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Abstract: Pharmacophores are an established concept for the modelling of ligand–receptor interac-
tions based on the abstract representations of stereoelectronic molecular features. They became widely
popular as filters for the fast virtual screening of large compound libraries. A lot of effort has been
put into the development of sophisticated algorithms and strategies to increase the computational
efficiency of the screening process. However, hardly any focus has been put on the development of
automated procedures that optimise pharmacophores towards higher discriminatory power, which
still has to be done manually by a human expert. In the age of machine learning, the researcher
has become the decision-maker at the top level, outsourcing analysis tasks and recurrent work to
advanced algorithms and automation workflows. Here, we propose an algorithm for the automated
selection of features driving pharmacophore model quality using SAR information extracted from
validated QPhAR models. By integrating the developed method into an end-to-end workflow, we
present a fully automated method that is able to derive best-quality pharmacophores from a given
input dataset. Finally, we show how the QPhAR-generated models can be used to guide the researcher
with insights regarding (un-)favourable interactions for compounds of interest.

Keywords: pharmacophore; pharmacophore modelling; quantitative pharmacophore; QSAR;
machine learning; pharmacophore optimisation; NeuroDeRisk

1. Introduction

Pharmacophore modelling was popularised at the turn of the millennium with in-
creasing computational power and its general accessibility for researchers in the field of
medicinal chemistry [1–3]. Since then, it has become an integral part of the methodological
toolbox for computer-assisted drug discovery and design [4]. In the absence of a crystal
structure, ligand-based pharmacophore modelling is often used in combination with the
virtual screening of large compound databases in order to identify novel active compounds
for a particular target of interest [5]. Even though many drug discovery success stories
can be reported [6–8] where pharmacophore-based virtual screening was used as a key
technology, the pharmacophore modelling process itself is often tedious, highly complex,
error-prone, and relies heavily on the expert knowledge of the researcher. Various un-
knowns in pharmacophore modelling even often yield completely different results when
applying different programs to the same dataset [9,10].

Before the 2000s, Chen et al. [11] proposed a system that analyses a dataset of a few
thousand compounds and then generates suggestions for pharmacophore models based
on the obtained knowledge. The presented method is a first step toward generating a
system that analyses a set of data too complex for humans to fully grasp and present the
obtained solutions to the researcher, who merely needs to decide on the best solution. We
think machine learning has huge potential in computer-assisted drug discovery to achieve
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exactly that; analysing complex data to assist the researcher and offer guidance with the
obtained solutions.

Furthermore, Chen et al. pose two arguments contrary to popular heuristics applied in
pharmacophore modelling. First, they state that weak or lesser active compounds contain
important information for pharmacophore modelling. This argument contrasts the often
practised method of selecting a highly active subset of compounds for pharmacophore
modelling [5]. Nowadays, this is often considered by adding exclusion volumes to the
pharmacophore. The second argument Chen et al. bring forward is that selecting an activity
cutoff for active and inactive compounds is highly subjective and not clearly defined.
Indeed, the cutoff may depend on factors such as the available dataset, and multiple
experts might independently end up with various cutoffs for a certain dataset. Considering
these arguments, the logical next step is the generation of pharmacophores from continuous
data without the need for arbitrary choosing activity cutoff values.

In addition to automated pharmacophore modelling, scoring and prioritisation of the
obtained hits are not possible with the qualitative nature of pharmacophores. Consensus
scoring [12] with multiple models is an often applied first step to solving this problem.
Another solution is ranking the obtained hits by an external regression model. Considering
that most consensus scoring methods are still qualitative in their nature and regression
represents a different type of model, a combination of these two would be ideal for ranking
the obtained hits. Eventually, this results in a method that prioritises hits with a previously
validated pharmacophore model by assigning continuous activity values to the compounds.
Combined with an automated approach to generate pharmacophore models from a given
dataset containing only a few compounds, a researcher could quickly generate a prioritised
list of hits for biological testing in the drug discovery campaign.

