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Abstract: Recently, a G-protein coupled receptor 44 (GPR44) was discovered to play a significant role
in the process of inflammation-related diseases, including cancer and diabetes. However, the precise
role of GPR44 has yet to be fully elucidated. Currently, there is a strong and urgent need for the
development of GPR44 radiotracers as a non-invasive methodology to explore the exact mechanism
of GPR44 on inflammation-related diseases and monitor the progress of therapy. TM-30089 is a
potent GPR44 antagonist that exhibits a high specificity and selectivity for GPR44. Its structure
contains a fluorine nuclide, which could potentially be replaced with 18F. In the present study, we
successfully took a highly effective synthesis strategy that pretreated the unprotected carboxylic
acid group of the precursor and developed a feasible one-step automatic radiosynthesis strategy
for [18F]TM-30089 with a high radiochemical purity and a good radiochemical yield. We further
evaluated this radiotracer using mice models implanted with 1.1 B4 cell lines (GPR44-enriched cell
lines) and human islets (high GPR44 expression), respectively. The results revealed the persistent
and specific uptake of [18F]TM-30089 in GPR44 region, indicating that [18F]TM-30089 is a promising
candidate for targeting GPR44. Further evaluation is ongoing.

Keywords: G protein-coupled receptor 44 (GPR44); 18F-labeling; chemoattractant receptor-homologous
molecule expressed on T-helper type 2 cells (CRTH2); prostaglandin D2 receptor 2 (DP2); prostaglandin
D2 (PGD2); inflammation; automatic model; diabetes; cancer; human islets

1. Introduction

G protein-coupled receptor 44 (GPR44), alternatively known as the chemoattractant
receptor-homologous molecule expressed on T-helper type 2 cells (CRTH2) or prostaglandin
D2 receptor 2 (DP2) [1,2], was first identified by Marchese et al. in 1999 [3]. Structurally, it is
composed of seven transmembrane alpha helices and is closely related to chemoattractant
receptors [4]. It is one of two G-protein-coupled receptors recognized for their high-
affinity binding to prostaglandin D2 (PGD2), which is known to be involved in a vast
range of physiological and pathophysiological processes [5]. The PGD2-GPR44 pathway
is implicated in a variety of diseases, including those of the central nervous system [6],
urinary tract [7], gastrointestinal tract [8], respiratory system [9], integumentary system [10],
osseous and chondral tissues [11], and a range of cancers [12].

Recently, GPR44 is becoming a novel target to aid the further exploration of the
relationship between inflammation and the biologic behavior of tumor/diabetes. This ex-
ploration holds the potential to uncover innovative therapeutic approaches. Inflammation is
commonly believed to be an immune system defense to control tissue damage, yet under in-
appropriate conditions with excessive levels, inflammation can also cause tissue damage. In
extreme conditions, chronic inflammation may promote tumor progression, which is often
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referred to as inflammation-induced cancer [13]. Given its established role as an inflamma-
tion marker, GPR44 is being investigated for its relevance in understanding the biological
behavior of the tumor, including breast cancer [14], colorectal cancer [15], hepatocellular
carcinoma [16], gastric cancer [17], leukemia [18], lung cancer [19], and myeloma [20].
However, the precise mechanism underlying the role of GPR44 in inflammation-induced
cancer remains unknown, highlighting the need for additional studies to elucidate the exact
mechanisms involved. Regarding its relationship with diabetes, Abadpour et al. reported
that GPR44 inhibition via selective antagonists could be beneficial for the preservation of
islet function under inflammatory and hyperglycemic conditions [21]. However, the clinical
trial of AZD1981, which was an orally administered GPR44 antagonist, did not show a
significant improvement in insulin secretion [22]. As a result of clinical inconsistencies, as
well as the still uncertain relationship between GPR44-modulated insulin secretion and
inflammation in vivo, more investigation into the exact mechanisms of GPR44 is impera-
tive [23]. Additionally, GPR44 also shows a paradoxical activity level on type 1 diabetes
(T1D) and type 2 diabetes (T2D) [24,25]. The exact mechanism of GPR44 in diabetes with
inflammation remains a mystery.

