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Abstract: Ferula sinkiangensis K. M. Shen (Apiaceae) is distributed in arid desert areas of Xinjiang,
and its resin is a traditional Chinese medicine to treat gastrointestinal digestive diseases. To explore
bioactive components from F. sinkiangensis, three new lignans and thirteen known components
were isolated. The structural elucidation of the components was established utilizing spectroscopic
analyses together with ECD calculations. Griess reaction results indicated new compounds 1 and
2 significantly decreased NO production in LPS-stimulated RAW 264.7 macrophages, and ELISA
results indicated that they effectively attenuated LPS-induced inflammation by inhibiting TNF-α,
IL-1β, and IL-6 expressions. The in silico approach confirmed that compound 1 docked into the
receptors with strong binding energies of−5.84~−10.79 kcal/mol. In addition, compound 6 inhibited
the proliferation of AGS gastric cancer cells with IC50 values of 15.2 µM by suppressing the cell
migration and invasion. This study disclosed that F. sinkiangensis might be a promising potential
resource for bioactive components.

Keywords: Ferula sinkiangensis; lignan; structural elucidation; ECD; anti-inflammatory; molecular
docking

1. Introduction

Inflammation is the basis of many physiological and pathological processes. In cases of
tissue stress or dysfunction, a similar adaptive response occurs, which primarily depends on
tissue-resident macrophages. This response is characterized as being intermediate between
the basal homeostatic state and a typical inflammatory response [1]. Inflammation-inducing
pathogen-associated molecular patterns (PAMPs) include highly conserved structures, such
as lipopolysaccharides (LPS), heat shock proteins (HSP), peptidoglycans (PGN) [2], and
cytosine-phosphate-guanin motifs [3]. PAMPs are recognized by pattern recognition re-
ceptors (PRRs) [4]. Once they are activated, PRRs transduce signals intracellularly [5].
In addition, they induce, produce, and release proinflammatory mediators, including cy-
tokines such as tumor necrosis factor alpha (TNF-α), interleukin (IL)-1, and IL-6 [6]. These
proinflammatory cytokines are related to many diseases: TNF-α plays an important role in
the occurrence of Crohn disease [7]; IL-1β is associated with sustained immune responses
and contributes to a range of serious central nervous system (CNS) diseases, such as
traumatic diabetic retinopathy, brain injury, neurodegenerative diseases, and multiple scle-
rosis [8]; IL-6 has been robustly associated with mortality outcomes in various conditions,
including cancer, cardiovascular disease, and metabolic syndrome [9]. More and more evi-
dence shows that inflammation is involved in the occurrence and development of common

Pharmaceuticals 2023, 16, 1351. https://doi.org/10.3390/ph16101351 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16101351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0001-9081-702X
https://doi.org/10.3390/ph16101351
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16101351?type=check_update&version=1


Pharmaceuticals 2023, 16, 1351 2 of 19

chronic diseases, such as cardiovascular disease, osteoporosis, diabetes, and cancer, etc.
The application of anti-inflammatory treatment in these diseases is particularly important.

Clinically, steroidal anti-inflammatory drugs (SAIDs) and non-steroidal anti-inflammatory
drugs (NSAIDs) are commonly used to treat inflammatory diseases. SAIDS usually refer to
steroid hormones, including corticosteroids and glucocorticoids. These drugs have strong
anti-inflammatory effects, but serious side effects such as water-sodium retention and
infection are limited in clinical use [10]. NSAIDS are a class of anti-inflammatory drugs that
do not contain steroidal structures, including aspirin, naproxen, diclofenac, ibuprofen, etc.
They are well tolerated, but their long-term use is limited by severe gastrointestinal adverse
reactions, and even gastrointestinal bleeding and perforation may occur in severe cases [11].
Therefore, the search for new anti-inflammatory drugs has been a research hotspot.

As the third-largest genus in the Apiaceae family, Ferula has approximately 180 species.
Ferula is mainly distributed in the Mediterranean region and Asia, such as Saudi Arabia,
Afghanistan, Turkey, Iran, India, and China, and has been used as remedies for various
ailments worldwide [12]. Most Ferula plants have a pungent odor and bitter taste due to the
presence of disulfides, such as 1-(methylthio)propyl (E)-1-propenyl disulfide, (E)-propenyl
sec-butyl disulfide, foetisulfide A-D, etc. [13,14]. In Asia, they are also used as spices and
as seasonings in kimchi, meat sauces, curry, and other foods [15]. The Ferula genus is
mostly characterized by the presence of sesquiterpene coumarins [16], with a wide range of
biological activities, including cytotoxic [17], anti-neuroinflammatory [18], antibacterial [19],
antiviral [20], antioxidant [21], and α-glucosidase inhibition [22] properties.

F. sinkiangensis is an important member of this genus and its resin is recognized in
the 2020 edition of Chinese Pharmacopoeia. As an endemic species in China, F. sinkian-
gensis is mainly distributed in arid desert areas of Xinjiang. F. sinkiangensis has a long
history of local use, mainly for the treatment of stomach problems and rheumatoid arthri-
tis [23]. Besides sesquiterpene coumarins [24–26], various metabolites such as coumarins,
phenylpropanoids, lignans, steroidal esters, aromatic acids, sesquiterpenes, monoterpenes,
benzofurans, and sulfanes have been identified from its roots, resin, seeds, and aerial
parts [27–30]. Among these, lignans from F. sinkiangensis with anti-inflammatory prop-
erties [23,31] caught our attention. To search for new anti-inflammatory lignans, a pair
of undescribed lignan diastereomers, one undescribed norlignan, together with thirteen
known compounds have been isolated from the resin of F. sinkiangensis. Herein, the isola-
tion, structural elucidation, anti-inflammatory activity, cytotoxicity, and in silico study of
the isolated compounds are reported.