In this paper, we present a novel method for automated pharmacophore modelling
given a previously trained and validated QPhAR [13] model. We show that it outperforms
the commonly applied heuristics for pharmacophore model refinement and can reliably
generate a set of three-dimensional (3D) pharmacophores that show high discriminatory
power in the virtual screening process. Combined with the training of a QPhAR model,
we propose a fully automated workflow for generating a QPhAR model from a set of
given compounds, deriving a classification-performance optimised pharmacophore (in the
following referred to as ‘refined’ pharmacophore), using the pharmacophore for the virtual
screening of molecule databases, and finally ranking the obtained hits by their predictions
made with the QPhAR model. In addition, we highlight a method to visualise the expected
changes in the activity of a compound when introducing certain pharmacophore features.
The expected activity changes are displayed in a grid around the investigated compound,
guiding the researcher with highlighted regions of favourable and unfavourable interac-
tions. The proposed method and workflow aim at the analysis of, for human researchers,
usually non-obvious information contained in ligand datasets and the presentation of
this information in an easy-to-comprehend way. The expert user can then engage in
decision-making based on the presented results of the performed analyses.

2. Results and Discussion

We conducted a case study on the hERG K+ channel using the dataset from Garg
et al. [14] and the correspondingly trained QPhAR model. First, we will discuss the process
of generating a refined pharmacophore and its comparison against established baseline
methods. Second, on the basis of the hERG example, we describe how the information
provided by a QPhAR model can be utilized in a fully automated end-to-end pharma-
cophore modelling workflow. Finally, we will close the discussion with a few examples
of how QPhAR can be used to guide a medicinal chemist to further insights after a set of
compounds has been selected from an obtained virtual screening hit list.
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2.1. Generation of a Refined Pharmacophore for Virtual Screening

For each dataset investigated, we have applied the devised algorithm to extract
refined pharmacophore features from the QPhAR model. The pharmacophore can be
generated directly from the model without the requirement of additional data. Therefore, all
molecules contained in the datasets can be used to evaluate the generated pharmacophore.
Nevertheless, it makes sense to keep the training-test split of each dataset for a final
validation of the selected models on the test set. Following this strategy, the generated
pharmacophores were evaluated on the training set, ranked by their Fβ-score and FSpecificity-
score, and the top five models validated on the provided test set. Figure 1 shows the refined
pharmacophore model generated for the dataset obtained from Garg et al. [14].

Figure 1. Refined pharmacophore of “Garg et al.” [14] dataset.

In contrast to the generation of refined pharmacophores, the generation of shared
pharmacophores, the baseline method, requires an input dataset. Shared pharmacophores
were chosen as the baseline for two reasons. First, shared feature pharmacophore gen-
eration is often employed as the “first-in-line” method when it comes to ligand-based
pharmacophore modelling. Second, pharmacophores of highly active compounds are
assumed to contain many features of relevance for high compound binding affinity. The
baseline models were generated from the n most active compounds in the training set, with
n serving as a hyperparameter. These pharmacophores were validated on the training and
test set in the same manner. The results and a comparison against the performance of the
refined pharmacophores can be found in Table 1.

Table 1. Test performance of the shared pharmacophore baseline models and refined pharmacophores
obtained from the corresponding QPhAR models.

Data Source
FComposite-Score QphAR Model Performance

Baseline QphAR R2 RMSE

Ece et al. [15] 0.38 0.58 0.88 0.41

Garg et al. [14] 0.00 0.40 0.67 0.56

Ma et al. [16] 0.57 0.73 0.58 0.44

Wang et al. [17] 0.69 0.58 0.56 0.46

Krovat et al. [18] 0.94 0.56 0.50 0.70

The baseline and QphAR-based refined pharmacophores were scored and compared
using the FComposite-score. The typical metrics used in machine learning, such as accuracy,
precision, sensitivity, etc., are not accurately depicting the situation in virtual screening.
Scoring pharmacophore models with these metrics would lead to results which might not
be considered optimal in this context. Often the objective is to get as many true positives
as possible while reducing the number of false positives. The number of false negatives
can often be ignored with the reasoning that a missed hit does not consume any resources,
whereas false positives will. Accuracy and others are not considering these objectives and
put the same emphasis on both numbers. It should be noted that the ROC-AUC score is
often used in virtual screening experiments and does reflect the objective much better than
accuracy and others. However, due to the ROC-AUC score’s non-linearity, we think it



Pharmaceuticals 2022, 15, 1122 4 of 12

often gives the perception of the results being better than they are. Therefore, we used the
Fβ-score, FSpecificity-score, and FComposite-score to score the obtained pharmacophore models.