Positron emission tomography (PET), a non-invasive in vivo imaging technique, has
emerged as a profoundly sensitive and versatile medical imaging tool. It employs target-
specific radiotracers to visualize and quantify molecular as well as functional processes
within an organism [26]. GPR44 PET imaging holds the potential to offer invaluable insights
into the in vivo function, activity, and localization of GPR44. It could facilitate the deeper
exploration of the precise mechanisms underlying therapeutic interventions. Currently,
there is a strong and urgent need for the development of suitable GPR44 PET imaging
tracers that can be used for these purposes. Nevertheless, there were only three GPR44
PET tracers reported. Two of the three tracers were 11C-labeled, namely [11C]AZ12204657
and [11C]MK-7246 [27,28]. However, 11C tracers are significantly limited by the extremely
short half-life of 11C (20 min), hindering administration to multiple patients, delivery
to remote sites, and implementation in pre-clinical validation assays. Manufacturing
11C tracers relies on an on-site cyclotron, introducing additional challenges. Compared
to 11C-labeled tracers, 18F-labeled tracers are preferable due to their prolonged half-life
(110 min), enabling up to 10 h of PET imaging, mass production, and bulk distribution.
Additionally, fluorine-18 demonstrates high positron emission (97%) and low maximum
positron energy (0.635 MeV). Despite the various advantages of 18F-labeled tracers, there
is only one fluorine-18 tracer, named [18F]MK-7246, that has been reported [29], and its
investigation is still ongoing. The development of the 18F GPR44 radiotracer is currently in
its initial stages. Consequently, there is a necessity to develop new and potential 18F-labeled
candidates for various objectives in preclinical or clinical uses.

Our research aimed to explore, evaluate, and develop new fluorine-18 GPR44 tracers,
which could provide more options for potential tracers in in vivo PET GPR44 imaging. To
improve the efficiency of developing new radiotracers, we employed known potent GPR44-
targeting antagonists containing a fluorine nuclide, which potentially could be isotopically
replaced by an 18F. The upside of such an approach was those potent ligands (nonradioac-
tive) were thoroughly characterized (affinity, lipophilicity, protein binding, etc.). Moreover,
by the radioisotopic replacement, they ideally preserved their pharmacokinetic properties.
In the scope of our present study, TM-30089 ({3-[(4-fluoro-benzenesulfonyl)methyl-amino]-
1,2,3,4-tetrahydro-carbazol-9-yl}acetic acid) containing a fluorine nuclide, was selected from
an initial pool [30,31]. TM-30089 as a GPR44 antagonist (Figure 1), exhibited the optimal
measures of high affinity, specificity, lipophilicity, intrinsic clearance, and bioavailability
levels [32]. The potent binding and negligible off-target activity of TM-30089 made it an
especially ideal candidate for developing a GRP44 radiotracer [30]. A challenge arose from
the presence of a carboxylic acid group in a number of GPR44 antagonists containing a flu-
orine nuclide (such as TM-30089), culminating in notably diminished radiochemical yield.
This issue substantially impeded the applicability in pre-clinical and clinical contexts. In
the present study, we explored the development of a novel and feasible one-step automated
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synthesis methodology, involving the pretreatment of an unprotected carboxylic acid group
of the precursor, which had effectively surmounted this issue. This breakthrough stood
as a crucial and compelling advancement poised to facilitate the development of GPR44
18F-labeled radiotracers. [18F]TM-30089 underwent systematic evaluation in both mouse
models implanted with 1.1 B4 (GPR44-enriched tumor cell line) and transplanted human
islets (GPR44 high expression), demonstrating its potential for specific GPR44 targeting.
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2. Results and Discussion

2.1. Efficient Identification of Promising 18F-Labeled GPR44 Radioligands (Non-Radioactivity
Synthesis Section)

There existed a number of GPR44 ligands containing fluorine groups that could serve
as a source for the development of potentially 18F-labeled GPR44 radiotracers [30,31].
ramatroban (Figure 1), also known as BAY-u 3405, was first described as an antagonist of
the thromboxane receptor (TP) and was later shown to selectively bind as an antagonist
to GPR44 as well [33]. However, it exhibited approximately 16 times less selectivity for
GPR44 than for TP. TM-30089 was a modified ramatroban analog synthesized through
the methylation of the nitrogen atom of the sulfonamide group and the replacement of
the propanoic acid with an acetic acid. The structural alterations contributed to its strong
potency and specificity for GPR44, with a low Ki value of 0.60 nM, and negligible off-target
binding to TP and DP1. TM-30089 presented an ideal candidate for the development of
the 18F labeled GPR44 tracer due to its fluorine-containing structure, which allowed for
the minor structural modifications preserve the maximum pharmacokinetic properties,
particularly high specificity for GPR44.

