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Abstract: Cancer is one of the major causes of mortality, globally. Cancerous cells invade normal cells
and metastasize to distant sites with the help of the lymphatic system. There are several mechanisms
involved in the development and progression of cancer. Several treatment strategies including the
use of phytoconstituents have evolved and been practiced for better therapeutic outcomes against
cancer. Fisetin is one such naturally derived flavone that offers numerous pharmacological benefits,
i.e., antioxidant, anti-inflammatory, antiangiogenic, and anticancer properties. It inhibits the rapid
growth, invasiveness, and metastasis of tumors by hindering the multiplication of cancer cells, and
prompts apoptosis by avoiding cell division related to actuation of caspase-9 and caspase-8. However,
its poor bioavailability associated with its extreme hydrophobicity hampers its clinical utility. The
issues related to fisetin delivery can be addressed by adapting to the developmental aspects of
nanomedicines, such as formulating it into lipid or polymer-based systems, including nanocochleates
and liposomes. This review aims to provide in-depth information regarding fisetin as a potential
candidate for anticancer therapy, its properties and various formulation strategies.

Keywords: cancer; fisetin; flavonoids; nanocarrier; phytoconstituent

1. Introduction

Cancer is one of the most challenging diseases that has a major global health impact. In
2020, there were 19.3 million new instances of cancer and 10 million cancer-related deaths,
worldwide [1]. The most common type of cancer in both men and women is lung cancer,
which is followed by breast, prostate, and colorectal cancer, in terms of incidence; and
colorectal, stomach, and liver cancer in terms of death [2].

A series of genetic changes that affect biological functions, such as cell division, prolif-
eration, transcription, and gene expression, lead to cancer. Cancer cells become somewhat
self-sufficient, which causes uncontrollable cell proliferation and division, resulting in the
spread of malignant cells throughout the body. Cancer cells continue to divide actively
because they lack the ability to influence a cell’s homeostatic system. Instead, they produce
oncogenic proteins that mimic the growth signals seen in healthy cells [3]. Carcinogenesis is
the process by which healthy cells transform into self-sufficient cancer cells. These processes
may take place at the genome, epigenome, or cellular levels, among other levels [4].

Oncogenic transition causes malignant cells to become independent of growth cues,
resulting in uncontrolled growth. As a result, they generate their own signals and transmit
them via a process known as the signal transduction pathway to other signaling proteins [5].
The intracellular signaling molecules, receptors, and extracellular growth signals, all exhibit
significant alterations. The proto-oncogenes that produce proteins to promote cell division
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along with signaling molecules promote the expression of oncogenes, and encode for
multiple factors that promote tumor progression [6,7].

Numerous studies have shown that flavonoids can prevent the development of cancer [8,9].
Flavonoids are secondary metabolites classified under the group of polyphenolic compounds.
These naturally existing compounds are commonly dispersed in a plant’s leaf, stem, and
root [10,11]. They exhibit remarkable outcomes in the human body, including anti-allergic,
antioxidant, anti-inflammatory, and antiviral activities [12,13]. Moreover, flavonoids have been
found to inhibit the proliferation, growth, and metastasis of breast cancer in vitro as well as
in animal models [14,15]. Its use as an anti-carcinogenic agent is attributed to its antioxidant
and anti-inflammatory properties [16]. Flavonoids interfere with multiple signal transduc-
tion pathways that occur during carcinogenesis, thereby reducing proliferation, angiogenesis,
and metastasis, or increasing apoptosis, making them potential anticancer agents. However,
its dose-dependent pharmacokinetics and low-dose potency contribute to some therapeutic
obstacles [17,18]. Based on their structure, flavonoids are classified into six categories, viz.,
flavonol, flavanone, flavanol, flavone, anthocyanidin, and isoflavonoid. Quercetin, kaempferol,
fisetin, myricetin, galangin, and casticin are flavonols with anticancer properties (Figure 1).
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Figure 1. Types and examples of flavonoids (A) and flavonols (B).

Fisetin is a flavonoid naturally occurring in various plants that possesses anticancer
activity [10,19]. It has the power to stop cancers from growing quickly, becoming invasive,
and spreading to multiple tissues. Similar outcomes of fisetin were reported in various pre-
clinical studies with melanoma, and with pancreatic, prostate, and colorectal cancer [20–22].
Fisetin chemically is a 3,3′,4′,7-tetrahydroxyflavone, and offers multiple pharmacological
benefits, which include antioxidant, anti-inflammatory, antiangiogenic, and anticancer ac-
tivities (Figure 2) [23–26]. Moreover, fisetin also inhibits tumor proliferation by repressing
tumor mass multiplication, invasion, migration, and autophagy. It also promotes cell cycle
averting and cell death in many types of cancers, which include prostate, breast, lung,
bladder, melanoma, and hepatocellular cancers, and nasopharyngeal carcinoma [27–29].
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Figure 2. Pharmacological effects of fisetin.