As can be seen in Table 1, the QPhAR-based refined pharmacophores score better than
the baseline pharmacophores on the FComposite-score, although a dependency on the quality
of the QPhAR models can be observed. The lower the performance of the QPhAR model,
the less reliable it is in generating a refined pharmacophore. This, however, is not surprising
since the quality of the workflow we describe here depends heavily on the trained QPhAR
model. Therefore, we advise the user to emphasise training and validating the QPhAR
models to increase the model’s performance and narrow the confidence interval.

2.2. End-to-End Pharmacophore Modelling

Applying the aforementioned algorithm to generate refined pharmacophores from
QPhAR models, we developed a workflow (Figure 2) for fully automated pharmacophore
modelling, virtual screening and ranking of the obtained hits. The workflow is completely
ligand-based; therefore, only a small set of compounds of ~15–50 ligands with known
activity values is required. We will assume IC50 or Ki values here, although theoretically
any physicochemical property can be used.

Figure 2. Schematic depiction of end-to-end pharmacophore modelling workflow.

The first step is to prepare and clean a dataset for the target of interest. Here, we use
the dataset published by Garg et al. [14] on the widely known hERG K+ channel. The
dataset is split into a training and test subset (we adopt the splitting ratio provided in
their publication), and a QPhAR model is generated using the training set molecules. The
QPhAR model is validated on the before separated test set using cross-validation, leave-one-
out analysis, y-scrambling and a paired t-test (results have been published previously [19]).
Afterwards, the refined pharmacophore model is generated using the procedure outlined
in the methods section. The refined pharmacophore is then validated on the separated
test set before being used to screen a database of virtual molecules. We use a filtered
version of the Molport database containing ~1.25 million molecules. Since pharmacophore-
based virtual screening is only a qualitative method, it is not possible to directly prioritise
some compounds from the hit list over others on the basis of particular physicochemical
properties of interest (e.g., their IC50 value). Therefore, the next and final step is to score and
rank the obtained hit list (14871 molecules, ~1% hit-rate) with the previously trained QPhAR
model. The obtained ranked hit list is provided as an SD-file in ascending order of relevance
(highest activity value first). The data can be found along with the remaining data in the
author’s GitHub repository (https://github.com/StefanKohlbacher/qphar-applications).

Even though the entire workflow can be automated from start to end, we recommend
including sanity checks at certain key events, such as validating the trained QPhAR model
performance and the completed generation of the derived refined pharmacophore. For both
steps, we suggest to define key metrics and corresponding values that should be fulfilled
before the workflow proceeds.

2.3. Three-Dimensional Pharmacophore Activity Profiling

Finally, the hit-list obtained from the end-to-end pharmacophore modelling workflow
will serve as a starting point for medicinal chemists to further optimise compounds in

https://github.com/StefanKohlbacher/qphar-applications


Pharmaceuticals 2022, 15, 1122 5 of 12

the hit-to-lead phase of the drug discovery pipeline. Once a few promising compounds
have been identified, the main question to be answered is: “What modifications should be
introduced to the molecule to improve its affinity, solubility, bioavailability, etc.?” Some
of these properties will depend more on the target that is being investigated than others.
For example, affinity should always be considered in the context of the structure of the
target receptor. We will conclude the end-to-end pharmacophore modelling workflow with
a ligand-based approach that guides the medicinal chemist in this process and provides
him with insights and ideas for reasonable structure modifications steps.