2. Results
2.1. Structural Elucidation

The phytochemical profile research of the resin of F. sinkiangensis gave a pair of new
lignan diastereomers, (7R,8R)-sinkiangenone E and (7R,8S)-sinkiangenone E (1–2), one
new norlignan, sinkiangenone F (3), together with thirteen known compounds, (1E,4E)-1-
(4′′-hydroxy-3′′-methoxyphenyl)-5-(4′-hydroxy-3′-methoxyphenyl)-penta-1,4-dien (4) [32],
(1Z,4E)-1-(3′′-hydroxy-4′′-methoxyphenyl)-3-(3’-hydroxy-4′-methoxyphenyl)-penta-1,4-dien
(5) [33], dshamirone (6) [34], vanillic acid (7) [35], 2-methoxyhydroquinone (8) [36], (Z)-
4-hydroxy cinnamic acid (9) [37], caffeic acid (10) [38], 7-hydroxycoumarin (11) [39], γ-
eudesmol (12) [40], selina-5,11-diene (13) [41], guaiol (14) [42], succinic acid (15) [43], and
stigmasterol (16) [44] (Figure 1).
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Figure 1. Compounds 1–16 isolated from F. sinkiangensis.

Compound 1 was isolated as an orange gum. Its molecular formula was determined
as C31H34O9 based on the HRESIMS data (m/z 573.2092 [M + Na]+, calcd for C31H34O9Na
573.2095), indicating fifteen indices of hydrogen deficiency. The IR absorption bands at 3369
and 1700 cm−1 were indicative of the presence of hydroxyl and carbonyl functional groups.
The 1H NMR spectrum (Table 1) displayed the presence of three ABX spin system signals
at δH 7.13 (1H, d, J = 1.8 Hz), 7.00 (1H, dd, J = 8.4, 1.8 Hz), 6.89 (1H, d, J = 1.8 Hz), 6.83 (1H,
d, J = 1.8 Hz), 6.80 (1H, d, J = 8.4 Hz), 6.78 (1H, d, J = 8.4 Hz), 6.77 (1H, dd, J = 8.4, 1.8 Hz),
6.70 (1H, dd, J = 8.4, 1.8 Hz), and 6.64 (1H, d, J = 8.4 Hz), two trans-conformational olefinic
signals at δH 7.53 (1H, d, J = 15.6 Hz), 6.33 (1H, d, J = 15.6 Hz), 6.16 (1H, d, J = 15.6 Hz),
and 5.89 (1H, m), and four methoxy groups at δH 3.87, 3.83, 3.76, 3.17 (each 3H, s) (Table 1).
The 13C-APT spectrum (Table 1) showed thirty-one well-resolved resonances (4 × CH3,
2 × CH2, 15 × CH, 10 × C) including a carbonyl carbon (δC 169.4), eighteen aromatic
carbons, and four olefinic carbons (δC 150.6 to 110.0), an oxygenated methine carbon (δC
85.1), an oxygenated methylene carbon (δC 65.2), four methoxy carbons (δC 56.9, 56.4, 56.4
and 56.3), a methine carbon (δC 46.3), and a methylene carbon (δC 33.2).
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Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data for compounds 1–3 (CD3OD).

No.
Compound 1 Compound 2 Compound 3

δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz)

1 132.6 - 132.7 - 134.2 -
2 111.7 6.89 (d, 1.8) 111.6 6.86 (d, 1.8) 111.7 6.97 (d, 1.8)
3 147.0 - 147.0 - 148.9 -
4 149.0 - 149.0 - 147.3 -
5 116.1 6.64 (d, 8.4) 116.1 6.66 (d, 8.4) 115.8 6.71 (d, 8.4)
6 121.7 6.77 (dd, 8.4, 1.8) 121.2 6.74 (dd, 8.4, 1.8) 121.0 6.81 (dd, 8.4, 1.8)
7 85.1 4.11 (d, 7.8) 85.2 4.15 (d, 7.8) 78.1 4.56 (d, 6.6)
8 46.3 2.19 (m) 46.4 2.16 (m) 83.9 4.35 (dt, 9.0, 6.6)

9 65.2 4.35 (d, 4.8) 65.4 4.09 (dd, 10.8, 4.8)
3.90 (dd, 10.8, 4.8) 37.7 1.86 (ddd, 13.2, 9.0, 6.6)

1.51 (ddd, 13.2, 6.0, 3.0)
1′ 131.3 - 131.4 - 133.9 -
2′ 110.0 6.83 (d, 1.8) 110.1 6.89 (d, 1.8) 110.7 6.94 (d, 1.8)
3′ 147.4 - 147.3 - 148.9 -
4′ 149.2 - 149.2 - 147.0 -
5′ 116.0 6.80 (d, 8.4) 116.1 6.78 (d, 8.4) 115.9 6.73 (d, 8.4)
6′ 120.4 6.70 (dd, 8.4, 1.8) 120.4 6.76 (dd, 8.4, 1.8) 119.8 6.78 (dd, 8.4, 1.8)
7′ 132.9 6.16 (d, 15.6) 133.0 6.27 (d, 15.6) 89.9 4.64 (d, 3.6)
8′ 126.2 5.89 (m) 126.4 6.05 (m) 79.3 3.98 (dt, 6.0, 3.6)
9′ 33.2 2.16 (m), 2.10 (m) 32.7 2.60 (m), 2.39 (m)
1′′ 127.6 - 127.6 -
2′′ 111.6 7.13 (d, 1.8) 111.5 7.12 (d, 1.8)
3′′ 149.3 - 149.4 -
4′′ 150.6 - 150.7 -
5′′ 116.4 6.78 (d, 8.4) 116.4 6.75 (d, 8.4)
6′′ 124.2 7.00 (dd, 8.4, 1.8) 124.2 6.98 (dd, 8.4, 1.8)
7′′ 115.5 6.33 (d, 15.6) 115.4 6.30 (d, 15.6)
8′′ 146.8 7.53 (d, 15.6) 146.8 7.48 (d, 15.6)
9′′ 169.4 - 169.2 -
3-OCH3 56.3 3.76 (s) 56.3 3.77 (s) 56.3 3.80 (s)
7-OCH3 56.9 3.17 (s) 57.1 3.21 (s)
3′-OCH3 56.4 3.83 (s) 56.3 3.80 (s) 56.4 3.81 (s)
3′′-OCH3 56.4 3.87 (s) 56.4 3.87 (s)