In this review, we focus on fisetin as a potential candidate for anticancer therapy. We
also discuss its physicochemical properties, pharmacological action, pharmacokinetics,
bioavailability profile, and toxicity. This review also summarizes various formulations and
drug delivery strategies employed to enhance the therapeutic efficacy of fisetin. Patents on
fisetin that are currently available are discussed as well.

2. Physicochemical Properties and Synthesis of Fisetin

Fisetin has a structure of diphenylpropane, containing two aromatic rings. Its molec-
ular formula is C15H10O6, and its molecular mass is 286.239 g/mol. With a density of
1.688 g/mL, fisetin melts at 330 ◦C, indicating its crystalline nature. As a result of this
property, it exhibits lower solubility in water and a positive log P of 0.151 mg/mL and 1.81,
respectively [30]. It is essentially insoluble in benzene, chloroform, ether, and petroleum
ether, in addition to water. However, it is soluble in organic solvents such as alcohol, ace-
tone, acetic acid, DMF, and DMSO [31]. Quantitatively, the solubilities of fisetin in ethanol,
DMSO, and DMF are approximately 5 mg/mL and 30 mg/mL, respectively [31]. The
strong acidic and basic pKa values of fisetin are 6.32 and −3.9, respectively [30,32]. Thus, it
also exhibits solubility in a solution of fixed alkali hydroxide [31]. The physicochemical
properties of fisetin are summarized in Table 1. The concentration of fisetin in plant sources
is measured by freeze-drying the plants, which is the acid hydrolyzed product of the parent
glycosides. The daily uptake of fisetin was calculated to be an average of 0.4 milligrams.
The highest amount of fisetin detected in strawberries was found to be approximately
160 µg/g, followed by apple and persimmon, which were approximately 26.9 µg/g and
10.5 µg/g, respectively [33].

Fisetin is available naturally in various plant sources; however, it was first extracted from
venetian sumach (Rhus cotinus L.) in 1833. Fisetin is also extracted from strawberries and
mulberry leaves, using methanol extraction followed by liquid-liquid extraction [34,35]. The
extract of persimmon fruit also contains fisetin as one of its active constituents, which was
extracted using a number of methods, and quantified using liquid chromatography [36].
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Table 1. Physicochemical properties of fisetin.

Characteristics Description

Occurrence Cucumber, Apple, Strawberry, Grape, Persimmon, Onion

Chemical class Flavonoid

IUPAC 2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one

Chemical formula C15H10O6

Molecular mass 286.24 g/mol

Melting point 330.0 ◦C

Density 1.688 g/mL

Solubility Soluble in ethanol, acetone, acetic acid, DMSO, solutions of
fixed alkali hydroxides, methanol

BCS class Class II (Low soluble and highly permeable)

Appearance Crystalline powder

Log P 3.2

pKa 7.42

Chemical metabolites Geraldol (3,4′,7-trihydroxy-3′-methoxyflavone),
Fisetin-4′-glucoside

Stability Stability ≥ 4 years at −20 ◦C

Later, the chemical characteristics and structure of fisetin were elucidated by S. Kosta-
necki in 1890s. The first synthesis of fisetin was performed in 1904, which involved the
preparation of partially protected chalcones, further cyclized to flavanone under acidic
conditions. The stable structure of fisetin was synthesized through several steps, such as
oxidation, hydrolysis, and demethylations of chalcone and flavanone counterparts [37,38].

3. Mechanism of Action

Fisetin acts on different stages of cancer, thus providing different routes of inhibition.
It affects the cell cycle and thereby cell proliferation, microtubule assembly, cell migration
and invasion, epithelial to mesenchymal transition (EMT), and cell death [39]. It helps
in the downregulation of approximately 27 genes involved in critical functions of the
G2/M phase. It also exhibits affinity and specificity for significant cell cycle regulatory
molecules, such as CDK6. Upon co-crystallization with CDK6, it was found that fisetin
successfully inhibited kinase activity, which is one of the major drivers in cancer [40,41].
Thus, it regulates cell survival and growth as well as cell proliferation by controlling various
signaling mechanisms [42]. The cell death caused by fisetin is possibly due to the induction
of apoptosis by fisetin or other signaling molecules and reactive oxygen species (ROS).
Moreover, fisetin also increases the sensitivity of cells toward apoptosis, making cancerous
cells more susceptible to its oncogenic activity [39]. An additional mechanism by which
fisetin inhibits cancer growth is through its action inside the nucleus of tumor cells. The
development of breast cancer is significantly influenced by RNA polymerase I (RNA Pol I).
Fisetin has been seen to penetrate the nucleolus, where it interferes with ribosomal RNA
biogenesis. Fisetin was found to have a 50–70% reduction in nascent rRNA synthesis, and
a 30–60% downregulation of RNA Pol I transcriptional activity, in a study that examined
the nuclear activity of fisetin. Thus, rRNA biogenesis is a potential target for treating
breast cancers and other metastatic tumors [43]. At the molecular level, the effect of fisetin
is significantly mediated through activation and modulation of the SEMA3E, CDKN1A,
GADD45A, and GADD45B genes of signaling pathways, and by the downregulation of the
CCNB1, CCNB2, KIF20A, and TOP2A genes.
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Without influencing the growth of normal cells, fisetin has the capability to hinder
the formation of colonies and inhibit the multiplication of cancer cells. Moreover, fisetin
restricts the multiplication of EGFR 2-overexpressing SK-BR-3 breast tumor masses, and
breast cancer cells with estrogen receptors. It prompts apoptosis by avoiding cancer cell
division related to the actuation of caspase-9 and caspase-8 and permeabilization of the
mitochondrial membrane, followed by the splitting of poly (ADP-ribose) polymerase-1.
The decreased destruction of tumors in the presence of pancaspase inhibitors such BOC-
D-FMK and Z-VAD-FMK was evidence of caspase-dependent apoptosis. When tumor
cells are exposed to drugs during the G2/M phase, there is a decrease in histone H3
phosphorylation at serine 10, which suggests that drug-induced death results from Aurora
B kinase inhibition [27]. Aurora B kinase is directly inhibited due to the antiproliferative
effect of fisetin, which causes the initiation of apoptosis in various tumor cell lines, and
constrains exit from mitosis [44]. Additionally, fisetin inhibits cancer metastasis by reducing
the expressions of nuclear factor-kB (NF-kB)-modulated metastatic proteins in a variety
of tumor cell types, including vascular endothelial growth factor (VEGF) and matrix
metalloproteinase-9 (MMP) [45,46]. Fisetin targets the NF-B- and mitogen-activated protein
kinase signaling pathways to reduce the invasiveness of malignant melanoma [47].