As explained in detail in the methods section, the QPhAR model may be used to
generate 3D-activity grids around a molecule or pharmacophore. Grids can be generated
for each feature type present in the QPhAR model and will be split into positive and
negative contributions. The positive grids can be interpreted as points in space, where a
pharmacophore feature of this type would be beneficial for a higher activity of the given
molecule towards the target receptor. Such kind of information is invaluable for any
medicinal chemist working on the structural optimisation of lead compounds. It provides
the location as well as the type of interaction that potentially improves the sought-after
property of an investigated molecule. Negative grid regions, on the other hand, can be
interpreted as portions of space where features of a particular type are unfavourable. Any
feature of the analysed type in this region is expected to reduce the molecule’s activity
towards the target and should be avoided, if possible. Unless the model is generated for an
anti-target, such as hERG. In such cases, the negative grids might provide the medicinal
chemist with ideas on optimising a molecule’s structure in a way that helps to avoid binding
to the anti-target.

To elaborate on that, we analysed the activity grids of selected known hERG blockers
to explore the potential of this method. The blockers were obtained from Perry et al. [20],
whereas two of these are discussed in further detail here. Molecules, pharmacophores, as
well as generated activity grids, are provided in the data in the author’s GitHub repository
(https://github.com/StefanKohlbacher/qphar-applications).

Figure 3 shows the generated activity grids for Ibutilide, a known hERG blocker. For
each of the six pharmacophore feature types (Aromatic—AR, Hydrophobic—H, H-Bond
acceptor—HBA, H-Bond donor—HBD, Positive ionizable—PI, Negative ionizable—NI), a
positive and a negative grid was generated. Only the grids relevant to Ibutilide are shown.

Figure 3. Structure of the known hERG blocker Ibutilide and its respective activity grids: aromatic
positive grid (A); aromatic negative grid (B); hydrophobic positive grid (C); hydrophobic negative
grid (D); negative ionizable grid (E); hydrogen bond acceptor negative grid (F).

The hERG channel has a well-studied ligand SAR with known distinct binding features
that are relevant for high activity. These are two aromatic features, although one is sufficient
for strong binders, and a basic nitrogen, forming a y-shaped binding motive [21]. As a
rule of thumb, the more hydrophobic a compound is and the lower its pKa, the more
likely it will bind to the hERG channel. Figure 3A,B show the grids for aromatic features.
Both grids provide information on how the activity of Ibutilide towards hERG is expected
to change when introducing a feature (functional group) within the outlined locations.
Improvements in activity can be expected when an aromatic feature is introduced at the
aliphatic chain neighbouring the basic nitrogen. The positive field shows a clear distinction
to locations near the nitrogen, where an aromatic feature would be unfavourable, as seen

https://github.com/StefanKohlbacher/qphar-applications
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in the negative aromatic field, which colocates the basic nitrogen. Introducing an aromatic
feature in the aliphatic chain would nicely match the known SAR of the y-shaped binding
motive. Furthermore, Figure 3C,D show the activity fields for additional hydrophobic
features introduced to Ibutilide. Here, introducing a hydrophobic feature near the phenyl
ring (Figure 3C) would yield positive results, as expected due to the fact that hydrophobicity
generally increases the affinity to hERG. On the other hand, the negative field in Figure 3D
indicates that introducing a hydrophobic feature near or instead of the basic nitrogen would
lead to a decrease in expected activity. Again, this agrees with the known SAR, highlighting
the central nitrogen’s basicity as a crucial binding motive. Similarly, introducing a negative
ionisable feature, such as a carboxylic acid, to any location in the molecule increases the
pKa, which is known to be unfavourable. This fact can be observed in Figure 3E. Finally,
there is the negative field of H-bond acceptor features shown in Figure 3F, which indicates
negative expected changes when introduced at or near the basic nitrogen atom. The
conclusions obtained from this field are not as clear as those from the other fields. On the
one hand, introducing H-bond features, replacing some of the hydrophobic interactions,
would decrease the logP, which is roughly equivalent to an increase in pKa and, therefore,
unfavourable for binding. On the other hand, H-bond acceptors would be able to interact
with external hydrogens in a similar fashion as the positive ionisable group from the basic
nitrogen. The strength of this interaction and, therefore, the activity depends heavily on
the functional group introduced. Therefore, it is not immediately clear that introducing an
HBA feature would result in a negative expected change of activity.