Comprehensive analysis of the HSQC and 1H-1H COSY data led to the identification
of one partial structure (C-7-C-8(-C-9)-C-9′-C-8′-C-7′). In the HMBC spectrum (Figure 2A),
the correlations from H-7′′ to C-2′′, C-6′′, and C-9′′; H-8′′ to C-1′′; H-9 to C-9′′; H-8 to C-8′

and C-1; H-7 to C-2, C-,6 and C-9; H-9′ to C-7; H-8′ to C-1′; H-7′ to C-2′ and C-6′ established
the skeleton structure of 1. Additionally, the positions of four methoxy groups were also
assigned by HMBC correlations from H-2, H-5, and -OCH3 (δH 3.76) to C-3; H-2′, H-5′ and
-OCH3 (δH 3.83) to C-3′; H-2′′, H-5′′, and -OCH3 (δH 3.87) to C-3′′; -OCH3 (δH 3.17) to C-7
(Figure 2A). Thus, the planar structure of compound 1 was established.
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According to reference [45], the relative configuration of the C-7-C-8 structural frag-
ment of compound 1 was determined by a NMR configurational analysis based on cou-
pling constants. In this case, the large 3JH7-H8 value (7.8 Hz) in the low-temperature NMR
(−4 ◦C) [46] indicated two possible relative configurations (threo and erythro) because the
two rotamers should have the opposite H/H orientation (Figure 2B). However, the cou-
pling constant cannot distinguish the two conformers with opposite relative configurations;
therefore, additional spatial information was required, typically dipolar effects. A strong
correlation between H-9 and 7-OCH3 was observed in the NOESY spectrum of 1, which
indicated that C-9 and 7-OCH3 were close in three-dimensional space (Figure 2B). This
dipolar coupling supported a threo stereochemical relationship (7S,8S or 7R,8R) for the
pair of adjacent chiral carbons C-7 and C-8 to be assigned. Its absolute configuration
was further determined by comparing experimental and calculated electrostatic circular
dichroism (ECD) spectra because its single crystal cannot be obtained. Due to the great
flexibility of the compound structure, we retrieved 2,239,488 conformations by Monte Carlo
conformational search, and the conformers with a Boltzmann-population greater than
5% were selected for ECD calculations (Figure S10). Then, a steered molecular dynamics
(SMD) polarization conductor calculation model in CH3OH was used for preliminary
optimization by density functional theory (DFT) with the CAM-B3LYP/def2-SVP. At the
CAM-B3LYP/def2-TZVP level, the theoretical calculation was conducted in CH3OH using
time-dependent density functional theory (TD-DFT) for all conformers. As a result, the
calculated ECD spectrum of an isomer (7R,8R) of compound 1 matched the experimental
data (Figure 3). Thus, compound 1 was named (7R,8R)-sinkiangenone E.
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Compound 2 was isolated as an orange gum. Its molecular formula was determined
as C31H34O9 based on the HRESIMS data (m/z 573.2092 [M + Na]+, calcd for C31H34O9Na
573.2095). The IR, UV, and 13C NMR (Table 1) spectra of 2 were very similar to those of
1, but in the 1H NMR spectrum (Table 1), the chemical shifts of H-9 (δH 4.09 and 3.90)
and H-8 (δH 2.16) moved to the high-field area, while the chemical shifts of H-7 (δH 4.15),
H-9′ (δH 2.60 and 2.39), H-8′ (δH 6.05), and H-7′ (δH 6.27) moved to the low-field area,
compared to those of 1 (Figure S15), which suggested that the absolute configuration of 2
may be different from that of 1 at C-7 and C-8. The relative configuration of the C-7-C-8
segment of 2 was also confirmed by the same method [45]. The large 3JH7-H8 value (7.8 Hz)
indicated the opposite H/H orientation (Figure 2B). In contrast to 1, a strong correlation
between H-9′ and 7-OCH3 was observed in the NOESY spectrum of 2, indicating C-9′ and
7-OCH3 were close in three-dimensional space (Figure 2B). This dipolar coupling indicated
an erythro stereochemical relationship (7R,8S or 7S,8R) for C-7 and C-8. By the same method
(Figure 3), the absolute configuration of 2 was determined as 7R,8S. Compound 2 was then
named (7R,8S)-sinkiangenone E.

Compound 3 was a colorless gum. According to HRESIMS data (m/z 385.1282 [M +
Na]+, calcd for C19H22O7Na 385.1258), its molecular formula was determined to be C19H22O7,
indicating that it has nine degrees of unsaturation. The IR absorption bands at 3297 cm−1

indicated the presence of a hydroxyl functional group. The 1H NMR spectrum (Table 1)
displayed the presence of two ABX spin system signals at δH 6.97 (1H, d, J = 1.8 Hz), 6.94
(1H, d, J = 1.8 Hz), 6.81 (1H, dd, J = 8.4, 1.8 Hz), 6.78 (1H, dd, J = 8.4, 1.8 Hz), 6.73 (1H, d, J
= 8.4 Hz), and 6.71 (1H, d, J = 8.4 Hz), and two methoxy groups at δH 3.81 and 3.80 (each
3H, s). The 13C-APT spectrum (Table 1) showed nineteen well-resolved resonances (2 ×
CH3, 1 × CH2, 10 × CH, 6 × C), including twelve aromatic carbons (δC 148.9 to 110.7), four
oxygenated methine carbon (δC 89.9, 83.9, 79.3 and 78.1), two methoxy carbons (δC 56.4
and 56.3), and a methylene carbon (δC 37.7).

The partial structure (C-7-C-8-C-9-C-8′-C-7′) was determined by a combined analysis
of the HSQC and 1H-1H COSY data. Furthermore, the skeleton of 3 was established by the
correlations from H-8 to C-1, H-7 to C-2 and C-6, H-8′ to C-1′, and H-7′ to C-8, C-2′ and C-6′

in the HMBC spectrum (Figure 2C). The two methoxy groups were also assigned through
HMBC correlations from H-2, H-5, and -OCH3 (δH 3.80) to C-3, and H-2′, H-5′, and -OCH3
(δH 3.81) to C-3′ (Figure 2C). Finally, the two-dimensional structure of 3 was determined.

