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Abstract: The literature on the use of medicinal plants in wound healing was comprehensively
searched to obtain and assess the data. The data were procured via clinical studies that utilized
medicinal plants and their compounds in vitro and in vivo for wound healing. This review collected
data from electronic databases, including Google Scholar, PubMed, Science Direct, Web of Science,
SciFinder, Thesis, and Scopus, using the search terms “natural products”, “wound healing”, and
“natural compounds”, along with the keywords “plants”, “extracts”, and “phytochemicals”. Results
from the last decade reveal a total of 62 families and 109 genera of medicinal plants, and their
compounds have been studied experimentally both in vivo and in vitro and clinically found to
effectively promote healing. This activity is related to the presence of secondary metabolites such as
flavonoids, alkaloids, saponins, tannins, terpenoids, and phenolic compounds, which act at different
stages through different mechanisms to exert anti-inflammatory, antimicrobial, and antioxidant
effects, confirming that the use of medicinal plants could be an adequate alternative to current
conventional practices for treating wounds.

Keywords: plant extracts; phytotherapy; treatments; healing; medicinal plants; secondary metabolites

1. Introduction

Statistics derived by the World Health Organization (WHO) have shown that around
80% of the world’s population uses traditional medicine for primary healthcare, and 85%
of this group utilizes plants. One of the great challenges of modern medicine concerns
the healing and treatment of wounds. Studies by the WHO show that around 5 million
people die annually because of imperfect wound healing. The use of natural products
has shown promise in preventing and treating wounds. This review aims to elucidate the
modes of preparation of herbal treatments, their phytochemical contents, and their use
in formulations for wounds. Plants show a broad spectrum of bioactive phytochemicals,
categorizable into the families of alkaloids, carotenoids, phenolic compounds, steroids,
flavonoids, saponins, tannins, and terpenoids. These compounds act at different phases of
the healing process through different mechanisms and show anti-inflammatory, antimicro-
bial, and antioxidant effects, whilst promoting collagen synthesis, cell proliferation, and
angiogenesis. The application of natural compounds via new systems can contribute to
enhancements in wound treatment.

2. Methods
2.1. Information Sources, Searching, and Selection of Studies

For this review, the period considered was January 2013 to October 2023, and the
electronic databases used include Google Scholar, PubMed, Scopus, Science Direct, Web of
Science, SciFinder, and Theses. The terms used for the search were “wound healing” (sought
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in the titles and abstracts) and the keywords “plant”, “extract”, “natural compounds”, and
“phytochemicals”. We also manually searched for references to bioactive phytochemicals
that act at different phases of the healing process through different mechanisms and have
anti-inflammatory, antimicrobial, antioxidant, and cell proliferation-promoting effects. The
full documents were read to verify that they met the inclusion criteria.

2.2. Eligibility Criteria

Inclusion criteria: Studies published in English, including theses, articles, and proceed-
ings from January 2013 to 01 October 2023, with “wound healing” in the title or abstract,
addressing experimental or clinical studies.

Exclusion criteria: Newspapers and reviews.

2.3. Results

Following the initial screening, we identified approximately 5000 articles in different
databases, citing about 480 different genera of plants with healing activities. Only 22% of
these were included in this study, in accordance with the eligibility criteria. This is the first
study in the last ten years to address plants and major and/or new compounds with regard
to their activity in wound healing. The results obtained from eligible studies reveal a total
of 62 families and 109 genera of medicinal plants used for wound treatment that have been
discussed in studies from the last 10 years. Their effects, attributed to flavonoids, alka-
loids, saponins, and phenolic compounds, which act at different stages through different
mechanisms, include anti-inflammatory, antimicrobial, and antioxidant effects.

3. Classification of Wounds

The Healing Society defines wounds as physical lesions resulting from an opening or
breaking of the skin that causes disturbances within the anatomy and normal functioning
of the skin [1,2]. Wound healing can be a complex process because it entails a series of
interdependent and overlapping stages: inflammation (exudative phase), reconstruction
(proliferative phase), epithelization (regenerative phase), and maturation [3].

Several factors may affect the healing process, including (a) the presence of a contami-
nated surface contacting the wound; (b) delays due to the consumption of infected nutrients
as a source of energy by white blood cells; (c) associated illnesses, such as diabetes and
morbid obesity, which cause hyperglycemia and thus impact the defense mechanisms of the
body, impairing the capacities of white blood cells in general, and especially neutrophils;
and (d) treatment with radio-chemotherapy, NSAIDs and immunosuppressive drugs [4–6].
Wounds can be classified in various ways based on their etiology, their position, the kind of
injury, the associated changes in bodily function, the wound depth, tissue loss, or clinical
appearance. Table 1 describes the classification of a wound.

Table 1. Classification of a wound.

Classification Type

Cause
Pathological: resulting from a pathology (pressure ulcer, neoplasia).
Surgical or traumatic: resulting from surgery or trauma.
Iatrogenic: resulting from procedures or treatment with radiotherapy.

Evolution
Acute: wounds of easy resolution, rupture of vascularization, and mediate triggering of homeostasis
(cuts, scoring, burns).
Chronic: long-lasting wounds (deviation from the physiological cicatricial process).

Presence of infection

Clean: free of microorganisms.
Clean-contaminated: lesions less than 6 h between trauma and initial care.
Infected: presence of local infectious agent.
Contaminated: wounds serviced more than 6 h after trauma.
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Table 1. Cont.

Classification Type

Regarding tissue
impairment

Stage I: skin integrates with signs of hyperemia, discoloration, or hardening.
Stage II: the epidermis and dermis are ruptured, with subcutaneous tissue showing hyperemia,
blisters, and a shallow crater.
Stage III: total loss of cutaneous tissue, necrosis of the subcutaneous tissue to the muscular fascia.
Stage IV: great tissue destruction with necrosis reaching muscles, tendons, and bones.

Degree of openness Open: wounds in which the edges of the skin do not touch.
Closed: wounds where the edges of the skin are juxtaposed.