A similar analysis can be made for the molecule E-4031 shown in Figure 4, which
is also a known hERG blocker. For subparts Figure 3B–F, the conclusions drawn are the
same as those discussed above for Ibutilide, which shows a clear agreement of its 3D
activity profile with the known SAR of hERG as reported in the literature [21]. Additionally,
Figure 2A shows an activity field for expected negative interactions with H-bond donors
colocated with the basic nitrogen atom of E-4031. It follows that replacing the basic nitrogen
would be detrimental to activity since the opposing interaction partner is expected to
donate a hydrogen atom to the nitrogen, forming an ionic interaction. Opposing such an
interaction with another H-bond donor on the side of E-4031 would lead to a loss of this
ionic interaction, clearly unfavourable for high-affinity binding to hERG.

Figure 4. Structure of the known hERG blocker E-4031 and its respective activity grids: hydrogen
bond donor negative grid (A); hydrogen bond acceptor negative grid (B); hydrophobic positive grid
(C); hydrophobic negative grid (D); negative ionizable grid (E); aromatic negative grid (F).

Overall, Figures 3 and 4 nicely show that an analysis of selected ligands with the
QPhAR model derived grids can provide valuable insights for a medicinal chemist and
provide him with ideas and even clear directions for optimising the hit or lead molecules.
An additional case study based on the dataset from Ece et al. [15,22,23] can be found in the
supplementary material.

3. Materials and Methods

The algorithm and workflows described in the following were implemented, unless
stated otherwise, in Python 3 using functionality provided by the Chemical Data Processing
Toolkit [24].
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3.1. Datasets and Training of QPhAR Models

The selection of datasets for quantitative studies is not straightforward and often
underestimated. Here, we chose datasets that already have been used in previous validation
studies [19] of the QPhAR algorithm. Nevertheless, the datasets were required to fulfill the
following criteria:

• A separate training and test set has been defined previously.
• The training set contains between 15 and 30 molecules.
• Activity values for each compound in the dataset were measured in Ki or IC50 values.
• To avoid modelling experimental noise, the associated activity values range by at least

three orders of magnitude.

Finally, the activity values have to be somewhat homogeneously distributed over the
dataset and not clustered. This requirement has been validated visually.

After filtering, five datasets remained, which were used to evaluate the developed
workflows and methods. The datasets are provided for download on the author’s
Github repository (https://github.com/StefanKohlbacher/qphar-applications). Three-
dimensional conformations were calculated for each dataset using LigandScout’s iCon-
fGen [25]. Default settings were used with a maximum of 25 output conformations
for each molecule. Training and test data were split as described in the publications
associated with the datasets [14–18,22,23]. Each compound in each dataset was cate-
gorised into active and inactive. As a default, the compounds were ranked by their
activity, with the compounds in the top 20th percentile being labelled as active, and the
remaining compounds as inactive.

3.2. Screening Baselines

Shared-pharmacophore models were generated and used as baselines in this study.
They were generated from a subset of active compounds for each dataset based on typical
assumptions made in pharmacophore modelling [5,26]. Whether a compound is consid-
ered active or inactive strongly depends on the context of the investigated target and often
requires in-depth knowledge about its peculiarities. Usually, values in the range of 1 µM
are considered a reasonable threshold for the separation into actives and inactives. The
analysed datasets contained compounds ranging from a few nM to a few hundred µM.
Therefore, and due to the relatively homogeneous distribution of activity values in the
datasets, the cutoff for active compounds was set at the 20th percentile of the dataset. Any
compound with activity values below this threshold was considered active, all other com-
pounds inactive. This subset was subsequently used to generate a shared-pharmacophore
with LigandScout’s [25] command-line tool Espresso.

3.3. Hyperparameter Optimisation

Hyper-parameters were optimised both for the generation of the refined pharma-
cophore and the shared-pharmacophore baseline (number of most active compounds to
use for the generation of the shared-pharmacophore). The following parameters were
optimised for the refined pharmacophore:

• Weight features by importance: True, False.
• Set exclusion volumes: True, False.
• Calculate feature contribution from ML (alternatively from QPhAR model): True, False.
• Number of resulting features: [4, 8].