2.2. Establishment of Murine Models for the Evaluation of GPR44 Radioligands
2.2.1. NOD/SCID Mouse Model with a 1.1 B4 Tumor Cell Line

Although GPR44 has high expression in pigs, non-human primates, and humans, only
low/no expression is found in mice and rats. This disparity poses a significant barrier
in the evaluation of GPR44 radioligands in mouse models. Therefore, it is necessary to
establish a viable murine model that accounts for this issue. We hypothesized that the
implantation of a human beta cell-like 1.1 B4 tumor cell line, a hybrid line derived from
the fusion of a human pancreatic islet culture with a human pancreatic ductal carcinoma
cell line (PANC-1), could resolve this issue. Our Western blot analysis demonstrated the
expression of GPR44 in the 1.1 B4 cell line (Figure 2). Therefore, in the present study, 1.1 B4
cells were implanted into NOD/SCID mice to generate GPR44-expressing mouse models
that could enable an effective evaluation of [18F]TM-30089. In this specific murine model,
the tissue uniquely targeted by the GPR44 radio-probes is the 1.1 B4-positive tumor.
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2.2.2. NOD/SCID Mouse Model Transplanted with Human Islets

GPR44 expression in human islet cells was identified via a proteomic screen using
the Human Protein Atlas in 2012 [24]. In our study (Figure 3), the tissue sections of the
adult human pancreases were examined using double immunofluorescence staining for
GPR44 antibody, together with islet major hormones, insulin, glucagon, and somatostatin.
The results showed high GPR44 expression in beta cells, where it exhibited strong co-
localization with insulin, and a negligible expression in alpha cells and delta cells, as
evidenced by minimal co-localization with glucagon or somatostatin. Uppsala University’s
team reported similar results, further validating this [23]. Our team routinely performs
human islet transplantation in murine renal capsules. This mouse model with human islets
were used only for the final evaluation of [18F]TM-30089 due to the scarcity of a human
islet sources. Only transplanted human islets were targeted by the GPR44 radio-probes.

2.3. Radiosynthesis of [18F]TM-30089

The analysis of the structure of TM-30089 revealed the presence of an electron-
withdrawing sulfonyl group located para-position to the 19F nuclide on the phenyl ring.
Therefore, nucleophilic aromatic substitution (SNAr) was likely the most viable fluorination
method for 18F incorporation. Regarding the precursor, the most common and efficient
leaving groups for traditional no-carrier-added nucleophilic aromatic substitution were
trimethylammonium salt and nitro groups. However, choosing a nitro group as a leaving
group required a high reaction temperature (140–150 ◦C), which could potentially impact
product stability and increase the production of unwanted byproducts, causing low radio-
chemical yield and subsequently limiting future clinical applications. For these reasons, our
study utilized trimethylammonium salt as the leaving group, requiring a milder reaction
temperature of only 95 ◦C (see the below section for details). There was a total of seven steps
to successfully obtain the precursor (JL01-1) from commercially available starting material.