3.1. Healing Process

Wounds can change the physiology of the skin, particularly those that affect the dermal
layer. Therefore, tissue lesions can modify the anatomical structure of the skin, and the
degree of damage to the tissue is highly dependent upon the healing mechanism. The
wound-healing process entails a cascade of cellular and molecular events aimed at restoring
the injured area [7].

The healing cascade is an organized sequence of events, and classifications have been
applied to it to facilitate our understanding of the dynamic processes it involves that closely
determine healing [8,9]. Different authors divide up the healing process in different ways;
some consider the initial step to involve inflammation, followed by proliferation and ending
with repair in the remodeling stage [7–9] (Figure 1).
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3.2. Inflammation

Inflammation is a defensive reaction to harmful agents, including microorganisms
and damaged cells produced by the body, and promotes biological processes such as
vascular responses and systemic reactions intended to reestablish the equilibrium of tissue
homeostasis. In the absence of the inflammatory process, infections would develop in an
uncontrolled manner; thus, the destructive processes unfolding in organs would continue
until a total loss of function. The inflammatory process can be assessed clinically using
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five classical signs, called the “Cardinal Signals”: swelling, heat, redness, pain, and loss of
function [10,11].

The major function of the inflammatory response is the conduction of leukocytes to
the affected region, which play an important role in defense by phagocytizing or producing
substances that destroy microorganisms and necrotic tissues; they can inactivate or degrade
antigens. Circulating cells such as neutrophils, monocytes, lymphocytes, and eosinophils
reach the site of aggression through the bloodstream, crossing the vessel wall and migrating
toward the site of aggression in significant quantities during the first 24 h of injury. The
circulating cells are attracted by the notable inflammatory cytokine effects produced by
activated platelets, endothelial cells, and the degraded products of the pathogens present
in the lesion [12,13].

These chemical mediators can cause the dilation of the arterioles and increase the
permeability of capillaries and venules, allowing a greater flow of blood to the damaged
area, as well as the exudation (extravasation) of liquids, proteins, and defense cells into
the interstitial space. Fluid exudation results in inflammatory edema, whereby the blood
gradually becomes more viscous due to the increased density of red blood cells, and the
circulation of the small vessels gradually slows, ultimately culminating in blood stasis
(small, dilated vessels filled with red blood cells). At the same time, leukocytes migrate
through the vascular wall into the interstitial space (called transmigration, diapedesis, or
leukocyte emigration); this constitutes the initial (acute) phase of any type of inflammatory
response, also referred to as the vascular phenomena [12,14,15].

The recruitment and activation of inflammatory cells, in either acute or chronic inflam-
mation, are consequences of physical changes occurring at the wound site. The first of these
changes is the liberation of substances following platelet degranulation. These include
thrombin, which prompts the release of distinct growth factors such as platelet-derived
growth factors (PDGFs), transforming growth factor-β (TGF-β), epidermal growth factor
(EGF), transforming growth factor-α (TGF-α), and endothelial cell growth factor (VEGF).
The mediators mentioned beforehand include adhesive glycoproteins such as fibronectin
and thrombospondin—important constituents of the extracellular matrix [16].

The inflammatory phase of wound healing includes the activation of vasoactive
substances such as serotonin, bradykinin, prostaglandins, and histamine. These can increase
the permeability of the endothelium at the lesion site and enhance interstitial fluid perfusion
in this area. The increase in permeability facilitates infiltration by immune and repair
cells that facilitate the previously described events, while the increase in circulation leads
to greater oxygen distribution in the tissue; consequently, the temperature increases at
the site of injury. The warm and humid microenvironment thus produced within the
wound is essential for the ensuing healing phase. At the end of the inflammatory stage
of wound healing, macrophages synthesize distinct growth factors, such as PDGF, TGF-β,
fibroblast growth factor (FGF), and VEGF, which stand out as the major cytokines required
to stimulate the formation of granulation tissue and thus generate the environment required
for the next phases of cell proliferation and repair [1,17].

3.3. Proliferation

The closure of the lesion occurs in the proliferation phase. Angiogenesis occurs as
a result of the formation of granulation tissue and is responsible for filling the injured
tissue. The new extracellular matrix that will be involved in cell growth and the new blood
vessels that will convey oxygen and nutrients indispensable for local cellular metabolism
are produced with the aid of fibroblasts. With the progression of the proliferative phase,
the provisional matrix changes as a result of the newly formed granulation tissue. Wound
epithelialization represents the final stage of the proliferative phase [18,19].

The formation of the extracellular matrix provides a substrate for cell adhesion and
regulates the growth, movement, and differentiation of cells within it. The extracellular ma-
trix consists of structural proteins, including collagen and elastin, along with an interstitial
matrix composed of adhesive glycoproteins, proteoglycan, and glycosaminoglycan [20,21].
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The increase in microvascular permeability, characteristic of the inflammatory process,
represents the first stage of this proliferative process; here, cellular elements, along with
cytokines, are released, and we also see the formation of the provisional extracellular matrix
necessary for the migration and proliferation of endothelial cells [22].

Angiogenesis is an exceedingly important stage in the healing process, during which
new blood vessels are formed from preexisting vessels. The new vessels participate in
the formation of provisional granulation and the supply of nutrients and oxygen to the
growing tissue. On the other hand, vasculogenesis refers to the early stages of vascular
development, during which vascular endothelial precursor cells enact the mobilization of
endothelial progenitors derived from bone marrow [23].

Fibroblast migration is induced by the PDGF and TGF-β released by macrophages.
When fibroblasts reach the wound bed, they proliferate and produce matrix proteins such
as fibronectin, collagen, and proteoglycans. These components help build the new extra-
cellular matrix, which supports the further growth of cells essential for the repair process.
A crucial interaction takes place between the fibroblasts and extracellular matrix, which
regulates the additional synthesis of the components along with tissue remodeling [24].

The process of re-epithelialization in the injured tissue is accelerated by the contraction
of the underlying connective tissue, which is responsible for the approximation of the
wound’s margins. This contraction is induced by myofibroblasts, activated by TGF-β and
PDGF; thus, these myofibroblasts play an important role in wound healing, especially for
open lesions. When present in open wounds, these cells produce larger amounts of extra-
cellular matrix components. However, if abnormalities arise in the physiological process,
such as delays, this may cause cicatricial defects due to alterations to the differentiation of
fibroblasts in myofibroblasts [25].