Fisetin induces apoptosis in caspase-3-deficient MCF-7 breast cancer cells by rupturing
the plasma membrane, depolarizing mitochondria, cleaving PARP, and activating caspase-7,
-8, and -9. Moreover, autophagy inhibition promoted MCF-7 cell death [28,48], and was
recently reported to weaken 12-O-tetradecanoylphorbol-13-acetate-induced obtrusiveness
of MCF-7 and hepatic stellate cells [49,50]. Fisetin is a bioactive flavonol molecule that
can easily penetrate the cell membrane due to its hydrophobic nature [51,52], reducing
the generation of inflammatory cytokines and reactive oxygen species (ROS) in microglial
cells, as well as inflammation-related microglial activation [53]. Fisetin has an antioxidative
property that helps lower oxidative stress, leading to neuronal death in the case of stroke
and arteriosclerosis [54]. Recent studies have likewise shown that fisetin exerts an antipro-
liferative effect against several cancer types [55]. In addition, evidence proves that fisetin is
more targeted to tumor cells than to normal cells.

The in vitro and in vivo reports provide information implying that fisetin has an-
tiproliferative properties against various types of cancer [21]. Perhaps fisetin lowers an-
giogenesis, consequently suppressing tumor multiplication by urokinase plasminogen
activator (uPA) inhibition (Figure 3) [56,57]. The effect of 17 structure-related flavonoids
was evaluated in a screening study, where fisetin was found to be a powerful matrix met-
alloproteinase (MMP)-1 inhibitor, which has a crucial role in cancer progression, and is a
prime enzyme in the destruction of the extracellular matrix [58].

Fisetin rapidly compromises the proteasome-dependent microtubule drug-induced
mitotic inhibition in numerous cell lines. As a result, chromosomal segregation begins early
and, in unaffected tumour cells, leaves mitosis without typical cytokinesis. A cell culture
study that looked at how fisetin affected the phosphorylation and localization of various
mitotic proteins found that when it was introduced to the media, Cenp-F, Bub1, BubR1,
and Aurora B soon lost their localization to the kinetochore and centromere. In addition,
fisetin’s primary target was Aurora B kinase, whose activity is essentially decreased by
fisetin in vitro [44]. Fisetin works on several cellular pathways, such as Wnt, Akt-PI3K, and
ERK, as an inhibitor (Figure 4).