In our previous summary, we found that one carboxyl acid group was present in a
number of GPR44 antagonists containing a fluorine nuclide. The existence of a carboxyl
group within targeted molecules poses a major challenge to direct 18F fluorination due to
undesirable effects such as lowered radiochemical yields and even an inability to direct
nucleophilic radiofluorination. Thus, 18F fluorination is typically restricted to application on
protected precursors. However, such 18F products are labeled with fluorine-18 by laborious,
complex multi-step reactions that include the deprotection of these functional groups post-
radiofluorination, resulting in low radiochemical yield and a prolonged amount of time.
Given the short half-life of 18F (approximately 110 min), implementing fast and simple
synthesis strategies is highly required to achieve manufacturing standards. Therefore,
we conducted an efficient synthesis strategy of the 18F-tracer, one that not only enhanced
availability but also enabled automation. In our study, we conducted the pretreatment of
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the carboxylate group of the precursor in the form of a salt with cationic chelates (cryptates,
[K+c2.2.2]2C2O4, and [K+c2.2.2]2CO3), which was able to effectively avoid the mentioned
drawback and attain the synthesis goal (Scheme 1).
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The labeling procedure was performed using a Synthra RNplus radio-synthesis mod-
ule, including one semi-preparative HPLC system (Scheme 1). The precursor of JL01-1
was converted to [18F]TM-30089 at 95 ◦C for 10 min through a one-step labeling reaction.
The crude product [18F]TM-30089 was purified using the semi-preparative HPLC system
in ~13 min with a radiochemical yield of 20–26%. In QC analysis, product [18F]TM-30089
was validated, and it had a high radiochemical purity (>99%), as seen using the analytical
HPLC system.
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2.4. Biodistribution

To obtain the real-time measurements of [18F]TM-30089 uptake at various time points,
organ/tissue biodistributions in healthy control NOD/SCID mice were performed at
30 min, 60 min, and 90 min post-injection (p.i.), respectively (Figure 4). The result in-
dicated that uptakes in liver and small intestine were highest at all time points (liver:
15.31 ± 0.16% ID/g at 30 min p.i., 8.76 ± 1.60% ID/g at 60 min p.i., and 6.62 ± 0.57% ID/g
at 90 min p.i.; small intestine: 10.67 ± 2.13% ID/g at 30 min p.i., 10.14 ± 0.47% ID/g at
60 min p.i., and 9.90 ± 0.26% ID/g at 90 min p.i.). The [18F]TM-30089 uptake result was
similar to the uptakes of [18F]MK-7246 in the liver and small intestine, suggesting that
uptakes in these tissues were likely related to excretion [29]. The uptake of the tracer in
the kidney was ~4.00 ± 0.80% ID/g at 30 min p.i, 2.11 ± 1.06% ID/g at 60 min p.i., and
1.33 ± 0.47% ID/g at 90 min p.i. The kidney displayed the fast uptake of [18F]TM-30089
at 30 min p.i followed by a rapid washout from 60 min to 90 min p.i. Other organs such
as the heart, lung, pancreas, and spleen exhibited low uptakes. Low tracer uptake levels
were common in the majority of organs, excluding excretion organs such as the liver. In the
blocking agent study, we did not find any specifically targeted organs/tissues; therefore,
results confirmed the low expression of GPR44 in the murine model as expected. Of the
time points, 30 min post-injection was chosen to evaluate the next specific GPR44 mouse
models. The further evaluation of biodistribution at 60 min and 90 min was not deemed
necessary, since we did not find that the results at those time periods differed significantly
from the trends observed in this primary testing group.

The biodistribution of [18F]TM-30089 was additionally evaluated in NOD/SCID mice
with implanted 1.1 B4 cells both with and without the blocking agent. The mice were first
anesthetized with 2–4% isoflurane in oxygen before an intravenous injection via the tail
vein of ~3.70 MBq (~100 µCi) of [18F]TM-30089 was given and were then euthanized at the
30 min point. The uptake values of [18F]TM-30089 for the tumors dramatically decreased
from 27.81 ± 1.71% ID/g to 0.24 ± 0.02% ID/g in animals injected with cold TM30089
(1 mg/kg), confirming tracer specificity (Figure 5). The uptake in other organs/tissues was
consistent with the above biodistribution study in the normal control. Additionally, as
expected, the uptake values of the pancreas in both the non-blocked group and the blocked
group were low, and the pancreas was not blocked (0.38 ± 0.04% ID/g for non-blocked
group and 0.26 ± 0.05% ID/g for blocked group). This observation is in accordance with a
known low level of expression of GPR44 in the murine pancreas.
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Human islets exhibited the high expression of GPR44. Thus, a mouse model with
transplanted 500 IEQ human islets was used for the final evaluation of [18F]TM-30089 for
a specific binding. A procedure similar to that of the above murine biodistribution was
performed in this biodistribution study. Mice were euthanized at 30 min post-injection,
and the organs/tissues of interest were collected. Human islets transplanted into a kidney
capsule exhibited a notably high uptake (10.87% ID/g and 6.21% ID/g), which demon-
strated that [18F]TM-30089 had a specific binding in the GPR44-enriched human islets
(Figure 6). There was no difference in tracer uptake of other organs/tissues between the
human islet-transplanted model and the biodistribution results above.
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2.5. Feasibility and Acceptability of Screening Strategy

