules in a test tube can be
extensively altered in the complex intracellular environment [27].
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(PDB 2KKA).

Another issue related to the polymorphism of G4s is even more complex to unveil.
Specifically, it refers to the proper evaluation of the relevance of kinetically favored species
in a physiological environment.

Finally, it is noteworthy that the telomeric end consists of a single-stranded G-rich
sequence ready to fold into a G4. The same does not apply to G-rich sites within the
genome, where a putative G4-forming sequence is paired with a complementary strand.

https://www.rcsb.org/
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Thus, G4 folding at these sites requires the unwinding of the double-stranded DNA as a
preliminary step. This event can be regulated and can proceed through different pathways
according to the nucleic acid sequence and surrounding environment.

Here, we will summarize critical results obtained from investigations of a G-rich
domain located at the proximal promoter of the KIT oncogene. Moreover, we will correlate
these data to the acquired knowledge of telomeric sequences in order to identify the main
features that make G4s valuable targets for selective anticancer therapy.

2. Formation of G-Quadruplex Units at the KIT Promoter

Several gene promoters contain putative G4-forming sequences (PQS); however, as
anticipated, these sites are significantly enriched at oncogenes. Their presence at critical
genomic loci can be exploited from a therapeutic point of view. However, G4 stabilization
is not always sufficient to grant complete gene silencing, and, in some cases, it can even
result in gene overexpression [16]. Additionally, only a limited number of deregulated
oncogenes are known to drive each pathology. Thus, as is intrinsically required for any
targeted approach, the accurate selection of the target is a prerequisite for setting up
effective treatments.

Among the oncogenes that contain PQS at the proximal promoter, the proto-oncogene
KIT is highly interesting for drug design. This gene encodes a receptor kinase (c-kit)
involved in controlling cell proliferation, migration, maturation, and survival. Consistently,
the overexpression and mutation of this oncogene are correlated to the occurrence and
sustenance of several malignancies, i.e., gastrointestinal stromal tumors, mast cell tumors,
nasal T-cell lymphomas, seminoma/dysgerminoma, and acute myeloid leukemia [28]. The
proximal promoter of KIT contains at least three G-rich sequences whose potential to fold
into G4s and control gene expression has been confirmed (Figure 2). It is noteworthy that
the high-resolution structures of the G4 adopted by these sequences have been obtained and
shown to exhibit specific structural features making each of these units a unique structural
domain. Both kit1 and kit2 fold into a parallel G4, but they are still very different from
each other. Within the G4 structure assumed by kit1, one spare guanine is recruited to
complete a G-run, forming a wide cleft [29]. Conversely, two different species, a monomeric
and a dimeric structure, have been reported for kit2 G4 [30,31]. Finally, kit* folds into a
monomeric two-tetrad antiparallel G4 that is further stabilized by capping elements, in
particular, a stable GC Watson–Crick base pair stacking below the 5′-tetrad [32].
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each other.
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These structural data prompted multiple virtual and in vitro screenings of small
molecules to identify new entities with the ability to stabilize the G4 arrangements occur-
ring at the KIT promoter. A direct correlation between G4 induction/stabilization and a
reduction in the overexpression of c-kit has been systematically observed [33–36]. How-
ever, no compounds have appeared to be highly selective for KIT-related G4s compared
to those occurring at other sites, nor do they discriminate among the solved G4 of KIT
promoter [37,38].

Unveiling the G4 structures among those resolved that can fold in the intracellular en-
vironment is an essential requirement to determine the functional roles of G4s in biological
processes and, eventually, guide our drug design efforts.

3. Differential Folding Landscapes of G-Quadruplexes at the KIT Promoter

As anticipated, the dissection of the G-quadruplex folding landscape is a relevant piece
of information when mapping the structural evolution of PQS in the nuclear environment.
Indeed, folding intermediates, which are structurally distinct from the characterized ther-
modynamically favored species, could show half-life times compatible with the timescale
of physiological processes [39]. Considering this aspect, we cannot rule out that the control
of biological functions in the cell might be driven by the kinetically favored G4s, rather
than the more thermodynamically stable G4s. The main difficulties in addressing this point
lie in properly identifying the number of folded/misfolded species, characterizing their
structures, and quantifying their relative distribution over time. A relatively large amount
of data has been collected using different models, with the telomeric sequence being most
commonly represented [40–42]. These studies confirmed the occurrence of other transient
species besides those already solved, increasing the number of known telomeric DNA
conformations (see Figure 1).