The relative configuration of the C-8-C-9-C-8′-C-7′-O segment of 3 was elucidated by
the NOESY experiment (Figure 2C). In the NOESY spectrum, the correlations of H-8/H-
7′/H-8′ indicated they were on the same side. Compound 3 was established as a norlignan
and named sinkiangenone F.
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2.2. Anti-Inflammatory Activity

The anti-inflammatory activities of the isolates were evaluated by the Griess assay
in RAW 264.7 cells stimulated by LPS. Before that, the cytotoxicities of tested isolates
were determined by the MTT method to avoid the potential impact of decreased viabil-
ity on NO release. The results showed that compounds 1 and 2 significantly reduced
NO production with IC50 values of 17.6 ± 0.4 µM and 14.9 ± 0.1 µM, respectively (cell
viability > 90%), in a dose-dependent manner, while the positive control L-NAME was
47.4 ± 1.3 µM (Figure 4A). The other compounds did not show obvious anti-inflammatory
activities (IC50 values > 50 µM).
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Figure 4. The anti-inflammatory effects of compounds 1 and 2 in LPS-induced RAW 264.7 cells.
(A) Effects on NO production. (B) Effects on expressions of TNF-α, IL-1β, and IL-6. Each bar in
the figures represents the mean ± SD of three independent experiments. Statistical differences
were measured using ANOVA and Tukey’s post hoc test to identify significant differences between
experimental groups. Significance: * p < 0.05 and ** p < 0.01 compared to LPS groups, ## p < 0.001
compared to control groups.

TNF-α, IL-1β, and IL-6 are pro-inflammatory cytokines and important inflamma-
tory mediators, which cause inflammation and related diseases. As shown in Figure 4B,
LPS treatment significantly increased the expressions of TNF-α, IL-1β, and IL-6 from
237.0 ± 28.8, 6.8 ± 0.3, and 1362.2 ± 32.2 pg/mL to 1974.8 ± 79.6, 181.0 ± 12.2, and
55,923.2 ± 952.2 pg/mL, respectively, in RAW 264.7 macrophages. The expression lev-
els of TNF-α were significantly decreased by pretreatment with compounds 1 and 2
(20 µM and 40 µM) to 1632.6 ± 33.5 and 1554.6 ± 70.4 pg/mL, and 1873.5 ± 57.8 and
1751.8 ± 41.9 pg/mL, respectively, compared to the positive control L-NAME (50 µM),
1158.7 ± 24.8 pg/mL. The expression levels of IL-1β were significantly decreased to
122.1 ± 4.3 and 90.4 ± 2.5 pg/mL, and 153.1 ± 9.9 and 140.8 ± 3.9 pg/mL, respectively,
compared to L-NAME, 95.6 ± 4.1 pg/mL. The expression levels of IL-6 were significantly
decreased to 37,809.3 ± 1338.7 and 16,695.5 ± 103.9 pg/mL, and 51,508.5 ± 635.6 and
34,972.0 ± 705.9 pg/mL, respectively, compared to L-NAME, 37,488.2 ± 1120.5 pg/mL.
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These results indicated that compounds 1 and 2 effectively attenuated LPS-induced in-
flammation by reducing the expressions of inflammatory molecules such as NO through
inhibiting TNF-α, IL-1β, and IL-6 expressions.

2.3. Molecular Docking Analysis

Through the anti-inflammatory experiments above, compound 1 showed strong in-
hibitory effects on NO production and TNF-α, IL-1β, and IL-6 release. Therefore, molecular
docking simulation was applied to predict the main binding patterns of compound 1 with
inflammatory related proteins iNOS (inducible nitric oxide synthase, PDB ID: 4CX7), TNF-α
(PDB ID: 7JRA), IL-1β (PDB ID: 5R85), and IL-6 (PDB ID: 5FUC) (Figure 5), to check whether
the docking analyses supported the anti-inflammatory experimental results.
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Figure 5. The binding mode of compound 1 with iNOS (PDB ID: 4CX7; (A–C)), TNF-α (PDB ID: 7JRA;
(D–F)), IL-1β (PDB ID: 5R85; (G–I)), and IL-6 (PDB ID: 5FUC; (J–L)). Three-dimensional interactions
with the protein surface to the left (visualized with PyMOL), 3D H-bond interactions in the middle
(visualized with PyMOL), and 2D representation of the observed interactions to the right (visualized
with Discovery Studio).
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4CX7 is a complex of human iNOS with (R)-6-(3-amino-2-(5-(2-(6-amino-4-methylpyri-
din-2-yl)ethyl)pyridin-3-yl)propyl)-4-methylpyridin-2-amine [47]. First, the co-crystallized
ligand was re-docked with iNOS protein, and the dimensions of the grid box were deter-
mined based on the position of the co-crystallized ligand within the complex. The docking
results indicated that the co-crystallized ligand formed three H-bonds with the residues of
Arg 199, Glu 377, and Tyr 489 with a binding score of −10.0 kcal/mol. Then compound
1 was docked by the same procedure and the docking results revealed that compound 1
docked into the pocket of iNOS (Figure 5A) with a binding score of −9.42 kcal/mol. The
ligand was stabilized by forming four H-bonds with the residues of Ser 118, Thr 121, Tyr
373, and Arg 388 (Figure 5B, Table 2). Additionally, the benzene rings and 3′′-OCH3 of
compound 1 formed hydrophobic interactions with the residues of Trp 90, Met 120, Arg
381, Trp 461, and Trp 463 (Figure 5C). L-NAME was selected as a control, which has been
widely applied for several decades in both basic and clinical research as an antagonist of
nitric oxide synthase (NOS) [48], and it was docked by the same procedure. The docking
results revealed a binding score of −6.16 kcal/mol, which formed four H-bonds with the
residues of Ala 262, Asn 283, Glu 285, and Glu 494. The binding score of compound 1 with
iNOS was lower than that of L-NAME, indicating a strong binding interaction.

Table 2. Calculated docking affinities of compound 1 to iNOS, TNF-α, IL-1β, and IL-6 proteins by
AutoDock.