Lymphoblastoid cell lines were used to study the genotoxic effect of fisetin, and the
commencement of micronuclei and segregating chromosomes was analyzed in the cells.
Olaharski et al. used the CREST micronucleus assay to differentiate the micronuclei occur-
ring due to chromosomal loss (CREST-positive) from those from chromosomal breakage
(CREST-negative) in drug-treated cells. The rise in CREST-positive micronuclei indicated
a lower concentration of fisetin, showing a genotoxic effect due to the loss of chromo-
somes [59]. Moreover, fisetin hinders the segregation of chromosomes by inhibiting the
nuclear enzyme topoisomerase II-a, which is crucial for DNA replication. Hence, fisetin
acts as an aneugen (affecting the mitotic spindle apparatus and cell division, which results
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in a gain or loss of chromosomes, leading to aneuploidy) and clastogen (creates fragmented
chromosomes, causing a fragment of chromosome to be deleted/added/rearranged). Apop-
totic cell death induced by fisetin was observed in various cancer cell lines. Reports have
shown that the antiproliferative and proapoptotic effects mediated by fisetin specifically tar-
get cancer cells, leaving healthy cells unaffected. The selective effect of fisetin is attributed
to the differential modulation of cell signaling pathways in the tumor mass compared to
their nontumor counterparts [11].
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Figure 3. Fisetin inhibits the migration and invasion of cancer cells. Fisetin inhibits the phosphoryla-
tion of p38 MAPK, and impairs translocation of NF-κB to the nucleus. The decreased NF-κB in the
nucleus reduces its binding to the promoter of the uPA gene, and results in repressing the expression
and activity of uPA, thereby disrupting the migratory and invasive ability of cancer cells. Adapted
from [57]. Copyright: © 2013.
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Figure 4. Molecular targets of fisetin. Fisetin inhibits the several signaling pathways, such as AMPK,
PI3K, NF-κB, Wnt, mTOR, and TCS1, and increases related mRNA expressions such as p50, P65, and
JNK, which are associated with promoting the apoptosis mechanism inside the cells. Hence, fisetin
increased the death of cancer cells, and reduced their proliferation.
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4. Pharmacokinetics and Bioavailability of Fisetin

Fisetin exhibits a very short terminal half-life of approximately 3 hrs in its free form. This
half-life is found to be less than that of its metabolites [60]. Fisetin and its metabolites were tested
in rats, and their effects on hemolysis brought on by 2,2’-azobis (2-amidinopropane hydrochlo-
ride) (AAPH) were compared. The mean concentration–time profiles of metabolites in serum
rapidly decreased with fisetin, at a dose of 10 mg/kg (intravenously). Higher concentrations of
sulfates/glucuronides were present at all time points than the parent compounds, indicating
liver-biotransformed fisetin by conjugation metabolism (sulfation). The level of fisetin was
maintained on oral dosage (50 mg/kg weight of the body) after the first pass due to the exis-
tence of the parent component in serum. Fisetin was converted to sulphates and glucuronides,
whereas enterocytes underwent sulfation less frequently than hepatocytes. Following treatment
with 50 mg/kg of fisetin, the Cmax and AUC0-4320min (area under serum concentration–time
curve 0 to 4320 min) values of the 5-OH-flavone sulfate/glucuronide were 27 and 59 times
greater, respectively, than those of the 5-OH-flavone after 40 milligrams/kg of the body weight
of 5-OH-flavone. The AUC0-4320 min of 7-OH-flavone sulfate/glucuronide was found to be
significantly lower than that of 5-OH-flavone sulfate/glucuronide after an equivalent dosage.
Fisetin and its serum metabolites prevented hemolysis brought on by AAPH, showing that
the residual phenolic groups’ post-conjugation metabolism is responsible for their scavenging
free-radical actions [61]. Following intraperitoneal delivery of the drug to mice at a dose of
223 mg/kg, the Cmax reached 2.5 µg/mL in 15 min. There was a biphasic decline in plasma
concentration, with a short half-life of 0.09 h and a terminal half-life of 3.1 h.

The bioavailability of fisetin was enhanced by employing several formulation ap-
proaches, the majority of which are based on the application of nanotechnology. For
instance, fisetin-loaded nanocochleates improved drug bioavailability up to 141 times
following sustained release of the drug from the prepared complex [62]. Additionally,
the drug solubility was also improved by 6.5-fold by complexation with cyclodextrin [63].
The fisetin-loaded liposomal system improved the drug bioavailability 47 times after in-
traperitoneal injection. At a dose of 21 mg/kg, liposomal fisetin inhibited tumor growth
more than two-fold compared to pure drug alone [64]. Another approach to enhance the
bioavailability and solubility of fisetin is to prepare crystalline nanosuspensions using
Eudragit®EPO, stabilizers, surfactants, and polymers [65].

5. Novel Formulation Strategies and Drug Delivery System of Fisetin

Fisetin, being a phytopharmaceutical, has an advantage over synthetic drugs due to
its safety profile and biocompatibility. Fisetin may be considered a prime candidate for
use as an effective anticancer agent, due to its ability to affect various signaling pathways.
Unfortunately, poor targeting and stability issues due to its undesirable hydrophobic nature
and extremely poor aqueous solubility (<1 mg/mL) make it challenging to administer
intravenously, leading to compromised bioavailability and limiting its use. To address
this issue and overcome the hurdles related to drug delivery, it is crucial to develop
novel delivery strategies to increase bioavailability and eventually increase the therapeutic
outcome. Intensive research has been carried out to develop drug carriers for flavonoids.
The use of biodegradable and biocompatible polymers in nanotechnology-based delivery
systems helps overcome these challenges (Figure 5, Table 2).
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therapeutic ac-

tion 

It enhanced anti-

cancer action 
[66] 

Albumin-based 

nanoparticles 

Desolvation 

method 

Albumin and 

glutaraldehyde 
Breast cancer 

Increased solu-

bility and stabil-

ity 

It enhanced the ac-

tion against breast 

cancer cells 

[67] 

Figure 5. Delivery strategies used to improve fisetin performance. Adapted from [64]. Copyright ©
2018 Elsevier Masson SAS.