3.4. Remodeling

The final stage of wound healing involves the remodeling or maturation of granulation
tissue into mature connective tissue or scar tissue. The wound-healing process is most
potent during this phase. Wound maturation begins during the third week after the
wounding and is characterized by an increase in resistance and a controlled decrease in the
amount of collagen. This mechanism is characterized by a balance in the production and
destruction of collagen fibers, resulting from the action of an enzyme called collagenase.
An imbalance in this relationship can favor the emergence of hypertrophic and keloid
scars [1,2].

Finally, the remodeling process consists of the proper deposit of elements previously
mentioned, mainly including collagen fibers. This stage involves a change in the type of
collagen present and its disposition. Type III collagen, which is initially more abundant in
the wound than type I, is more actively degraded over time; in contrast, the production
of collagen I by fibroblasts increases, and this causes an increase in tension force and the
reduction in the quantity of collagen [3,4].

Numerous factors can aggravate the wound-healing process, specifically as regards the
biological events that comprise it. Factors such as advanced age, the patient’s nutritional
status, and vascular changes can directly alter the healing process. However, diabetes
mellitus also drastically alters the process of tissue recovery, interfering at all stages and
thus causing serious complications for the patient.

The process of wound healing is complicated when the patient is diabetic. In patients
with diabetes, wounds show less revascularization and lower expression of growth factors
compared to injuries in non-diabetics, thus impairing healing. These complications can
evolve to produce severe consequences, such as a stagnant repair mechanism leading to a
loss of tissue function [26–28].

Impaired healing in diabetic patients is characterized by acute inflammation and
abnormalities in angiogenesis, entailing difficulties in forming new blood. The proper
healing of a wound requires a regulated inflammatory response; however, diabetic wounds
show prolonged inflammatory responses. Wounds in DM1 exhibit increased expression of
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inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukins
IL-1 and IL-6, and decreased IL-10, leading to injury following a prolonged inflammatory
phase. This deregulated and prolonged inflammation leads to the wound becoming chronic
and unable to be completely healed [29]. These chronic injuries, such as foot ulcers (diabetic
foot), lead to high morbidity and increased treatment costs. In addition, foot ulcers substan-
tiate more than 50% of the cases of amputation among diabetics. Increased oxidative stress
is one of the leading causes of wound complications in diabetics, causing late scarring.
Reducing persistent inflammation and the excretion of free radicals by incorporating an
anti-inflammatory and antioxidant agent into wound treatment has become an important
strategy for improving the healing of diabetic wounds [30].

Factors associated with both angiogenesis and the vasculogenesis process are vital
for wound healing, as they play a vital role in the delivery of oxygen, nutrients, and other
mediators to the wound site. Thus, they have become therapeutic targets that can improve
the healing of damaged wounds in diabetes patients when activated, thus restoring the
neovasculogenesis mechanism [31].

4. Medicinal Plants Used for Wound Healing

Preparations made using medical plants (such as extracts) and the active compounds
present in some of these plants have been used to accelerate wound healing. The ethnophar-
macological approach to investigating medicinal plants consists of combining information
acquired from users of medicinal flora (traditional communities) with the results of chemical
and pharmacological studies [32].

The application of medicinal plants has always been a part of the evolution of hu-
manity; these plants represent one of the first therapeutic resources to be used by humans,
and they still hold great importance for the maintenance of human health. According to
the World Health Organization (WHO, 2002) [33], approximately 80% of the population in
developing countries use traditional medicine as their primary healthcare, most of which
entails using plant extracts or their active compounds. According to the statistics provided
by the WHO, medicinal plants, herbal preparations, or derived products are conventionally
used in primary care in various countries. The WHO classifies a medicinal plant as a
plant species that, when administered to humans, exerts a pharmacological action. The
findings of ethnopharmacology, in terms of the therapeutic properties of plants and popular
knowledge regarding their usage, have been presented as source material for developing
technical scientific knowledge. The accumulation of information regarding the use of
natural assets by traditional populations has provided researchers with models for the
sustainable use of these resources while also providing directions for the exploitation of
the pharmacological properties of certain species. Over the centuries, products of plant
origin have been commonly used as the basis of treatments for different diseases by virtue
of knowledge transmitted down through generations, and certain plant species can be
understood as sources of active molecules [34–36].

In the context of wound healing, the utilization of plants and plant extracts dates
to the prehistoric era [37]. Records describe the use of plants and extracts in the form of
poultices to stop hemorrhages and to facilitate cicatrization. Other uses have been described
in relation to the ingestion of certain plants, which act systemically [36]. Thus, the data
collected through the years confirm that the development of modern medicine has only
been possible via the inheritance of ancient healing methods and the empirical knowledge
pertaining to such practices [37]. Every year, approximately 100 million patients around
the world acquire scars resulting from surgical interventions, burns, or tissue ruptures
due to accidents of various kinds, which require effective and rapid treatment. These
statistics indicate that wound healing is a modern therapeutic challenge [38]. Multiple
studies have sought to improve the treatment of wounds by promoting the healing process;
nevertheless, the most effective organic and inorganic substances in this regard remain a
scientific mystery to this day [39]. Healing involves several complex processes in which
different cellular structures are involved. The process begins with an amplified immune
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response that prevents wound complications, enacted via chemoattraction, which facilitates
the development of other mediators necessary to subsequent phases, such as inflammation,
cell proliferation, and re-epithelization, which eventually lead to wound closure [40].