Protein Affinity Score
(Kcal/mol)

Conventional
Hydrogen Bond

Hydrophobic
Interactions

iNOS (PDB ID: 4CX7) −9.42 Ser 118, Thr 121, Tyr
373, Arg 388

Trp 90, Met 120, Arg
381, Trp 461, Trp 463

TNF-α (PDB ID: 7JRA) −10.79 Gly 197, Gly 198, Tyr
227

Leu 133, Tyr 135, Tyr
195, Ile231, Leu 233

IL-1β (PDB ID: 5R85) −7.81 Tyr 24, Leu 26, Leu 80 Tyr 24

IL-6 (PDB ID: 5FUC) −5.84 Glu 99, Lys 120, Gln 127 Leu 92, Ile 123, Ala 145,
Leu 148

7JRA is a complex of human TNF-α with 2-[5-(3-chloro-4-{[(1R)-1-(2-fluorophenyl)
ethyl]amino}quinolin-6-yl)pyrimidin-2-yl]propan-2-ol [49]. The co-crystallized ligand of
7JRA formed three H-bonds with the residues of Tyr 195 and Tyr 227 with a binding score of
−10.94 kcal/mol. By the same procedure, compound 1 docked into the active site of TNF-α
(Figure 5D) with a binding score of −10.79 kcal/mol. It formed three H-bonds including
(1) the 4-OH and 4′-OH groups docked with the residues of Gly 197 and Gly 198 by serving
as the H-bond donor, and (2) the oxygen of the ester group formed H-bond contact with
the residue of Tyr 227 by performing as the H-bond acceptor. Additionally, the benzene
rings, 7-OCH3, and 4′-OCH3 of compound 1 formed hydrophobic interactions with the
residues of Leu 133, Tyr 135, Tyr 195, Ile231, and Leu 233 (Figure 5E,F). ZINC09609430 is
a novel inhibitor for TNF-α [50], and its binding score was −9.64 kcal/mol, which was
higher than that of compound 1, by forming one H-bond with the residue of Tyr 227.

5R85 is a complex of IL-1βwith Fragment Z1262246195 [51]. The co-crystallized ligand
showed a binding score of −4.87 kcal/mol by forming three H-bonds with the residues of
Leu 26, Leu 82, and Val 132. Compound 1-IL-1β complex (Figure 5G) exhibited a lower
binding score of −7.81 kcal/mol. It formed three H-bonds with the residues of Tyr 24, Leu
26, and Leu 80. Additionally, compound 1 was stabilized by hydrophobic interaction with
the residues of Tyr 24 (Figure 5H,I). Aequilabrines C is a new lignan isolated from Justicia
aequilabris with a maximum inhibition rate of IL-1β production 32.5% at 16.7 µM [52].
The docking results revealed that the binding score of aequilabrines C with IL-1β was
−7.26 kcal/mol, by forming two H-bonds with the residues of Glu 25 and Leu 134.

5FUC is a complex of IL-6 and gp80 [53]. Due to the absence of a co-crystallized
small-molecule ligand in 5FUC, the grid box was set to cover the surface of IL-6. The com-
pound 1-IL-6 complex (Figure 5J) showed a binding score of −5.84 kcal/mol; specifically,
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compound 1 showed interactions with Glu 99, Lys 120, and Gln 127 through five H-bonds.
Compound 1 also displayed hydrophobic interactions with Leu 92, Ile 123, Ala 145, and
Leu 148 (Figure 5K,L). LMT 28 was selected as a control because it is a novel synthetic IL-6
inhibitor [54]. The docking results revealed a binding score of −5.21 kcal/mol, which was
higher than that of compound 1, by forming two H-bonds with the residue of Asp 140.

2.4. Cytotoxicity

To evaluate their cytotoxic activities, all the isolates (1–16) were tested in vitro against
three human cancer cell lines (MGC-803, AGS, and HeLa), using the MTT viability assay
with Taxol as a positive control. Compound 6 inhibited the proliferation of MGC-803, AGS,
and HeLa cells with moderate cytotoxicity (Table 3), with IC50 values ranging from 15.2 to
30.5 µM, while compounds 1 and 2 displayed weak cytotoxic activities against AGS and
HeLa (IC50 41.9–63.0 µM).

Table 3. Cytotoxicity of compounds 1–16 (IC50
a, µM).

MGC-803 AGS HeLa

1 >100 63.0 ± 1.8 41.9 ± 1.7
2 >100 61.5 ± 1.5 45.9 ± 0.6
3 >100 >100 >100
4 >100 >100 >100
5 >100 >100 >100
6 30.5 ± 1.3 15.2 ± 0.9 30.2 ± 0.4
7 >100 >100 >100
8 >100 >100 >100
9 >100 >100 >100
10 >100 >100 >100
11 >100 >100 >100
12 47.9 ± 1.8 >100 92.0 ± 12.3
13 >100 >100 >100
14 >100 >100 >100
15 >100 >100 >100
16 >100 >100 >100
Taxol b 3.4 ± 0.1 1.8 ± 0.1 7.5 ± 0.4

a Values are expressed as the means ± SD from three independent experiments. b Positive control.

2.5. Compound 6 Inhibits the Migration and Invasion of Gastric Cancer Cells

Cell migration and invasion are crucial processes involved in cancer metastasis. The
effects of compound 6 on motility in AGS cells were examined through a wound healing
experiment, and low cytotoxicity concentrations of compound 6 were selected to avoid any
interference from cytotoxicity-related effects. As shown in Figure 6, the wound healing rate
in MGC803 cells displayed an inverse relationship with compound 6 concentration. After
24 h, the wound healing rate was 62.67% in the control group, which decreased to 24.94%
in the 4 µM compound 6-treatment group. Notably, the wound healing rates dropped to
less than 10.00% upon treatment with 8 µM of compound 6 for 24 h.
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medium. Images of the wounds were taken at 0 and 24 h using an inverted microscope with 100×
magnification. The experiments were performed in triplicate, and the statistical results are expressed
as means ± SD. Statistical significance (* p < 0.05 and ** p < 0.01) was determined by comparing the
treatment groups to the control group.

Following this, the transwell chamber assay was carried out using the same con-
centration gradient to further examine the inhibitory effects of compound 6 on AGS cell
line migration and invasion. The results are presented in Figure 7, showing compound 6
exhibited inhibitory effects on AGS cell line migration and invasion. At a concentration of
8 µM, the migration and invasion rates were significantly reduced to 13.74% and 16.28%,
respectively, compared to those of the control group.
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Figure 7. Compound 6 inhibited the migration and invasion of AGS cells. Images of the cells were
captured using an inverted microscope with 200× magnification. The number of cells invading
through the transwell chambers was counted, and the migration and invasion potentials were
quantified for each treatment group. The experiments were performed in triplicate, and the statistical
results are expressed as means± SD. Statistical significance (** p < 0.01) was determined by comparing
the treatment groups to the control group.