Table 2. Fisetin-based formulations developed using novel strategies.

Formulation
Type

Preparation
Method Components Indication Findings Comments References

Soft nanovesicles
(glycerol-based)

Glycerosomes
for dermal
delivery of

fisetin

Skin cancer
Enhanced

penetration into
skin

It was suitable
for dermal
application

[65]

Nanocochleates Trapping method

Fisetin, DMPC,
cholesterol,

ethanol,
calcium
chloride

Breast cancer
Improved

therapeutic
efficacy

It enhanced
anticancer

action, safety
and

bioavailability

[59]

Poly (lactic acid)
nanoparticles

Spontaneous
emulsification

solvent diffusion
(SESD) method

Poly-D,L-
lactide, fisetin,
Poloxamer 188
and acetonitrile

Colon cancer,
breast cancer

Enhance drug
solubility and

therapeutic
action

It enhanced
anticancer

action
[66]

Albumin-based
nanoparticles

Desolvation
method

Albumin and
glutaraldehyde Breast cancer

Increased
solubility and

stability

It enhanced the
action against
breast cancer

cells

[67]

Inclusion
complex in
polymeric

nanoparticles

Encapsulation
into PLGA NPs

as HPbCD
complex

Hyroxypropyl
b-cyclodextrin Breast cancer

Higher drug
loading
capacity,

enhanced
bioavailability
and anticancer

action

Improved
bioavailability
and pharma-

cokinetics
properties

[68]
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Table 2. Cont.

Formulation
Type

Preparation
Method Components Indication Findings Comments References

Self-nano-
emulsifying

system

Lauroglycol
FCC, Transcutol

P, tween 80,
Castor oil

Cancer,
Parkinson’s

disease

Improved bio-
pharmaceutical
properties like
dissolution and

rate of
permeability

It was nontoxic
and showed
stability on
change in

temperature,
dilution and pH

[69]

Nano-emulsion
formulation

Miglyol 812N,
Tween 80,

water, Labrasol,
Lipoid E80

Antitumor
(Lung

carcinoma)

Increase in
bioavailability

by 24-fold

Improved
bioavailability
and antitumor

action

[70]

Nano-
encapsulation

Nanoprecipitation
method

(PCL) and
PLGA-PEG-

COOH

Antioxidant
activity and

anti-
hyperglycemic

effect

FS release is
protected and
preserved in

gastric
simulated

conditions, and
controls

intestinal
release

It controlled the
release of

antioxidant and
anti-

hyperglycemic
FS

[25]

Polymeric
micelles

The micelles
self-assemble into

structures.

Monomethyl
poly,

ε-caprolactone
Ovarian cancer

Enhanced
cytotoxicity and

apoptosis
induction

Enhanced
solubility and
bioavailability

[71]

Binary ethosomes

Fisetin,
Phospholipid
90G. Ethanol,
Chloroform,

sodium
hydroxide

Management of
skin cancer

Improved
dermal delivery

of the fisetin

Primarily used
in management
of skin cancer

[72]

Spherulites

Shearing of a
lipidic lamellar

phase is subjected
to dispersion

Polyoxyethylene
sorbitan ester,
LipoidÒ E80,

Polysorbate 80

Anticancer

Encapsulation
potential is
higher and

slow-release
capacity

Increased
encapsulated
payload of a
hydrophobic
compound

[73]

Liposomal
formulation

DMSO,
Cholesterol,

phospholipids,
Hepes/phosphate

buffers

Anticancer

It had
cytotoxicity and
morphological

effect

It is suitable for
in vivo

administration
[74]

Liposomal
encapsulation

Formulation
developed

using DOPC
and DODA-

PEG2000

Antitumor
(Lung

carcinoma)

Increased
bioavailability
upon 47-fold

Enhanced
bioavailability
and anticancer

effect

[62]

Bacterial cellulose
scaffold

Prepared from
Gluconaceter

xylinus

Treating bone
defects

No toxic effect
over increased

cell viability

Induced
osteogenic

differentiation
and localized

delivery

[75]
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Table 2. Cont.

Formulation
Type

Preparation
Method Components Indication Findings Comments References

Folate
functionalized

pluronic micelles

Thin-film
hydration
method

Fisetin,
Pluronic F127

(PF), Folic Acid,
Di-cyclohexyl
carbodiimide,

Carbonyl
di-imidazole

Breast cancer
targeting

It increases
solubility,

bioavailability
and active

targetability
increased its
therapeutic

efficacy

Six-fold
increase in

bioavailability
and prolonged
circulation time,

plasma
elimination and

no toxicity

[76]

α-Tocopherol-
Poly (lactic
acid)-Based
Polymeric
Micelles

L,L-lactide,
D-α-tocopheryl

polyethylene
glycol 1000
succinate

Breast Cancer Higher cellular
uptake

Effective in
treatment of

breast cancers
[77]

5.1. Complexation

Complexation improves the physicochemical stability, dissolution rate, solubility, and
bioavailability of poor water-soluble drugs [59]. Cyclodextrins are highly versatile oligosac-
charides that are widely used as pharmaceutical excipients for this purpose. Cyclodextrin
derivatives can help substances with poor water solubility become more soluble. Addition-
ally, P-glycoprotein (P-GP), which is in charge of drug efflux, and cytochrome P450, which
is in charge of drug metabolism and improves oral bioavailability, are inhibited by cyclodex-
trins [78]. It has been discovered that making a fisetin-hydroxyl propyl beta-cyclodextrin
(HPbCD) inclusion complex (FHIC) increases fisetin’s solubility and, consequently, its
bioavailability [79].