Medicinal plants are significant sources of novel chemical substances with valuable
therapeutic effects. Table 2 displays the families and genera of plants utilized for wound
healing. A total of 62 families and 109 genera were documented with applicability in wound
healing and treatment based on traditional medicine (Table 2). Most of the wound-healing
information was collected from recent literature from the last 10 years. The Euphorbiaceae
family was the least represented (five members), followed by the Asteraceae family (six
members) and the Fabaceae family (eight members). The most commonly used plant parts
were cited as leaves (37%), followed by fruits (9%), seeds (8%), roots (8%), aerial parts (7%),
flowers (6%), the whole plant (6%) bark (5%), saponins (3%), rhizome (2%) and others.
These data also show that medicinal plants are used to treat wounds in many different parts
of the world. Different families and genera have been analyzed in this work as regards
their components. In 36% of the genera, the major phytochemical compounds found were
alkaloids, steroids, flavonoids, saponins, tannins, and terpenes.

Table 2. Families and Genus with wound healing activity.

Family Genus Part Used/Type Extraction Compounds Ref.

Acanthaceae
Justicia flava Leaf/Methanol Alkaloids, Flavonoids, Glycosides,

Tannins [41]

A. paniculata Leaf/10% aqueous extract Diterpenoids [42]

Amaranthaceae

Achyranthes aspera Leaf/Ethanol Flavonoids, Saponins, Tepernoids [43]

A. sessilis Stem and Leaf/Methanol

2,4-dihydroxy-2,5-dimethyl-3(2H)-
furan-3-one, hexadecanoic acid,
2-1,2,4-trioxolane,3-phenyl-,
palmitate-ethyl-, L-glutamic acid.

[44]

A.triandra Air seed/Petroleum ether Oil ricinoleic acid [45]

Celosia argentea Root/Dichloromethane and
ethyl acetate Terpenoids [46]

Anacardiaceae

Buchanania lanzan S. Root/Petroleum ether Alkaloids, Flavonoids, Polyphenols,
Steroids [47]

Lannea welwitschii
Hiern Leaf/Methanol Alkaloids, Flavonoids, Glycosides,

Steroids, Tannins [41]

Apiaceae

Angelica sinensis Leaf/Ethanol n-buthylidenephthalide and proteins [48]

Centella asiatica Leaf/Methanol
Asiaticoside, Madecassic acid,
Madecassoside asiatic acid,
Triterpenes,

[49]

Cuminum cyminum Seeds Essential oils [50]

L. striatum Rhizoma Essential oils [51]

Apocyanaceae

Catharanthus roseus Leaf/Aqueous and Methanol Alkaloids, Phenols, Proteins, Saponins,
Tannins [52]

S. hispidus Leaf and Root Alkaloids, Flavonoids, Saponins,
Tannins, [53]

Wrightia tinctoria Leaf/Aqueous Alkaloids, Flavonoids, Phenolics,
Saponins, Tannins [54]

Saba florida Leaf/Methanol 99.9% Total extract [55]
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Table 2. Cont.

Family Genus Part Used/Type Extraction Compounds Ref.

Araliaceae

Panax ginseng Panax ginseng saponins (PGS) Ginsenoside Rb1 (G-Rb1) [56]

Panax notoginseng Panax notoginseng saponins
(PNS) High-glucose (HG-30Mn) [57]

Asclepiadaceae

Calotropis giganthea Root Bark
Taraxasteroryl isovalerate, Gigantin,
Giganteol, Isogiganteol,
α-amyrin-3-amyrin, Taraxasterol

[58]

Calotropis procera Root bark/Ethanol Alkaloids, Flavonoids, Steroids,
Tannins [59]

Asphodelaceae Aloe vera Leaf/Acetonic extract Polymers [60]

Asteraceae

Achillea millefolium Aerial parts Yarrow Oil [61]

Arctium lappa Ground bark/Ethanol Alkaloids, Flavonoids, Lignans,
Phenolic acid, Tannins, Terpenoids [62]

Blumea balsamifera Leaf/Methanol 95% Flavonoids, Nonvalatile constituents [63]

Calendula officinalis Flowers/Hydroethanol Rutin, Quercetin-3-O-glucoside [64,65]

Carthamus tinctorius Saflowers Hydroxysaflow yellow A (HSYA) [66]

Wedelia trilobata Leaves/Ethylacetate,
Chloroform:Methanol Kaura-9(11),16-dien-19-oic acid [67]

Bignoniaceae

Kigelia africana Leaves/Roots/Methanol
Flavonoids, Carbohydrates,
Sapogenetic glycosides, Saponins,
Steroids

[68]

S. campanulata Leaf/Methnol Flavonoids, Phenols, Saponins,
Steroids [69]

Tecoma capensis Shoots/Hydroalcoholic Myrecetin [70]

Boraginaceae
H. indicum Leaf/Ethanol Crude extract [71]

L. erythrorhizon Root Purification of Shikonin [72]

Burseracea
Boswelia sacra Leaf/Methanol Oil [73]

C. myrrha Leaf/Methanol Oleo-gum-resins [73,74]

Cactaceae O. ficus-indica Seed/Oil extraction OFI-SNEDDSs [75]

Caricaceae Carica papaya Papaya fruit extraction Crude extract [76]

Cecropiaceae

Cecropia peltata Leaf Saponins [77]

Myrianthus arboreus Leaves/Ethanol Alkaloids, Flavonoids, Glycosides,
Sterols, Tannins, Terpenoids [78]

Caprifoliacea Locinera japonica Flowers/Ethanol Chlorogenic acid [79]

Combretaceae

C. mucronatum Leaf/Ethanol Procyanidin B2 [80]

Terminalia chebula Fruit extraction
Anthraquinone, Flavonoids,
Sapogenins, Saponins, Steroids,
Tannins

[81]

Terminalia arjuna Fruit extraction/Methanol
Anthraquinones, Carbohydrates,
Flavonol, Glucose sorbitol,
Hydrolyzable Tannins

[82]
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Table 2. Cont.

Family Genus Part Used/Type Extraction Compounds Ref.