3. Discussion

A lignan is a kind of secondary metabolite of plants formed by the oxidative polymer-
ization of two phenylpropanoid units, and its biological activity is closely related to its struc-
tural diversity. So far, natural products of lignans have been found to have many promising
biological activities, including anti-inflammatory, anti-menopausal, antibacterial, antivi-
ral, antitumor, antiplatelet, phosphodiesterase inhibition, 5-lipoxygenase inhibition, HIV
reverse transcription inhibition, cytotoxic, antioxidant, immunosuppressive, and antiasth-
matic activities [55,56]. Various molecular mechanisms contribute to the pro-inflammatory
process. The NF-κB and MAPK pathways can be activated through phosphorylation and
translocation of NF-κB and AP-1 subunits, which upregulate pro-inflammatory cytokines,
including iNOS, TNF-α, IL-1β, and IL-6 [57,58], and it has been reported that Schisandrin
B, the lignan found in Schisandra chinensis, exerted anti-inflammatory effects by modulating
these pathways [59]. In brief, studies have shown that lignans are potential therapeutic
agents in inflammatory conditions.

In this study, a pair of new lignan diastereomers, (7R,8R)-sinkiangenone E and (7R,8S)-
sinkiangenone E (1–2), one new norlignan, sinkiangenone F (3), together with thirteen
known compounds (4–16), were isolated from the resin of F. sinkiangensis. The structures
of the new compounds were elucidated based on a combined analysis of the IR, UV,
HRESIMS, NMR, and ECD spectra. Compounds 1 and 2 were diastereomers, their relative
configurations were identified through a J-based NMR configurational analysis coupled
with NOESY spectra, and their absolute configurations were further determined by a
comparison of calculated ECD curves with experimental ECD curves. The flexibility of
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the compound structure makes it difficult to calculate ECD curves; therefore, we used the
basis set of def2-TZVP, which is the ideal basis set for high-precision DFT calculation [60].
Griess reaction and ELISA results indicated that compounds 1 and 2 effectively attenuated
LPS-induced inflammation by reducing the production of inflammatory molecules such
as NO through inhibiting TNF-α, IL-1β, and IL-6 expressions. An in silico approach
was used to verify the anti-inflammatory properties of compound 1 by determining the
binding scores of compound 1 with iNOS, TNF-α, IL-1β, and IL-6, and known compounds
previously reported as targeting the same proteins, such as L-NAME, ZINC09609430,
aequilabrines C, and LMT-28, were selected as controls. The binding scores of compound
1 with established targets were lower than those of comparative compounds, indicating
strong binding interactions with iNOS, TNF-α, IL-1β, and IL-6 proteins. These docking
analyses supported the experimental results of the above Griess assay and ELISA on
compound 1. This study disclosed that F. sinkiangensis might be a promising potential
resource for the discovery of new anti-inflammatory compounds.

4. Materials and Methods
4.1. Experimental

HRESIMS data were acquired using a Thermo Scientific LTQ-Orbitrap XL instrument
(Bremen, Germany). The IR spectra data were recorded using a Shimadzu FTIR-8400S
spectrometer (Kyoto, Japan). The UV spectra data were recorded using a Shimadzu UV-
2550 spectrophotometer (Kyoto, Japan). The optical rotation data were determined at
25 ◦C in CH3OH using a Perkin-Elmer 341 digital polarimeter (Waltham, MA, USA).
NMR spectra data were recorded on a Bruker AV III 600 NMR spectrometer (Rheinstetten,
Germany). Column chromatography was performed using Sephadex LH-20 (Pharmacia
Biotech, Stockholm, Sweden) and silica gel (200–300 mesh). Semipreparative HPLC was
conducted on a Chuangxintongheng K1001 analytic LC instrument with an Agilent-SB-
Phenyl (250 × 10 mm, 5 µm) and a YMC-C18 column (250 × 10 mm, 5 µm). Penicillin,
streptomycin, trypsin, MTT, DMEM, and FBS were purchased from Gibco (Carlsbad, CA,
USA). DMSO, L-NAME, and LPS were purchased from Sigma-Aldrich (St. Louis, MO,
USA). TNF-α, IL-1β, and IL-6 ELISA kits were purchased from Biolegend (San Diego,
CA, USA).

4.2. Material

The F. sinkiangensis resin was collected from Yili state, Xinjiang Uygur Autonomous
Region, China, and authenticated by Prof. Congzhao Fan (Xinjiang Institute of Chinese
Materia Medica and Ethnodrug, Urumqi, China). The voucher specimen (FSR-202106) was
deposited at the Institute of Medicinal Plant Development, Chinese Academy of Medical
Sciences & Peking Union Medical College, Beijing, China.

4.3. Extraction and Isolation

The F. sinkiangensis resin (1.4 kg) was under reflux extraction by 95% ethanol. Then,
a crude extract (1000 g) was obtained by removing the solvent. After that, extracts from
four parts were acquired by suspending the crude extract in water and extracting with
petroleum ether (PET), dichloromethane, ethyl acetate, and n-butanol, respectively.