3.4. Refined Pharmacophore Generation Algorithms

In the following, the algorithm to generate a refined pharmacophore from a trained
QPhAR model will be explained in detail. The algorithm is based on the assumption
that the QPhAR model was trained using a random forest (RF) regressor. Random forest
was chosen since it has been shown to be the most promising method to train a QPhAR

https://github.com/StefanKohlbacher/qphar-applications
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model [19]. However, similar conclusions can be derived from other machine learning
models, such as linear regression models.

The generation of a refined pharmacophore in the QPhAR context consists of four
main steps:

• Determination of feature importance.
• Determination of feature contribution.
• Processing negatively contributing features.
• Selection of features for refined pharmacophore.

3.5. Determination of Feature Importance

Feature importance is derived from the underlying machine learning model of QPhAR
via extraction from the random forest model generated by scikit-learn’s [27] RF implemen-
tation. The feature importance is calculated during the training of the machine learning
model and gives insight into the amount of information provided by this feature. The
higher the feature’s importance, the more information it contains, and the more relevant it
is for activity prediction. An analogous concept would be the set of coefficients in a linear
regression model.

3.6. Determination of Feature Contribution

In contrast to the feature importance, which is easily obtained, the information on
whether a feature contributes positively or negatively to predicted values is not immedi-
ately accessible in RF-based models. Within the context of a trained QPhAR model, this
information can be obtained directly from the QPhAR pharmacophore without additional
information from the machine learning model.

• Feature contribution information derived from the QPhAR pharmacophore model:
As explained in the QPhAR publication [13], the QPhAR algorithm associates each
newly generated pharmacophore feature with a list of activities. These activities
will not only be used to determine the relevance of the feature—whether it is actual
information or just adds noise to the model—but also to determine the contribution of
a pharmacophore feature to the models’ predictions. The mean activity based on the
list of associated features is calculated for each feature, resulting in one feature-activity
for each pharmacophore feature. Finally, the feature-activities are compared against
each other and scaled by their variance. Features with a positive sign of its scaled
activity are considered to contribute positively to the prediction of the QPhAR model.
Features with a negative sign contribute negatively to the prediction.

• Feature contribution information derived from the RF model: To extract feature contri-
butions from an RF model in a deterministic way, two assumptions are made. First,
the data provided to the machine learning model in the QPhAR algorithm represent
the pairwise distances between features of the QPhAR model and the pharmacophore
to predict. Second, applying the splitting criterion of each node in a tree of the random
forest model will yield the left-child node for input values below or equal to the split-
ting threshold and the right-child node for input values above the splitting threshold.
Both these assumptions are ensured by the implementation of the QPhAR algorithm
as well as scikit-learn’s RF implementation.

• Following this logic, a simple algorithm can be devised to determine whether a feature
contributes positively or negatively to the prediction of a sample. For each node in
each tree, the node’s value is obtained and compared against its neighbouring node.
Suppose the left child node has the higher predicted activity. In that case, we can
assume that this feature contributes positively to activity since the left child node
represents a smaller distance of pairwise pharmacophore features. At the same time,
the right child node yields the lower activity prediction, which is associated with a
larger distance of pharmacophore feature pairs. On the other hand, if the left child
node yields the lower predicted activity, which is associated with a smaller feature
pair distance, then the feature can be considered to contribute negatively to activity.
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• During this process, the feature-id of each node is obtained, which corresponds to the
pharmacophore feature it represents. The value of the feature with the corresponding
feature-id is aggregated as the mean value of all nodes that either obtain their value
from this feature-id or have a child node that obtains the prediction processing this
feature-id. Once all trees and nodes are processed, a value representing the activity
is obtained for each pharmacophore feature. These values are scaled as above by
their variance. Once again, features with a positive sign are considered to contribute
positively to the activity, whereas features with a negative sign are considered to
contribute negatively to the activity.

3.7. Processing Negatively Contributing Features

Based on the analysis of feature contribution in the previous step, a post-processing
step for negatively contributing features is carried out. The algorithm includes the option
to either ignore these features entirely, in which case they are removed from the refined
output pharmacophore, or convert them to exclusion volume spheres.