When considering the sequences located at gene promoters, it should be kept in mind
that, as observed for KIT, multiple PQS domains might be present that commonly are not
conserved in terms of their primary sequence and, consequently, folding landscape. In
solution studies focusing on the studied sequences located at the promoter of KIT indicated
that the folding of kit* and kit1 into a G4 is fast, and the final species correspond to the
solved structures. Conversely, kit2 shows a complex folding pathway. First, the wild-
type sequence folds into a monomeric and dimeric G4, whose relative abundances in
solution are correlated to the oligonucleotide concentration. Moreover, the folding process
can be divided into a fast-folding step and a subsequent slow-folding step (Figure 3a).
This pathway is similar to that reported for the telomeric sequence [43]. The first step is
completed within seconds and involves at least one G-quadruplex form (G4-1 in Figure 3a),
while the second folding step leads to the formation of the above-mentioned monomeric
and dimeric parallel G4s (G4-2 and G4-3 in Figure 3a, respectively). The final species do not
interconvert one into the other [44]. Only monomeric species are expected to be relevant
in physiological conditions. However, the high efficiency of dimer formation prevents
the acquisition of unbiased evidence regarding the folding process of the monomeric
forms only.

Properly designed single-molecule analyses can help to address this issue. In a recent
study where FRET analyses were performed, a low sample concentration in solution
prevented the occurrence of dimer formation [45]. As reported in Figure 3b, two different
constructs were designed. In the first construct, the fluorescent labeling groups were
attached at the 5’- and 3′-end of the G-rich domain, mimicking a model previously used
for kinetic analyses in bulk. In the second construct, the FRET pair was inserted within
two double-stranded flanking domains added at the terminals of the G-rich core. This
model was designed to represent the formation of the G4 within the double-stranded
promoter region. As expected, in the absence of K+, both constructs behaved as an unfolded
system. Conversely, in the presence of the cation, three main species were identified:
one corresponding to a residual fraction of unfolded DNA (U), and two characterized
by higher FRET efficiencies, conceivably related to the folded species. Following their
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kinetic formation allowed for their association with the two monomeric G4s (the fast-
and slow-forming G4-1 and G4-2, respectively) previously characterized through bulk
experiments. It is noteworthy that these FRET analyses highlighted an increment in
the relative concentration of G4-1 vs. G4-2 in the longer construct, further supporting
the relevance of the kinetic intermediate in the physiological environment. A setup of
magnetic bead constructs designed to follow the G4 folding of kit2 embedded in a transient
DNA duplex further supported the relevance of the surrounding dsDNA environment in
modulating the kinetics and stability of G4s [46]. This correlation can be extended to any
G-rich sequence, although the interplay of the two different structural domains is, again,
largely modulated by the selected G4-forming sequence.
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4. Conformational Selection of G-Quadruplexes as a Tool for Selective
Functional Targeting

The folding landscape described above further supports the occurrence of two different
physiologically relevant monomeric G4 arrangements at kit2. It can be assumed that
both might represent suitable targets for silencing oncogene expression. Still, the results
described above do not provide any clues concerning which arrangement might be more
useful as a target for a drug design program.

This issue is a well-known bottleneck in medicinal chemistry. To dissect this point, a
useful approach consists of using small molecules to promote a conformational selection
and trap a single G4 conformation; from this perspective, some ligands that are able to
target a unique state of the telomeric G4 have been tested [47,48].

This approach, which could also be applied to target kit2, was tested by selecting
two different perylene derivatives, namely PIPER and K20 [49]. Previous studies have
highlighted that these two structurally related compounds do not form similar complexes
with the telomeric sequence [50]. When tested in the presence of kit2, a native mass
spectrometry analysis showed that G4-1 and G4-2 were the most abundant folded species in
solution at a low potassium chloride concentration. When PIPER, a well-known G4 binder,