Crassulaceae Bryophylum pinnatum
Lam Leaf/Aqueous

Patulitin-O-deoxy-hexoside-O-
hexoside, Quercetin-O-hexoside,
Quercetin-O-deoxy-hexoside-O-
pentoside

[83]

Cyperacea Cyperus rotundus L Aerial part/Methanol Alkaloids, Phenols [84]

Euphorbiacea

Alchornea cordifolia
(Schum & Thonn) Leaf/Ethanol Quercetin, Hyperin, Guaijaverin [78]

Euphoria hirta Whole plant/Methanol Alkaloids, Flavonoids, Glycosides,
Proteins, Saponins, Tannins [85]

Jatropha curcas L. Flowers/Methanol Alkaloids, Flavonoids, Glycoside,
Saponins, Tannins [86]

Mallotus oppositifolius
(Geiseler) Leaf/Ethanol Aspinidiol B, methylene bis-aspidinol,

α-tocoferol [87]

P. emblica L. Leaves/Ethanol Flavonoids, Saponins, Tannins [88]

P. muellerianus
(Kuntze) Leaf/Aqueous Geranin [89]

Fabaceae

Astragalus
membranaceus Sprants Seeds/Ethanol Tryptophan, Linoleic acid, Adenine [90]

Caesalpinia sappan L. Wood Sappachalcone [91]

Entada phaseoloides Total Tannins [92]

Glycyrrhiza glabra L. Root/Ethanol Glycyrrhiza cream [93]

Indigofera enneaphylla L. Whole plant/Petroleum ether,
Ethyl Acetate, Ethanol Flavonoids, Saponins, Tannins [94]

Mimosa pudica L. Seeds/Ethyl Acetate
Root/Petroleum ether Alkaloids, Glycosides, Phytosterol [95,96]

Sophora flavescens Compound, Sophora flavescen lotion [97]

Tephrosia purpurea Aerial plants/Ethanol Flavonoids, TPF-A 7 peaks [98]

Fagaceae Quercus infectoria Oliver Nutgails/Ethanol Pharmaceutical formulations [99]

Ganodermataceae Ganoderma lucidum Fruting bodies/Hot water Polysaccharides 25.1% Ganodermic
acid A [100]

Gentianaceae Anthocleista nobilis G.
Don

Stem bark/Ethanol
Ethyl Acetate
Buthanol
n-Hexane

Isovitexin and Isovitexin-2”-O-xyl
Isovitexin
Apigenin monoglycoside
p-Hydroxybenzoic acid, Sarasinside

[101]

Ginkgoaceae Ginkgo biloba L. Leaf/Aqueous
Myricerin, Quercetin, Kaempferol,
Isorhamnitin, Terpenes lactones,
Ginkgolic acid

[102]

Hypericaceae Hypericu mysorense Parts plant/Methanol Flavonoids, Saponins, Tannins [103]

Iridaceae Crocus sativus L. Stigmas/Glycerin/water/Ethanol Flavonoids, Anthocyanins [104]

Lamiaceae

Occimum sanctum L. Leaf/Water Essential Oil [105]

Rosmarinus officinalis Aerial parts/Hydrodistillation Essential Oil [106]

Salvia miltiorrhiza Leaf/Hydroethanolic Flavonoids, Total Phenols [107]

Lauraceae Cinnamomum cassia Cinnamon Oils [74]

Liliaceae Allium cepa L. Onion/Ethanol 95% Alkaloids, Flavonoids, Phenols,
Tannins [108]
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Table 2. Cont.

Family Genus Part Used/Type Extraction Compounds Ref.

Lycopodiaceae Lycopodium serratum Aerial parts/Ethanol Crude etanol extract [109]

Lythraceae

Lawsonia alba Leaf/Methanol Coumarin, Flavonoid, Steroid, Tannin,
Terpenoid [110]

Lawsonia inermis L. Leaf/Aqueous Total Phenols, Total Flavonoids, Total
Tannins, Saponins [111]

Punica granatum L. Fruit whole Pomegranate are Tannins, Flavonoids,
Punicic acid, Phytoestrogen [112]

Malvaceae

Hibiscus rosa sinensis L. Flowers/Methanol Phenolic compounds, Flavonoids,
Essential Oils, Anthocyanins [113]

Malva sylvestris Flowers/Ethanol:Water (80:20) Total phenolic, Flavonoids,
Anthocyanin [114]

Thespesia populnea L. Fruit/Aqueous Glycosides, Flavonoids, Alkaloids,
Phytosterol, Quercetin, Rutin, Lupeal [115]

Martyniaccae Martynia annua Leaf/Ethanol
Glycosides, Phenols, Flavonoids,
Tannins, Anthocyanins MAF-C 7
peaks

[98]

Meliaceae

A. indica A. Juss Steam bark/Water:Ethanol Crude [116]

Carapa guianensis Aubl Andiroba seed oil

Lauric axid, Myristic, Palmitic acid,
Stearic acid, Oleic acid, Linoleica cid,
Lignoceric acid, Palmitoleic acid,
Heptadecanoic acid, Arachidic acid,
Behenic acid

[117]

Mimosaceae Prosopis cineraria Leaves/Petroleum ether Protocatechuic acid, Caffeic acid,
Chlorogenic acid, Ferrulic acid [118]

Moraceae Ficus religiosa L. Leaves/Methanol Glycosides, Alkaloids, Tannins,
Terpenoids [119]

Moringaceae Moringa oleífera Lam. Leaves/Ethanol Flavonoids, Phenolic acids [120]

Musaceae Musa sapientum L. Fruits/Ethanol Saponins, Flavonoids, Glycosides,
Steroids, Alkaloids [121]

Myrsinaceae Embelia ribes Burn. Fruits/Petroleum ether Embelin [122]

Myrtaceae Eucalyptus globulus Leaves/Hydrodistillation 1,8-cineole content 72.3%, α-pinone
9.4% [123]

Nymphaeaceae Nelumbo nucifera Aerial part/Ethanol 30 peaks Ethanol,2-(-Octadecinyloxy,
γ-sitosterol, Hexadecanoic acid [124]

Oleaceae

Jasminum auriculatum
Vahl. Leaves/Petroleum ether

Alkaloids, Carbohydrates, Flavonoids,
Phenolic compounds, Saponins,
Steroids, Tannins, Tepernoids

[125]

Jasminum grandiflorum L. Leaves/Methanol Crude [126]

Orchidaceae Bletilla striata Root/Boiled water Polysaccharide content (65.3%) [127]

Paeoniaceae Paeonia suffruticosa Bark root/Alcohol Flavonoids, Phenolic acid,
Polysaccharide, Saponins [128]

Papaveraceae Argemone mexicana L. Fruits/Methanol
Alkaloids, Flavonoids, Glycosides,
Saponins, Steroids, Tannins,
Terpenoids

[129]

Papilionaceae Trigonella
foenum-graecum Aerial part/Methanol Flavonoids [130]
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Table 2. Cont.