3.8. Selection of Features for the Refined Output Pharmacophore

Finally, the output pharmacophore is created from this list of features with their
associated activity values. The features are sorted by their activity contribution values
in descending order, resulting in the feature with the most positive contribution in the
first place. If feature importance have been obtained from a random forest model in the
next-to-last step, the features can optionally be weighted by their feature importance. The
first x features are then added to the output pharmacophore, whereas x is a value specified
by the user beforehand and the value of the feature is not negative. x is recommended to
be a value within the interval [4, 8]. If exclusion volume spheres have been generated in
the previous step, these are also added to the refined output pharmacophore based on the
sorted list of features.

3.9. 3D Activity Profiling

The activity profile of a sample, pharmacophore or molecule, in 3D space, can be gen-
erated with the help of a previously trained QPhAR model. The model should be validated
sufficiently before its use and have a narrow confidence interval for high confidence in the
model’s predictions. The sample of interest is then aligned to the QPhAR model, and the
baseline prediction is obtained. A grid is generated with a predetermined interval and
some margin extending the sample’s size. For each pharmacophore feature type, a probe is
placed and moved along the grid. At each point, the current pharmacophore is predicted
by the QPhAR model, and the prediction is associated with the location in the grid. Once
all grid points are processed, the differences between the predicted grid point values and
the previously obtained baseline prediction are calculated. Optionally, the obtained grid of
differences can be normalised for better analysis.

The grids were saved in the *.kont format and then loaded into LigandScout alongside
the molecules and pharmacophores for analysis. The terms ’activity grids’ and ‘activity
fields’ will be used interchangeably in the remainder of this section.

3.10. Metrics

The F1-score, or F-score, is a well-known and often applied metric in machine learn-
ing [28] and is defined as the harmonic mean of precision and sensitivity. However, due
to the nature of virtual screening, the following scores, derived from the F1-score, will be
more suitable for characterising the results of this study.
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3.10.1. Fβ-Score

The Fβ-score [29] is directly derived from the F1-score and weights precision and
sensitivity by the factor β. It is calculated by

Fβ =

(
1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall
, (1)

The β-value was set to 0.5 for all evaluations in this study.

3.10.2. FSpecificity-Score

Analogous to the Fβ-score, we define the FSpecificity-score to focus more on the ratio
between false positive and false negative hits during virtual screening.

FSpeci f icity =
precision ∗ speci f icity
precision + speci f icity

, (2)

3.10.3. FComposite-Score

We define the FComposite-score, which is calculated as the mean of the Fβ-score and
FSpecificity-score, as a metric to model the objective of virtual screening.

FComposite =
(

Fβ + FSpeci f icty

)
/2, (3)

4. Conclusions

Nowadays, pharmacophore-based methods can be considered indispensable and are
an integral part of nearly every modern computer-aided drug design project. A combination
of pharmacophore modelling and pharmacophore-based virtual screening is often applied
as one of the first filtering techniques to obtain a list of promising compound candidates
for biological testing in the hit-finding phase. Despite its popularity, pharmacophore
modelling is still a task that heavily relies on the expert knowledge of the researcher. In
this study, we presented a method for the generation of pharmacophore models with high
discriminatory power from a QPhAR model in a deterministic manner following clear
generation guidelines. We showed that the pharmacophores derived by our algorithm
are superior to a baseline of ligand-based pharmacophore models generated under the
assumption that only active molecules are required to produce good query pharmacophores
for virtual screening. Furthermore, we incorporated the presented method into a workflow
for end-to-end pharmacophore modelling. This workflow facilitates a fully automated
process to train a QPhAR model, generate a query pharmacophore from this QPhAR model,
screen a database, and finally rank the obtained hits by relevance using the initial QPhAR
model. In a case study using known hERG K+ channel blockers, we have shown that
the generated activity fields agree well with the known SAR and can, therefore, provide
meaningful insights for medicinal chemists in the hit or lead-optimisation phase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15091122/s1, Figure S1: Structure of the known CDK2
inhibitor Flavopiridol and its respective activity grids; Figure S2: Structure of the known CDK2
inhibitor Roscovitine and its respective activity grids.
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