In another study, fisetin was complexed with three types of cyclodextrin to im-
prove solubility. The researcher found better solubility when fisetin was complexed with
sulfobutylethere-b-cyclodextrin. Furthermore, the addition of 20% v/v ethanolic solution
enhanced the solubilization of fisetin by 5.9 times, compared to water alone [80]. Similarly,
the complexation of the fisetin and cyclosophoraose dimer improved the drug solubility
by 6.5 times. The solubility of dimer was 2.4 times more compared to its b-cyclodextrin
complex. The dimer used for the complexation showed higher cytotoxicity of fisetin than
pure fisetin in Hela cells [63].

5.2. Self-Nanoemulsifying Drug Delivery System (SNEDDS)

SNEDDS is an isotropic anhydrous mixture of oils, surfactants (HLB>12), and cosur-
factants. This system not only improves the solubility and bioavailability of the active
ingredient, but also provides better stability, processing control, and reproducibility. More-
over, it offers a lower production budget with enhanced patient compliance [80]. SNEDDS
performs a dual action of increasing molecule solubility and providing protection to the
gastrointestinal tract. In a study, the drug was incorporated into a nanoemulsion to enhance
fisetin’s therapeutic and pharmacokinetic profile. No significant difference compared to
free fisetin seemed to appear upon systemic exposure in mice after intravenous adminis-
tration. However, upon intraperitoneal administration, fisetin exhibited 24 times higher
bioavailability than free fisetin-treated mice at lower doses [70]. Similarly, the SNEDDS
consisting of castor oil, lauroglycol, Tween 80, and transcutol were made to enhance the
drug solubility of fisetin. The in vitro cell line results suggested that the fisetin-loaded
SNEDDS had 3.79-fold higher cellular permeation than the free drug [69].

5.3. Lipid Vesicles

Liposomes have been found to be useful in increasing the accumulation of fisetin
within tumors. A study conducted in vivo on mice revealed that the bioavailability of
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liposomal fisetin was 47 times greater than that of free fisetin [62]. Other vesicular carrier
systems that have been explored for the delivery of fisetin are ethosomes and glycerosomes.
Both of these are phospholipidic vesicles with high bilayer fluidity used for dermal and
transdermal drug delivery [81,82]. Glycerosomes loaded with the drug fisetin displayed
added benefits, such as enhanced penetration of the drug into deeper layers of the skin
due to glycerin, resulting in lipid fluidization and hydration of the skin. Hence, it is
primarily used for dermal applications of fisetin [65]. In vivo studies inferred that liposomes
could remain stable for 59 days, retaining their antitumor activity in different tumors and
endothelial cell lines [74]. Drug-loaded binary ethosomes were applied to the skin for
the treatment of skin cancer. They showed sustained release behavior and improved
penetration into the skin of rhodamine B-loaded endosome formulation, which was an
added advantage. In vivo studies showed increased Cskin-max and AUC0-8h (area under
serum concentration–time curve 0 to 8 h) compared to conventional gel. It also showed a
decrease in TNF-α and IL-α in mice pretreated with binary endosomes compared to mice
exposed to UV only [72]. Furthermore, Mohapatra et al. (2011) investigated whether fisetin
could be an effective fluorescent probe for lipid membranes. The fisetin was bound to the
sensing lipid bilayer membrane and used as membrane expulsive target to enhance the
antioxidant activity [49].

5.4. Lipid-Based Nanoparticles

Lipid-based nanocarriers, such as solid lipid nanoparticles (SLNs), nanostructured
lipid carriers (NLCs), and nano-emulsions, are being utilized for the delivery and targeting
of highly lipophilic drugs, including fisetin [83]. Kulbacka et al. (2016) reported in their
study that they prepared multifunctional SLNs loaded with cyanine-type IR-780 as a
photosensitizer/diagnostic agent, along with fisetin or baicalein, to explore the potential of
combination therapy in cancer eradication. They stated that delivery of drugs through these
carriers was precise and depicted tumor growth inhibition with lower toxicity [84]. The
glycerol monostearate-, sodium deoxycholate- and sodium cholate-based SLNs loaded with
fisetin improved the photophysical properties of the drug, and were photostable at room
temperature. The fisetin did not show any polymorphic transformation during storage
when loaded in a lipid-based nanocarrier [85]. Similarly, the fisetin-loaded nano-emulsion
was prepared using miglyol 812 N, lipoid E 80, labrasol, Tween 80, and water. No significant
changes were observed in the pharmacokinetic profile of the fisetin-loaded nano-emulsion
after IV injection (13 mg/kg) compared to that of pure drug. However, intraperitoneal
administration improved the bioavailability of the drug by 24-fold. The antitumor activity
of the fisetin-loaded nanoemulsion was shown at a concentration of 36.6 mg/kg, which was
far lower than that of free drug (223 mg/kg), against a Lewis lung carcinoma model in mice.
The results demonstrated that solubilization of fisetin was improved by the nano-emulsion,
and it depicted enhanced antitumor activity [70].