Family Genus Part Used/Type Extraction Compounds Ref.

Pedaliaceae Sesamum indicum Seed/Ethanol Sesame Oil [131]

Plantaginaceae Plantago Leaves/Distilled water Polyphenolic compounds [132]

Polygonaceae Rheum officinale Powders/Ethanol TMC extracts [133]

Potulacaceae Portulaca grandiflora Total plant/Ethanol Alkaloids, Flavonoids, Saponins,
Terpenoids [134]

Phyllanthaceae Bridelia ferruginea
Benth.

Leaves/Methanol
Stem barks/Ethyl Acetate

High phenolic content
High flavonoids content [135]

Rosaceae Sanguisorba officinalis Polysaccharide [136]

Rubiaceae

Morinda citrifolia L. Leaf Alkaloids, Coumarins, Flavonoids,
Saponins, Tannins, Triterpenes [137]

Rubia cordifolia L.
100 Compounds bicyclic peptides,
terpenes, polysaccharides, Flavonoids,
Quinones

[138]

Rutaceae
Aegle marmelos L. Flower/Ethanol 60% Aegelin, Cineol, Cuminaldheyde,

Luvangetin, Eugenol [139]

Zanthoxylum
bungeanum Maxim 140 constituents of this plant Alkaloids, Fatty acids, Flavonoids,

Tepernoids, Flavonoids [140]

Salicaceae Casearia sylvestris Leaves/Hydroalcoholic Crude extract [141]

Scrophulariaceae Rehmannia glutinosa Polysaccharides [142]

Stemonaceae Stemona tuberosa 9,10-dihydro-5-methoxy-8-methyl-2,7-
phenanthrenediol [143]

Theaceae Camellia sinensis Tea leaves/Methanol [144]

Thymelaeaceae Daphne genkwa Sie. Diterpenoids/yuanhuapine [145]

Vitaceae Ampelopsis japonica Root/Methanol
Catechin, Gallic acid, Kaempferol,
Euscaphic acid, Resveratrol,
Epicatechin

[146]

Zingiberaceae Curcuma longa Linn Extracts Alkaloids, Flavonoids, Phenolic,
Saponins, Terpenoids, Steroids [147]

5. Bioactive Phytocompounds with Wound-Healing Properties

In the relevant literature, a variety of studies have addressed different plants with
wound-healing properties. These studies have described the pharmacological activities
of plants employed in wound healing and their molecular mechanisms to validate their
traditional use and development into safe and effective herbal treatments for wounds. Due
to the plants’ metabolism, secondary metabolites can be considered as bioactive molecules
with therapeutic potential of great value in the pharmaceutical, cosmetic, and food in-
dustries, as concerns the design and formulation of medicines for different illnesses with
less severe side effects [148–152]. The bioactive phytochemical compounds found include
secondary metabolites such as alkaloids, essential oils, flavonoids, tannins, terpenoids,
saponins, and phenolic compounds [153–156] (Figure 2).

The allocation of these active compounds into different plant parts, as has been widely
described, involves the use of different selective solvents to derive complex mixtures of
groups of metabolites (Figure 3).

Phenolic acids are the bioactive compounds most widely found in legumes, cereals,
vegetables, and fruits. They are also responsible for certain characteristics of foods, such as
aroma and astringency, as well as color and flavor [153,155–157] (Figure 4).
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These compounds also play a role in plants’ ability to protect themselves against
different insults, such as ultraviolet radiation and pathogens [153,156,157]. Importantly,
the amounts of phenolic compounds produced by plants can vary according to environ-
mental conditions, genetic factors, and degree of maturation [158]. In the literature, it has
been described how phenolic compounds act as anti-inflammatory and antiproliferative
agents, antioxidants, transduction modulators, stimulants of collagen production, and
antimicrobials, in addition to carrying out other functions [154,156,157]. These compounds
can be categorized into hydroxybenzoic acids, such as gallic and vanillic acids, as well as
hydroxycinnamic acids such as ferulic and caffeic acids. They have also been shown to have
immunomodulatory, antioxidant, hepatoprotective, and anti-inflammatory actions [159]
(Figure 5).
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Potent antioxidant agents, such as flavonoids, act as reducing agents and protect
against radiation [160,161]. These protective effects mean that they can modulate pro-
inflammatory molecules, such as those involved in the healing process [160,162]. The
effects of flavonoids in the inflammatory process extend to the treatment of diseases linked
to inflammation and processes of which inflammation is a part, such as the healing process
and the inhibition of invasion, angiogenesis, and metastasis mechanisms [160].

Tannins are the most complex of the phenolic compounds, categorizable as conden-
sates or hydrolysable. Their role is to protect plants from pathogens through protein
complexation, and via their antimutagenic activity, they promote healing through the
modulation of different cellular mechanisms and growth factors [153,156,157] (Figure 6).
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6. Activity of Bioactive Phytochemicals in Wound Healing