Pharmaceuticals 2022, 15, 373 7 of 13

was included in the reaction, both species were recognized and their relative distribution
was conserved. Conversely, in the presence of its derivative K20, the equilibrium was
shifted mainly towards the stabilization of G4-1 (Figure 4). Freezing this intermediate
allowed us to better understand its structural features. In this case, the native mass data
and chiroptical signature address G4-1 as a two-tetrad G4, which is compatible with an
antiparallel arrangement.
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These results offer a new perspective to define the relevance of different G4 topologies
within a physiological environment. Indeed, this approach can provide new tools to
selectively dissect the functional consequences of stabilizing specific folding intermediates
in cells. Unfortunately, PIPER and K20 are not selective ligands for kit2. Indeed, as
mentioned above, they can efficiently bind other G4 sites. In addition, they retain a relevant
affinity for dsDNA. As a result, it can be expected that their use in the cell would not provide
an output strictly related to the discussed specific conformational selection. Moreover, as
suggested by the herein tested derivatives, the differential stabilization of one or more
G4s depends on a very limited selection of structural features, thus further highlighting
the difficulty of systematically predicting the preferences for a single G4 form within a
polymorphic mixture.

5. Hierarchical Organization of G4 Repeats

The repetitiveness of G-rich sequences represents a peculiar feature of telomeres. As
a consequence, the single-stranded 3′-end of telomeres can accommodate multiple G4s.
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In this case, they can fold as independent units (beads-on-the-string model) or mutually
interact (cross-talking beads model). Independent from the preferred folding model of the
telomeric sequence, a further issue is associated with the tendency of these long repeats to
form the maximal number of G4 units or not. Currently, accumulating evidence points to
the formation of the maximal number of G4 units: this corresponds to the occurrence of
several folded G4s spatially close to each other [51,52].

The final telomeric assembly can be considered as a higher-order G4 tridimensional
architecture that can be exploited for selective targeting [53,54].

The occurrence of repetitive G-rich sequences and the consequent formation of repet-
itive G4s is a property shared by a limited number of G-rich regions within the genome.
A significant example is the insulin-linked polymorphic region (ILPR), located upstream
the transcriptional start site of the insulin gene, where the most prevalent tandem repeats
correspond to the (ACAGGGGTGTGGGG) sequence [55].

It is also possible to identify a small subset of gene promoters where many G4s pre-
senting different sequence compositions and topology are closely clustered. An intriguing
example is found in the hTERT promoter, where the formation of three contiguous G4s can
compete with an arrangement where two G4s are separated by one hairpin [56,57].

A critical feature differentiating the G-rich sequences at the telomeres and promoters is
the localization of the latter within a double-stranded DNA template. Multiple experimental
techniques have confirmed that G4 formation is not limited to the telomeric sites in living
cells [58]. However, the ability of promoters to accommodate the maximal number of G4s
in physiological conditions is still under investigation. Since the G-rich domain of the
KIT promoter fits into this frame, it represents an excellent model to address this issue.
Thus, the G-rich domains of the KIT promoter were inserted within a long dsDNA frame
to be studied at the single-molecule level by a magnetic tweezer approach (Figure 5a).
As a novelty, a low pulling forces regime was selected [59]. Under these experimental
conditions, the relaxed double helix could not unwind. However, under supercoiling
conditions, the applied forces were sufficient to convert the so-formed supercoiled DNA
into a denaturation bubble. The rationale for this design lies in the fact that the formation
of G4s can occur after duplex unwinding, since the low applied forces cannot unfold them.
Based on the energy applied to unwind the template, the size of the denaturation bubble,
and their dependence upon the presence of K+ in the sample, it was possible to support the
simultaneous formation of three G4s at the G-rich domain of the KIT promoter.
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As anticipated, the formation of multiple G4s can lead to a direct interaction between
the folded domains. This interaction may influence both the folding topology and overall
stability of the tetrahelical arrangements, thus representing a further attractive site for
intervention by small molecules. As far as the telomeric repeats are concerned, the most
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recent evidence points to a full range of possible organizations of the repeating G4 units.
The occurrence of a G4:G4 interface is transiently present [52]. The same was foreseen
for the kit2-kit* sequence due to the short G4–G4 connecting loop (three nucleotides)
corresponding to the spacing of the telomeric G4 units. Although the topology of kit2
and kit* were significantly different with respect to that of the telomeric sequence, a
spectrophotometric investigation of this sequence supported an interaction between the
two G4 domains of KIT (Figure 5b) [60]. Notably, this might involve one cupping element
of the kit* domain that, in this way, can use the kit2 external tetrad as a sort of template
surface [61].