The dichloromethane extract (700 g) was then chromatographed with CH2Cl2- CH3OH
(1:0~0:1, v/v) by silica gel to obtain seven fractions (Fr. 1~Fr. 7). Fr. 1 was chromatographed
with PET-EtOAc (1:0~0:1, v/v) to afford five fractions (Fr. 1-1~Fr. 1-5). Fr. 1-3 was then
chromatographed with PET-EtOAc (50:0~0:1, v/v) to afford 12 (88 mg). Fr. 1-4 was chro-
matographed with PET-EtOAc (60:1, v/v) to afford 14 (26 mg). Fr. 2 was chromatographed
by silica gel with PET-EtOAc (30:1~0:1, v/v) to obtain four fractions (Fr. 2-1~Fr. 2-4). Fr. 2-1
was purified with PET to afford 13 (36 mg). Fr. 2-2 was chromatographed by semiprepara-
tive HPLC with a YMC-C18 column (CH3OH -H2O, 98%:2%, 17.8 min), to afford 6 (12 mg).
Fr. 3 was chromatographed over silica gel with n-hexane-acetone (20:1~0:1, v/v) to afford
seven fractions (Fr. 3-1~Fr. 3-7). Fr. 3-2 was purified with PET-EtOAc (40:1~0:1, v/v)
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to afford 16 (5 mg). Fr. 3-5 was purified with CH2Cl2-CH3OH (60:1~0:1, v/v) to give
nine fractions (Fr. 3-5-1~Fr. 3-5-9). Fr. 3-5-1 was recrystallized to obtain 11 (25 mg). Fr.
3-5-3 was chromatographed by semipreparative HPLC with an Agilent-SB-Phenyl column
(CH3OH-H2O, 70%:30%, 13.0 min), to afford 5 (14 mg). Fr. 4 was chromatographed over
silica gel with CH2Cl2-CH3OH (1:0~0:1, v/v) to give five fractions (Fr. 4-1~Fr. 4-5). Fr.
4-2 was purified by a preparative TLC method (CHCl3-CH3OH- H2O, 8.5:1.5:1, v/v/v) to
obtain 9 (15 mg). Fr. 6 was separated over MCI gel with CH3OH-H2O (60%:40%~100:0,
v/v) to give four fractions (Fr. 6-1~Fr. 6-4). Fr. 6-3 was chromatographed on a Sephadex
LH-20 column to afford three fractions (Fr. 6-3-1~Fr. 6-3-3). Fr. 6-3-2 was purified by
semipreparative HPLC with an Agilent-SB-Phenyl column (CH3OH-H2O, 75%:25%), to
afford 1 (17.2 min, 7 mg) and 2 (18.7 min, 5 mg). Fr. 6-3-3 was purified by semipreparative
HPLC with an Agilent-SB-Phenyl column (CH3OH-H2O, 80%:20%, 11.1 min), to afford 4
(10 mg).

The n-butanol part (21 g) was chromatographed through MCI using CH3OH-H2O
elution (40%:60%~100%:0, v/v) to acquire Fr. 1~Fr. 9, of which Fr. 2 was further chro-
matographed by Sephadex LH-20 to acquire Fr. 2-1~Fr. 2-3. Fr. 2-2 was chromatographed
by semipreparative HPLC with an Agilent-SB-Phenyl column (CH3OH-H2O, 35%:65%,
17.5 min), to afford 3 (4 mg). Fr. 2-3 was chromatographed by semipreparative HPLC
with an Agilent-SB-Phenyl column (CH3OH-H2O, 48%:52%, 11.7 min), to afford 10 (2 mg).
Fr. 3 was chromatographed by semipreparative HPLC with an Agilent-SB-Phenyl col-
umn (CH3OH-H2O, 45%:65%, 12 min), to afford 8 (4 mg). Fr. 4 was chromatographed
by semipreparative HPLC with an Agilent-SB-Phenyl column (CH3OH-H2O, 60%:40%,
10.3 min), to afford 7 (2 mg). Fr. 5 was chromatographed by semipreparative HPLC with
an Agilent-SB-Phenyl column (CH3OH-H2O, 60%:40%, 10.3 min), to afford 15 (2 mg).

(7R,8R)-Sinkiangenone E (1): Orange gum; UV (CH3OH) λmax (log ε): 318 (4.64) nm;
[α]25

D : −17.9 (c = 0.084, CH3OH); IR: 3369, 2935, 1700, 1597, 1515, 1271, 1158, 1124, 1031 cm−1;
1H NMR (600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data, see Table 1; HRESIMS
(positive mode) m/z: 573.2092 [M + Na]+ (calcd for C31H34O9Na, 573.2095).

(7R,8S)-Sinkiangenone E (2): Orange gum; UV (CH3OH) λmax (log ε): 322 (4.64) nm;
[α]25

D : +15.0 (c = 0.04, CH3OH); IR: 3437, 2936, 1696, 1596, 1507, 1272, 1158, 1123, 1033 cm−1;
1H NMR (600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data, see Table 1; HRESIMS
(positive mode) m/z: 573.2092 [M + Na]+ (calcd for C31H34O9Na, 573.2095).

Sinkiangenone F (3): Colorless gum; UV (CH3OH) λmax (log ε): 229 (4.07), 279
(3.70) nm; [α]25

D : +0.7 (c = 0.135, CH3OH); IR: 3297, 2936, 2920, 1653, 1635, 1558, 1521, 1506,
1272, 1032 cm−1; 1H NMR (600 MHz, CD3OD) and 13C NMR (150 MHz, CD3OD) data,
see Table 1; HRESIMS (positive mode) m/z: 385.1282 [M + Na]+ (calcd for C19H22O7Na,
385.1258).

4.4. ECD Simulation

Spartan’s 14 v1.1.4 software was applied to perform the Monte Carlo conforma-
tional search, using the method of Merck Molecular Force Field (MMFF). At the CAM-
B3LYP/def2-SVP level, the conformers of compounds 1 and 2 with a Boltzmann population
greater than 5% were selected for optimization in CH3OH. Then, an SMD polarization con-
ductor calculation model was used for excited state calculations of the CAM-B3LYP/def2-
TZVP level in CH3OH, employing TD-DFT for all conformers. A total of 60 excited states
were calculated to determine their rotatory strengths. ECD spectra were generated from
dipole-length rotational strengths using SpecDis 1.71 and Origin 2019b, applying Gaussian
band shapes with a sigma of 0.3 eV and 0.12 eV.

4.5. Determination of NO Production by the Griess Assay

RAW 264.7 cells were purchased from the Institute of Basic Medical Sciences, Chinese
Academy of Medical Sciences (Beijing, China). MTT assay was applied to assess cell
viability [61]. The macrophages were cultured in DMEM with 10% FBS. After 24 h of
incubation, 100 µL of tested compounds were added. After 24 h, 20 µL of MTT was added
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into each well. After another 4 h, the supernatant was discarded, and 150 µL of DMSO
was added into each well. After shaking for 1 min, the optical density of each well was
detected at 570 nm wavelength by a microplate reader (Sunrise, Grödig, Austria), and the
cell viability was calculated.