Impaired vascular function, ischemia, superficial debris, and necrosis are the main
factors that cause poor immune responses and, consequently, contribute to the development
of continued chronic wounds. Excessive bacterial growth and the formation of a biofilm
lead to a chronic and self-perpetuating inflammatory state via the modification of aspects
of the wound microenvironment, such as its humidity, pH, metalloproteinases, and reactive
oxygen species. As many of these microenvironment-related factors as possible must be
taken into account to develop beneficial therapeutic strategies [163]. Nature, as described
in the literature, is a rich source of therapeutic possibilities. Secondary metabolites can
promote the wound-healing process through their pharmacological effects on the body.
These compounds include phenolics, alkaloids, and fatty acids, as well as glycosylates
and polysaccharides. Such compounds have also been confirmed to have beneficial effects
related to their anti-inflammatory, antioxidant, and antibacterial properties, and they pro-
mote collagen synthesis and facilitate protective cell regeneration [164–166]. In addition,
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these active compounds present low toxicity and good absorption by the skin barrier [164].
The improved efficiency of treatments using natural extracts is related to the establishment
of synergy, which enhances the effects of products of natural origin as well as current thera-
peutic approaches. Various studies have demonstrated that such synergistic interaction
is a result of these substances’ antibacterial, antioxidant, and anti-inflammatory proper-
ties [167]. Active research in this area is currently focused on developing wound treatments
able to prevent microorganisms from entering wounds with a bactericidal effect. Recent
studies have shown that the use of vegetal extracts and their secondary metabolites has
been integrated into diverse treatment modalities, and this has been proven to be effective
against both Gram-positive and Gram-negative bacteria [168]. Some have already been se-
lected for use in clinical trials or incorporated into nanoparticles [169]. Studies have shown
that natural metabolites can represent beneficial candidates for use in wound healing. One
obstacle in developing their clinical use is their poor oral or topical bioavailability.

6.1. Essential Oils

Research has shown that volatile essential oils present a variety of beneficial properties,
such as antioxidant, antiviral, anticancer, insecticidal, anti-inflammatory, antiallergic, and
antimicrobial effects [168]. These mixtures of lipophilic components are considered safe
and biocompatible, although due to their low water solubility, bioavailability, and stability,
their therapeutic uses can be limited [169].

6.2. Polyphenols

Polyphenols are considered multifaceted agents due to their beneficial activities, such
as antibacterial, anticancer, anti-inflammatory, and antioxidant effects, in addition to their
complex wound-healing properties [170]. However, the main problems include their
hydrophobicity and poor water solubility, permeability, and bioavailability.

6.3. Flavonoids

As an exemplary flavonoid, quercetin has been harnessed for its antibacterial, anti-
inflammatory, and antioxidant activities. When converted into quercetin nanofibers, it
provides a large porous surface area that can carry many active compounds that facili-
tate penetration into the skin. Trials conducted with quercetin patches have shown them
to have antibacterial activity that combats acne [171]. In other trials, film structures of
N-carboxybutyl chitosan (CBC) and agarose were analyzed for their potential utiliza-
tion in topical membranous wound treatment. Other research has demonstrated the use
of polymeric biomaterials loaded with quercetin and thymol. These have been utilized
both individually and in the form of mixtures of these two substances, which have anti-
inflammatory and anesthetic properties. The incorporation of quercetin into semisolid
bases such as creams and acid carbomer gels has been proposed to investigate the effects
of additives such as propylene glycol and polyethylene glycol on its release and skin re-
tention. With respect to quercetin and chrysin, or quercetin within chitosan nanoparticles,
propylene glycol is an absorption accelerator that can also prolong the antioxidant activ-
ity [172,173]. Another study has demonstrated that polymeric nanoparticles can enhance
antiradical activity, along with chelating quercetin and catechin [174]. Other studies have
demonstrated the additional benefits offered by apigenin to the skin via the stimulation of
epidermal differentiation, the synthesis and secretion of lipids, and cutaneous antimicrobial
production. In vitro studies have demonstrated that hesperidin and naringin obtained from
citrus fruits can be used to synthesize stabilized nanoparticles in a green manner [174].

Phytochemicals have been described to enhance the effects of antibiotics due to their
low toxicity and anti-infective, anti-inflammatory, and antioxidant properties [175]. They
can act as efflux pump inhibitors, preventing biofilm formation or targeting specific bacterial
virulence factors [175]. Research confirms that plants from different families can facilitate
the healing process and attenuate inflammation [176–178]. Certain compounds, including
the flavonoid baicalein and the monoterpene phenol thymol, have an inhibitory effect on
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inflammation that has been demonstrated in mixtures of ethanol and can act synergistically,
suggesting their use as an alternative treatment to antibiotics [176–178].

7. Mechanisms of Effects of Phytochemicals on Wound-Healing Agents
7.1. Antioxidant Activities of Wound-Healing Agents

Large amounts of energy must be produced for normal cellular activities, which is
achieved through mechanisms such as oxidation, resulting in the generation of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) [156]. These reactive species
possess unpaired electrons in their valence shell and are unstable [154]. Radical species
include hydroxyl radicals (OH−), nitric oxide radicals (NO), singlet oxygen (1O2), and
superoxide radicals (O2

−). These are produced naturally in the body, but adverse factors
such as stress and pollution can increase their levels, causing them to damage molecules
such as proteins and DNA, leading to the disintegration of cell membranes. Oxidative
stress is strongly linked to the development of chronic diseases and aging [154,157,160].

The use of antioxidants to control the levels of reactive species in the body is recom-
mended. Antioxidants are defined as substances with the capacity to control the oxidation
of biomolecules and act in the sequestration of reactive species such as ROS or RNS; some
can also chelate metal ions and modulate enzymes related to oxidative stress [154,156]. Such
enzymes include catalase (CAT), which catalyzes the degradation of hydrogen peroxide
(H2O2), and glutathione peroxidase (GPx), which removes hydroperoxides [154].

Non-enzymatic processes involve transferrin, reduced glutathione (GSH), ubiquinol,
and melatonin [154,156]. The antioxidant effects of these compounds are related to the
presence of phenolic compounds, amino acids, sterols, ascorbic acid, peptides, and phos-
pholipids in their composition [179]. Several studies have shown that antioxidants have
anti-inflammatory, vasodilatory, antitumor, antiallergic, antiviral, and cardioprotective
activities, among other properties [156,157,179].

During the healing process, excess free radicals are produced at the site of injury. This
can be limited by the presence of antioxidants, which prevent some of the damage caused
to cells [180]. The antioxidant action of medicinal plants is strongly related to the quantities
of bioactive compounds they contain, such as flavonoids, which act as antioxidants and
also directly participate in the inflammatory phase, limiting cellular damage due to their
effects on prostaglandins and macrophages [181]. Flavonoids are also capable of increasing
the resistance of collagen fibers, thus facilitating the process of the contraction and re-
epithelization of wounds [180,182].