5.5. Polymeric Micelles and Nanoparticles

Polymeric micelles are formed by amphiphilic block copolymers, which possess
nanoscopic core/shell structures [86]. These systems are used to entrap drugs, resulting
in increased anticancer activity against ovarian carcinoma by destroying the tumor mass
and inhibiting further multiplication of cells [87]. Fisetin-loaded albumin nanoparticles
were prepared using the desolvation method. It displayed advantages such as improved
bioavailability, good entrapment, and delivery to a specific target site [75].

In another study, fisetin-loaded polymeric micelles composed of TPGS-PLA exhibited
dose-dependent cytotoxicity against MCF-7 cells. The delivery of fisetin through polymeric
micelles enhanced the cytotoxic effect in breast cancer cell lines, and induced 42% cell
apoptosis at 48 h compared with free fisetin, which showed only 30% cell apoptosis at a
similar time. Moreover, it reduced the tumor burden in mice, induced cell apoptosis, and
reduced the tumor mass (which tumor) [77].
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Similarly, monomethyl poly(ethylene glycol)-poly(ε-caprolactone) polymeric micelles
loaded with fisetin were evaluated for anticancer efficacy against ovarian cancer, and
showed induced cell apoptosis in a dose-dependent manner in SKOV3 cells. The fisetin-
loaded micelles exhibited reduced tumor growth, enhanced tumor apoptosis, and angio-
genesis inhibition [71].

The delivery of fisetin also shows promising results with polymeric nanoparticles. The
poly(lactic acid) nanoparticle (PLA-NP)-based fisetin formulation was found to enhance
fisetin solubility and therapeutic efficacy against HCT116 colon cancer cells in vitro and
xenograft 4T1 breast cancer in vivo [66]. Similarly, human serum albumin-based nanoparti-
cles (HSA-NPs) were also developed, with an aim to improve the bioavailability of fisetin.
The potent antioxidant effects of fisetin-loaded HSA-NPs were confirmed by the DPPH
assay, and the results demonstrated the capabilities associated with the developed system,
to deliver fisetin efficiently [67].

Furthermore, polymeric nanoparticles made by poly-(ε-caprolactone) (PCL) and
PLGA-PEG-COOH that were loaded with fisetin depicted the controlled release of the drug
in simulated gastric as well as intestinal conditions. The nanocarriers were prepared with
the aim of delivering fisetin for antioxidant as well as antihyperglycemic effects, and to
observe the stability of encapsulated fisetin. The process for developing nanoparticles was
efficient enough to retain the DPPH and ABTS scavenging capacity, as well as α-glucosidase
inhibition activity [26]. In another study, poly(vinyl pyrrolidone) polymeric nanoparti-
cles (PVP-NPs) processed through a supercritical antisolvent (SAS) method improved
the hydrophilicity of fisetin. As a result, the anticancer efficacy, pharmacokinetics, and
bioavailability of the fisetin was improved [88].6. Toxicity and Clinical Status of Fisetin

Potential chemotherapeutic drugs kill cancerous as well as healthy cells, and demon-
strate undesired side effects. To minimize the side effects and improve the therapeutic
outcomes of cancer therapy, plant-based nutritional supplements are currently being ex-
plored. Flavonoids offer great potential to eliminate cancer cells and provide protection to
healthy cells via antioxidant properties. Recently, fisetin has been used against several types
of cancers, and exhibited much fewer side effects than other chemotherapeutic agents [89].
Fisetin is an ingredient available in common plant-based foods, and has reported no ad-
verse effects. Irrespective of the benefits bestowed by fisetin to treat breast cancer, thorough
scrutiny of its toxicity is needed, as it requires a high dose to offer therapeutic benefits.
Despite numerous scientific interventions performed on animals, no severe toxicological
evidence has been observed, even at higher drug levels.