This emerging picture is consistent with the existence of a G4–G4 interaction. However,
the low interaction energy indicates that G4–G4 crosstalk is a transient structural element
that will be difficult to properly exploit for an efficient rational drug targeting approach;
however, it is still worthy of further investigation [62].

6. G4 Repeats and Protein Recruitment in Cell

The potential targeting of G4s is highly attractive since the conversion of nucleic acids
into a such structure represents a signal that can regulate protein recruitment at defined
genomic sites [63,64]. Remarkably, some proteins either recognize and process G4s or are
displaced from the nucleic acid upon G4 formation; others, such as Yin and Yang 1, may use
spatially distant G4 units to drive long-range DNA looping [65]. These variegate models
suggest that we should consider G4s as “epigenetic” regulatory elements. Several examples
have been reported in terms of the recruitment/displacement of transcription factors at
specific loci. As an example, considering the kit2kit* G-rich sequence, it was confirmed
that the affinity ranking for the transcription factor SP1 was kit2 < kit* < kit2kit* [66,67].
However, this ranking order referred to the binding of the transcription factor to double-
stranded sequences. In the presence of G4 substrates, the residual DNA–protein interaction
was very weak in all cases, thus hampering the possibility of quantifying the contribution
of the tandem G4 formation to SP1 binding.

Nevertheless, due to the above-mentioned variable features and the stability of G4
repeats in contrast with isolated G4s, it is intriguing to consider that these two groups of
secondary structures may play distinct roles in the cells. However, no data are available
concerning any relevance of G4 repeats as functional entities that are actively involved
in regulatory functions (i.e., telomere capping and gene transcription and translation).
Studying the proteins that are able to selectively recognize G4 repeats could be a strategy to
address the specific functions of these DNA structures. Pull-down experiments on nuclear
extracts were performed to identify proteins that preferentially bind G4 repeats rather than
isolated G4s (Figure 6) [68]. Remarkably, it turns out that vimentin, an intermediate filament
protein, can bind G4 repeats with high affinity. In contrast, it does not recognize isolated
G4s nor the same G-rich sequences when arranged in single- or double-stranded forms.
An investigation of the relevance of this interaction is still underway. Preliminary data
indicate a significant correlation between the proteins expressed by genes containing G4
repeats at the proximal promoter and the established biological activity of vimentin. This
evidence opens a completely new range of possibilities. Since the higher-order architectural
organization of G4s selectively recruits proteins, it is possible to exploit the protein–DNA
interface as a novel target site. In this scenario, it is important to underline that vimentin
is one of the most relevant factors supporting the epithelial–mesenchymal transition and
providing mobility to cancer cells; it is consistently considered as an indicator of poor
prognosis. Thus, the remodeling of its DNA binding profile in cancer cells may lead to the
design of novel therapies that are able to block the metastatic behavior of many cancers.
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7. Conclusions

Overall, the findings summarized here show how the scope of targeting G4s for
therapeutic applications has evolved with time. The original goal has clearly changed, as
the initial design devoted to recognizing G4s over double-stranded DNA was replaced
by the necessity to distinguish a single G4 (or a subset of functionally related G4s) from
a large number of G4s. This turned out to be an even more ambitious goal due to the
limited degree of variability that is frequently not relevant in the dynamic physiological
environment. However, the more we expand our knowledge of the structural equilibria
governing these fascinating nucleic acid domains, the more precise our view of potential
targetable features will be. A highly attractive feature is the higher-order G-quadruplex
organization. As revealed by our data on vimentin, nature has most likely already given
good clues to help us along this pathway. As mentioned earlier, a closer look at the complex
biomolecular networks involving G4s could provide important insights that lead to new
opportunities for safer and more efficient treatments for oncological patients. Furthermore,
it is worth mentioning that this approach could be extended to other therapeutic fields.
Indeed, it is important to note that comparable conditions occur at specific coding regions,
i.e., the hexanucleotide repeats (GGGGCC)n in the first intron of the C9orf72 gene. Here,
the expansion of the repeats is the most frequent cause of both familiar and sporadic
amyotrophic lateral sclerosis (ALS) [69]. Thus, the investigation workflow presented here
for the telomeric sequence and promoter of KIT should be extended to other genomic
domains as well as to the RNA landscape.
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