The Griess reaction was applied to evaluate the inhibitory effects of isolated com-
pounds on NO production in RAW 264.7 cells induced by LPS [62]. The cells were seeded
in 96-well plates with DMEM containing 10% FBS, together with LPS (100 ng/mL) and
L-NAME (positive control) or isolated compounds. After that, 50 µL of culture supernatant
and 50 µL of Griess reagent were mixed at room temperature. After another 15 min, the
absorbance at 540 nm was detected.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

RAW 264.7 macrophages were treated with LPS (100 ng/mL) and isolated compounds
for 24 h. Then, the culture medium was collected and used for measuring the expression
levels of respective proinflammatory cytokines (TNF-α, IL-1β, and IL-6). The experiments
were conducted using ELISA kits following the manufacturer’s protocols.

4.7. Molecular Docking

Molecular docking was performed to check whether the in silico study supported
the anti-inflammatory experimental results. The X-ray crystal structures of iNOS (PDB ID:
4CX7), TNF-α (PDB ID: 7JRA), IL-1β (PDB ID: 5R85), and IL-6 (PDB ID: 5FUC) proteins
were obtained from RCSB Protein Data Bank (https://www.rcsb.org/, accessed on 7
September 2023). Ligands (compound 1, L-NAME, ZINC09609430, aequilabrines C, and
LMT-28) were drawn in ChemBioDraw Ultra 14.0 and were copied to ChemBio3D Ultra 14.0;
then, MM2 calculation was used to minimize the energy of conformation and structures
were saved in PDB format. Before docking, water molecules and any other unwanted
components (including co-crystallized small-molecule ligands of 4CX7, 7JRA, and 5R85,
and gp80 protein of 5FUC) were removed from proteins and ligands. The proteins were
prepared by adding polar hydrogen atoms and assigning partial charges, and the ligand
was prepared by assigning atom types, charges, and torsion angles. Then, the search
spaces or active sites on the proteins were defined by the co-crystallized ligands, and
grid boxes (grid dimensions of 4CX7: 70 Å × 70 Å × 72 Å; grid dimensions of 7JRA:
46 Å × 42 Å × 50 Å; grid dimensions of 5R85: 34 Å × 36 Å × 34 Å; grid dimensions
of 5FUC: 122 Å × 90 Å × 98 Å) were generated within the specified search. After that,
AutoDock was used to perform the molecular docking calculation and to predict the
binding affinity of the ligand to the proteins. Docking parameters were set to 100 genetic
algorithm runs and ligands were docked via the Lamarckian GA. The results of molecular
docking were visualized by PyMOL Molecular Graphics System v.2.2.0 and Discovery
Studio 45.

4.8. Cytotoxicity

MGC-803, AGS, and HeLa cell lines were also purchased from the Institute of Basic
Medical Sciences, Chinese Academy of Medical Sciences (Beijing, China). The cytotoxicities
of the isolates were evaluated using a modified MTT assay [63]. AGS and HeLa cells
were cultured in RPMI 1640 medium, while MGC-803 cells were cultured in DMEM,
supplemented with 10% FBS. MGC-803, AGS, and HeLa cells were incubated into 96-well
plates with the concentration of 3 × 104, 7 × 104, and 5 × 104 cells per mL, respectively.
After 24 h of incubation, 100 µL of tested compounds of different concentrations were
added, and DMSO was used as the solvent control. After 48 h, 20 µL of MTT was added
into each well. After another 4 h, the supernatant was discarded, and 150 µL of DMSO
was added into each well. After shaking for 1 min, the optical density of each well was
detected at 570 nm wavelength by a microplate reader (Sunrise, Austria), and the cell
viability was calculated.

https://www.rcsb.org/
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4.9. Wound Healing Assay

The experimental procedure involved culturing cells in the logarithmic phase until
approximately 90% confluence was achieved in a 24-well plate. In the monolayer of cells,
a sterile 200 µL pipette tip was used to create a linear wound. After rinsing with PBS to
remove unattached cells and debris, the AGS cells were treated with compound 6 (0, 2, 4,
or 8 µM) for 24 h. At 0 and 24 h, wound images were taken by an inverted microscope at
100×magnification. Then, Image J 1.53a software was used to determine the wound area.
Finally, the change in wound area was used to calculate the wound healing rate.

4.10. Cell Migration and Invasion Assays

Transwell chambers were used with or without Matrigel. In migration experiments,
cells (3 × 104 each well) were added directly without any coating. In invasion experiments,
the cells were pre-coated with a layer of Matrigel. The lower chamber wells contained
600 µL of RPMI-1640 medium supplemented with 10% FBS and compound 6 (0, 4, 8, or
16 µM). The Transwell chambers were then incubated for 24 h, methanol was used to fix
the cells for 20 min, crystal violet was used to stain the cells for 30 min, and an inverted
microscope was used to image at 200× magnification. The numbers of cells that had
migrated or invaded were counted and used to calculate migration or invasion rates.

4.11. Statistical Analysis

SPSS 22.0 software was applied to perform statistical analysis. The results were ex-
pressed as mean ± standard deviation. The significance between each group was * p < 0.05,
** p< 0.01, and ## p < 0.001.

5. Conclusions

In summary, three new lignans and thirteen known compounds were isolated from
the resin of F. sinkiangensis. Compounds 1 and 2 were diastereomers; their relative config-
urations were identified through a J-based NMR configurational analysis coupled with
NOESY spectra, and their absolute configurations were further determined by a compari-
son of calculated ECD curves with experimental ECD curves. Griess reaction and ELISA
results indicated that compounds 1 and 2 effectively attenuated LPS-induced inflammation
by reducing the production of NO and TNF-α, IL-1β, and IL-6 expressions. Molecular
docking results showed that the binding scores of compound 1 with established targets
were lower than those of comparative compounds, indicating strong binding interactions
with iNOS, TNF-α, IL-1β, and IL-6 proteins. Compound 6 exhibited potential cytotoxicity
to AGS gastric cancer cells by suppressing cell migration and invasion. All these results
indicated that F. sinkiangensis might be a promising potential resource for the discovery of
new anti-inflammatory lignans.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph16101351/s1: Figures S1–S29: HRESIMS, UV, IR, 1H, 13C,
1H-1H COSY, HSQC, HMBC and NOESY NMR spectra of 1–3.
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