Given the initial stage of developing 18F-labeled GPR44 ligands, there exists a vital
need to develop new potential candidates to serve various objectives in preclinical or
clinical uses. However, the processes of evaluation, screening, and identification of “cold”
candidates are crucial steps in the development of PET radiotracers, generally requiring a
significant amount of time and resources. To expedite developing the 18F-labeled GPR44
ligand, we believed it would be strategically important to use the existing potent analogues
that already contain a fluorine-19 nuclide, which could potentially be isotopically replaced
by fluorine-18. These fluorine-18 probes do not exhibit the significant modification of
pharmacokinetic or other properties, and this strategy has played an important role in the
identification of 18F-radioligands.

Both [18F]TM30089 and previously reported [18F]MK-7246 displayed high specific
GPR44 binding, where both radiotracers used the above similar screening strategy to
select a suitable “cold” ligand during the development of the GPR44 radio-probes. This
strategy has been validated as a feasible and successful approach. Based on this efficient
and effective screening method, we summarized and recommended a series of 19F GPR44
ligands as a potential pool for future PET radiotracer development in our previous review
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paper [30,31]. However, we addressed a significant concern in the previous section: the
presence of one carboxyl acid group in a number of these GPR44 analogues, which could
cause diminished radiochemical yields and even indirect nucleophilic radiofluorination
(such as [18F]TM30089 and [18F]MK-7246). In our present study, we successfully overcame
this issue, achieving the product in one step with an improved yield. This method could
provide sufficient on-demand radiotracer dosages for pre-clinical and even future clinical
uses. This feasible one-step synthesis approach has the potential to significantly propel the
progression of 18F-labeled GPR44 radiotracer development.

Taken together, our results demonstrate that [18F]TM-30089 exhibits high specific
binding to GPR44, and thus might possess significant potential as an appropriate and
efficacious candidate.

3. Materials and Methods
3.1. Cells and Animals

The hybrid cell line 1.1 B4 (GPR44-positive) was maintained under standard conditions.
The 1.1 B4 tumor cells were grown in culture until a sufficient number of cells were available.

Human pancreatic islets were provided by the Southern California Islet Cell Resources
Center from human pancreases of healthy adult donors with the proper consent for research
use and approval by the Institutional Review Board of the City of Hope.

Male NOD/SCID mice (the City of Hope Animal Resource Center) served as recipients
of either 1.1 B4 cells or human islets. This study was carried out in strict accordance with
the recommendations of the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health (protocols #15035 and #98001, approved by the Institutional
Animal Care and Use Committee of the City of Hope).

3.1.1. Xenograft Tumor Model

NOD/SCID mice (n = 24) were subcutaneously injected with 1.1 B4 cells above their
shoulders. Tumors were established 17–21 d after injection.

3.1.2. Islet Transplantation

Human islets with diameters of less than 250 µm were used for transplantation. A
total of 500 IEQ human islets were transplanted into the renal capsule of NOD/SCID mice
(n = 5) using a well-established standard procedure [34,35].

3.2. Western Blot Analysis

Approximately 10 µg of the denatured protein of 1.1 B4 cells was separated via 10%
SDS–polyacrylamide gel electrophoresis and then transferred onto a PVDF (polyvinylidene
fluoride) membrane. The membrane was blocked with 5% (w/v) nonfat milk for 1h at room
temperature, and then incubated with the primary antibody anti-CRTH2(1:1000, Abcam,
ab190506) overnight at 4 ◦C, followed by the secondary antibody anti-rabbit IgG (H&L)
(1:10,000, Abcam, ab205718) at room temperature for 2 h. The bands were detected using
the super-enhanced chemiluminescence (ECL) detection reagent (Thermo Scientific #34579,
Life Technologies, Carlsbad, CA, USA).