Fisetin-related clinical trials are limited in cancer therapy. As per the NIH-clinical
trials database, only two studies are listed. In one of the phase 2 studies, the researchers
are investigating the effect of fisetin to improve the physical function in postmenopausal
women after receiving chemotherapy for stage I–III breast cancer [90]. In another study,
the efficacy, safety and tolerability of the two different senolytic therapies, which include
fisetin, and dasatinib plus quercetin, are being investigated in adult survivors of childhood
cancer under phase 2 [91]. However, the level of safety should also be evaluated by
conducting clinical trials. The major disadvantage of fisetin is that its aqueous solubility
could be addressed by converting the drug polymer complex system by synthesizing a
nanocarrier system. Several studies have shown that the drug’s solubility, bioavailability
and dose, along with its therapeutic efficacy, were improved without any side effects. One
such clinical trial on cancer patients reported that the fisetin treatment group experienced
stomach discomfort [13]. It has also been observed that fisetin lowers the blood glucose
level in diabetic animals, which implies a further reduction in blood glucose levels when
co-administered with antihyperglycemic drugs [92,93]. Additionally, metabolism in the
liver, as both warfarin and fisetin are processed in the same way, may result in an increased
effect of warfarin over time [94].
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6. Patents Related to Fisetin

Fisetin patents have primarily described its various preparation techniques and effec-
tive treatments. Primarily reported methods of fisetin preparation are based on extraction
from microbial sources, and conversion of fisetin from fustin [95]. Several patents have
exemplified its application in the treatment of prostate cancer, senile dementia, uterine
myoma, acute pancreatitis, depression, neurodegenerative diseases, gastritis and gastric
ulcer, and as an antihypertensive [96]. Additionally, fisetin application for skin disorders,
such as skin regeneration, anti-aging effects, prevention of hair loss, and stimulation of
hair growth, have also been reported. Few other studies were related to its role as an
antioxidant, antimicrobial, weight loss agent, and memory enhancer (Table 3).

Table 3. List of patents filed on fisetin formulations.

Title Applications Description References

Application of fisetin in inhibiting
proliferation of pancreatic cancer

cells and mouse pancreatic
cancer tumors

Inhibition of pancreatic cancer
tumor proliferation

The invention provides new uses of
fisetin to inhibit pancreatic cancer
cell and mouse pancreatic cancer
tumor proliferation to reduce the
deficiencies of existing pancreatic

cancer treatment methods.

[97]

Method for preparing Rhus
verniciflua Stokes extract

containing increased fisetin content,
and metastasis-inhibiting anticancer
agent composition containing same

Improvement in anti-cancer
property of fisetin

The invention includes a method
for preparing a Rhus verniciflua

Stokes extract containing increased
fisetin content by converting fustin

to fisetin by adding an extract
concentrate and reacting at least

one catalyst consisting of platinum,
chromium, nickel, silicon, copper,

and oxides of said metals; and
forming a cancer-preventing

composition.

[98]

Method of administering fisetin
through oral, transdermal or topical

dosage form

Treatment of androgen-dependent
prostate cancer in males.

Fisetin treatment inhibits PI3K and
Akt, resulting in inhibition of cell
growth followed by apoptosis of

human prostate cancer LNCaP cells.

[99]

Application of fisetin in combined
gemcitabine pancreatic

cancer treatment

Combination treatment for
pancreatic cancer

The invention provides an
application of fisetin in the

treatment of pancreatic cancer in
combination with gemcitabine; that

is, its use increases the curative
effect of gemcitabine chemotherapy,

thereby making up for the
deficiency in existing pancreatic

cancer chemotherapy
drug resistance.

[100]

4’-substituted analogues of fisetin
and their use in the treatment

of cancer
For the treatment of cancer

This invention relates to novel
compounds that are 4’-substituted
analogues of the flavonol fisetin.

The invention further provides for
pharmaceutical compositions

comprising these compounds, and
the use of these compounds and
compositions in the treatment of

cancer in particular, but not
exclusively, in the treatment of

epithelial cancers.

[101]
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Table 3. Cont.

Title Applications Description References

Methods of treating brain cancer
and related diagnostic methods

For the treatment of
medulloblastoma

Treating medulloblastoma using a
combination of STAT3 and YB-1

inhibitor, that is,
2-(3,4-dihydroxyphenyl)-3,7-

dihydroxy-4H-chromen-4-one
(fisetin), and also for diagnostic

purposes.

[102]

Composition comprising phenolic
compound for prevention and

treatment of liver cancer
For the treatment of liver cancer

The invention discovered a
compound that inhibits the

proliferation of liver cancer cells in
some phenolic compounds, and a
composition containing the same
has the effect of preventing and

treating liver cancer.

[103]

7. Conclusion and Future Prospects

Fisetin is a naturally occurring polyphenol that is considered to possess pleiotropic
pharmacological properties, making it a potential candidate in the treatment of cancer and
a few other diseases mentioned earlier. The major drawback is that its hydrophobic nature
restricts its clinical use, due to its undesirable bioavailability profile. To overcome this
hurdle, various formulation-based strategies, such as micelles, liposomes, nanoparticles,
nanocochleates, SNEDDSs, and SLNs, have been used to improve its solubility and enhance
its therapeutic effect. Future aspects of the fisetin delivery system include self-assembled
lipid vesicles such as niosomes, ethosomes, cubosomes, and hexosomes. Research related
to macromolecules and ligand-conjugated delivery, such as dendrimers, can be explored.
These delivery strategies have the potential to reach clinics in the future. Future research
needs to focus on augmenting the existing formulation flaws.
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