3.3. Histology Study

Formalin-fixed, paraffin-embedded tissue sections of adult human pancreases were
examined via double and immunofluorescence staining for the GPR44 antibody (red,
Abcam-ab190506, 1:50 dilution), together with major islet hormones, insulin (green, Dako-
A0564, 1:200 dilution), glucagon (green, Sigma-G2654, 1:2000 dilution), and somatostatin
(green, Dako-A0566, 1:200 dilution). DNA was stained blue with DAPI. Data were verified
in human pancreases from three to four independently deceased donors.
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3.4. General Procedure for the Pretreatment of Precursor JL01-1
3.4.1. Preparation of [K+c2.2.2]2CO3

[K+c2.2.2]2CO3 was prepared using the addition of 1.2 equivalents of Kryptofix 2.2.2
to one equivalent of K2CO3 in water/MeCN (1:1, v/v). The solvent was evaporated under
reduced pressure and freeze dried.

3.4.2. Preparation of [K+c2.2.2]2C2O4

[K+c2.2.2]2CO3 was prepared through the addition of 1.2 equivalents of Kryptofix
2.2.2 to 1 equivalent of K2C2O4 in water/MeCN (1:1, v/v). The solvent was evaporated
under reduced pressure and freeze dried.

3.4.3. Pretreatment of Precursor 4-(N-(9-(Carboxymethyl)-2,3,4,9-tetrahydro-1H-carbazol-
3-yl)-N-methylsulfamoyl)-N,N,N-trimethylbenzenaminium

4-(N-(9-(carboxymethyl)-2,3,4,9-tetrahydro-1H-carbazol-3-yl)-N-methylsulfamoyl)-
N,N,N-trimethylbenzenaminium (2 mg), K2CO3 Kryptofix 2.2.2 (5 mg), and K2C2O4
Kryptofix 2.2.2 (12 mg) were dissolved in acetonitrile (1 mL). The resulting mixture was con-
centrated under reduced pressure. The residue was used in the labeling reaction without
further treatment.

3.5. Radiosynthesis of [18F]TM-30089

3.5.1. Automatic Synthesis of [18F]TM-30089

The Synthra RN plus Research module (Synthra GmbH, Hamburg, Germany), a
remote-controlled synthesizer, containing one semi-preparative HPLC system, was used
for the automatic synthesis of [18F]TM-30089.

Typically, for the synthesis of [18F]TM-30089, 7.4 GBq (200 mCi) of 18F-fluoride (PET-
NET Solutions Inc., Culver City, CA, USA) was passed through a Sep-Pak Light Waters
Accell Plus QMA Cartridge (Waters, Milford, MA, USA). Cartridge-trapped 18F-fluoride
was eluted into the reactor tube via a solution containing K2CO3 (20 mg/mL in H2O,
0.2 mL) and Kryptofix 2.2.2 (18 mg/mL in CH3CN, 0.9 mL). Eluted 18F-fluoride was dried
via azeotropic distillation, and a solution of pretreated precursor (19 mg) in DMSO (1 mL)
was added, then heated at 95 ◦C for 10 min. After cooling, HPLC buffer (1.8 mL) and
1M hydrochloric acid solution (0.8 mL) were added sequentially. The crude product was
purified using a Gemini C-18 (5 µm, 10 × 250 mm) semipreparative column (Phenomenex,
Torrance, CA, USA), monitored at 254 nm, and radioactivity via the UV-HPLC/Radio
system of the Synthra RNplus module. The mobile phase comprised 45% MeCN in AMF
(0.1 M, pH = 4.5), and the flow rate was 4 mL/min. The retention time for the desired
product was ~13 min. After concentration under the vacuum for 10 min, the product was
formulated in 10% EtOH in saline and was filtered through a 0.22-µM sterile filter. The
total synthesis time was ~70 min.

3.5.2. Quality Control (QC)

An Agilent 1260 Infinity II System equipped with a quaternary pump and degasser,
an automated sample injector, a column compartment, a variable-wavelength UV detector
and a radio detector was used for QC analysis.

QC HPLC conditions: (1) analytical column: Gemini C-18 (5 µm, 4.6 × 250 mm)
analytical column (Phenomenex); (2) mobile phase: a gradient of 60% MeCN in water
(0.1%TFA) to 85% MeCN in water (0.1%TFA) for a time span of 12 min, at a flow rate of
1.0 mL/min.

The co-injection of the product [18F]TM30089 with reference [19F]TM-30089 (Chemietek)
was confirmed using a RP-HPLC system (retention time was ~6 min).

The overall radiochemical yield of 18F-TM30089 was ~20–26% (decay-corrected to
EOS) with high radiochemical purity (>99%) and high specific activity (>66 GBq/µmol,
decay-corrected to EOS).
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3.6. Biodistributions

3.6.1. Biodistribution of [18F]TM30089 in NOD/SCID Control Mice

The biodistribution of [18F]TM30089 was investigated in healthy NOD/SCID mice
at various time points post-injection. Three time points (30 min, 60 min, or 90 min post-
injection) and one blocking time point (30 min post-injection) were selected in the biodis-
tribution (n = 4/each group). “Cold” TM-30089 (1 mg/kg) as the blocking agent was co-
injected with [18F]TM30089 in the blocking group. Under general anesthesia, NOD/SCID
mice were administered doses of tracer (~3.7 MBq) intravenously through the tail vein.
At the above-specified time points, the animals were euthanized, and the organs/tissues
of interest were harvested. Organs/tissues were weighed, and the gamma was counted.
Radioactive uptakes were calculated and reported as percentage of injected dose per gram
(% ID/g) for each organ.

3.6.2. Biodistribution of [18F]TM30089 in NOD/SCID Mice with 1.1 B4 Cells

The biodistribution of [18F]TM30089 was investigated in NOD/SCID mice implanted
with 1.1 B4 tumor cells at 30 min post-injection both with and without blocking agent
(n = 4/each group). “Cold” TM-30089 (1 mg/kg) as the blocking agent was co-injected
with [18F]TM-30089 in the blocking group. Under general anesthesia, NOD/SCID mice
were administered doses of tracer (~3.7 MBq) intravenously through the tail vein, then
the animals were euthanized at 30 min post-injection. Organs/tissues/tumors of interest
were harvested, weighed, and gamma-counted. Radioactive uptakes were calculated and
reported as percentage of injected dose per gram (% ID/g) for each organ/tissue/tumor.

3.6.3. Biodistribution of [18F]TM-30089 in NOD/SCID Mice with Transplanted Human
Islets in a Renal Capsule

The biodistribution of [18F]TM-30089 was investigated in random two NOD/SCID
mice with transplanted 500 IEQ human islets (GPR44-enriched) into a renal capsule at
30 min post-injection. Under general anesthesia, NOD/SCID mice were administered doses
of tracer (~3.7 MBq) intravenously through the tail vein, then the animals were euthanized
at 30 min post-injection. Organs/tissues/islets of interest were harvested, weighed, and
gamma-counted. Radioactive uptakes were calculated and reported as percentage of
injected dose per gram (% ID/g) for each organ/tissue/islet.

4. Conclusions

Coupled with the pretreatment of the unprotected carboxylic acid group of the pre-
cursor, a feasible one-step automated synthesis of [18F]TM-30089 under mild reaction
conditions was successfully achieved. It resulted in a high radiochemical purity (>99%) and
a good radiochemical yield (~20–26%), which was able to provide sufficient on-demand
radiotracer dosage for pre-clinical and even future clinical uses. This feasible one-step
synthesis approach has the potential to significantly propel the progression of 18F-labeled
GPR44 radiotracer development.

In animal studies, the persistent and specific uptake of [18F]TM-30089 was detected
in implanted 1.1 B4 cells as well as in renal-subcapsular transplanted human islets, both
of which had been shown to exhibit high GPR44 expression. These results suggested
that [18F]TM-30089 is a promising candidate for targeting GPR44 and further validation
is underway. Furthermore, we are currently investigating the mechanism of GPR44 on
inflammation-related cancer and diabetes using [18F]TM-30089. However, some limitations
should be noted. First, the multi-step organic synthesis for this precursor had an impact on
the overall chemical yield. Currently, we are focusing on optimizing this synthetic route
to improve chemical yield. It is important to note that pigs, non-human primates, and
humans exhibit high GPR44 expression, while there is significantly lower or negligible
GPR44 expression in mice and rats. When focusing on murine models, the identification of
suitable animal models becomes imperative. It is also exciting to observe that more GPR44
murine models have been established and reported.
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