The healing process restores tissue integrity when an injury occurs [183]. It can be
impeded by factors such as diabetes, which causes it to be slower and less efficient, thus
potentially causing chronicity [184,185]. Poor healing can lead to the loss of tissue function,
the chronification of injuries, and amputation, and it can also produce physical, psychologi-
cal, social, and economic damage [184]. The treatments used to promote healing include the
use of natural products and their derivatives. Some of the medications currently available
are not completely effective in treating chronic wounds. For this reason, it is essential to
continue research into new substances with more effective healing properties. Flavonoids
and tannins have shown antiproliferative properties and are capable of regulating the pro-
duction of free radicals; they are also involved in limiting inflammatory mechanisms [180].
Further investigations in the pharmaceutical, food, and cosmetic sectors will be essential
in addressing the sources of antioxidants and substances that can be used to treat certain
conditions, such as chronic wounds and cancer. Following the formation of ROS, the
wound-healing process is significantly delayed; however, their formation is limited by
the presence of flavonoids, which are responsible for increasing the levels of common
antioxidant enzymes. The use of flavonoids in the clinical setting is very limited due to
their low bioavailability. An important property of flavonoids obtained from plants is their
lipophilicity against Gram-positive bacteria, which is a product of their involvement in the
damage done to the respiratory chain and other aspects [186].
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7.2. Anti-Inflammatory Properties of Wound-Healing Agents

Flavonoids have also been suggested as a candidate for use in the treatment of a
variety of skin lesions, with minimal side effects when administered by topical application
due to their lipophilic nature [187]. The many properties exhibited by flavonoids, such
as their anti-inflammatory, antimicrobial, and antifibrotic effects, can be understood as
a result of their polyhydroxy structure. Among all the structurally different flavonoids,
twenty-four have demonstrated the ability to accelerate the healing process, and the most
studied are quercetin, epigallocatechin gallate, and naringenin [55] (Figure 7).
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Numerous studies have also shown that flavonoids are capable of decreasing the levels
of inflammatory mediators, such as prostaglandins and leukotriene, and pro-inflammatory
cytokines, such as IL-1β, TNF-α, IL-6, and IFN-γ. They can also increase the production
of anti-inflammatory mediators, such as interleukin 10 (IL-10), negatively regulate the
expression of nuclear factor kappa B (NF-κB), and block cyclooxygenase activity.

Prenylated flavonoids are found in plants’ roots, bark, seeds, and buds. These are part
of a subclass of modified flavonoids with at least one lipophilic side chain of variable length,
and they possess favorable biological activities, such as antimicrobial, antifungal, larvicidal,
estrogenic, osteogenic, immunosuppressive, anticancer, anti-inflammatory, antioxidant,
antiallergic and cytotoxic effects [188]. The group of prenylated flavonoids includes C-
prenylated chalcones/dihydrochalcones, flavanones, flavones, flavonols, isoflavones, and,
less frequently, O-prenylated forms (Figure 8).

These structures can be replaced, following oxidation, reduction, dehydration, and/or
cycling, with 3,3-dimethylallyl, 1,1-dimethylallyl, geranyl, lavandulyl, and farnesyl side
chains [188]. Studies have shown the advantages offered by prenyl compared to flavonoids.
Prenylated flavonoids have a greater affinity with the cellular membrane and P-glycoprotein in-
hibitors [189] and show antibacterial and inhibitory or enzyme-enhancing actions, while preny-
lation causes an increase in lipophilicity and the affinity for biological membranes [188,189].
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Diplacone, with its 6-geranyl-30,40,5,7-tetrahydroxyflavanone structure, has shown
anti-inflammatory properties both in vitro and in vivo, with different mechanisms of ac-
tion. It can cause reductions in TNF-α and MCP-1 expression and regulates the expres-
sion of zinc-finger protein 36, which increases cytokine degradation [190]. Another com-
pound, isobavachalcone, suppresses the production of nitric oxide and negatively regulates
inflammation-related enzymes such as iNOS and 15-LOX [191,192]. Licochalcone A is
a 5-(2-methylbut-3-en-2-yl) chalcone obtained from licorice roots, and it has been tradi-
tionally used to treat inflammatory diseases. It inhibits the activation of transcription
factors such as NF-κB and AP-1; it also suppresses pro-inflammatory cytokines and NO
and PGE2 production [193,194]. The main function of Sophoraflavanone G is the inhibition
of eicosanoid-forming enzymes [195]. It can also disrupt NF-κB and MAPK signaling path-
ways [195,196]. Another prenylated chalcone is xanthohumol, which is found in Humulus
lupulus L. hops and has antistaphylococcal activity [197,198]. Its anti-inflammatory effect
is enacted through the inhibition of NO levels due to the suppression of inducible NO
synthase, and it inhibits both the activation of NF-κB [199,200] and the production of the
cytokines MCP-1, TNF-α, and IL-12, as well as oxidative stress [201–203].

7.3. Antimicrobial Effects of Wound-Healing Agents

In the previous sections, we mention that flavonoids are widely used as effective
therapeutic agents and that numerous in vitro and in vivo studies have confirmed them
to have important functions, mainly defensive and regulatory [203]. Regarding their
functions as protective agents against microorganisms, flavonoids act directly on bacterial
cells, as well as suppressing virulence and the formation of biofilms. They can also act
synergistically with antibiotics [204]. These properties have enabled the production and
use of semisynthetic or synthetic flavonoids to combat microorganisms [205].

The antibacterial activities of flavonoids and prenylated flavonoids are due to the
structure of 2-phenyl-1,4-benzopyrone, which has been suggested to be capable of influ-
encing different cellular processes [204]. Apigenin and quercetin present the ability to
inhibit bacterial cell walls by inhibiting D-alanine–D-alanine (D-Ala–D-Ala) ligase, which
is crucial to the completion of peptidoglycan precursors [206]. Researchers have indicated
that several flavonoids can modify membrane permeability and damage membrane func-
tions. On the other hand, flavanols, flavolans, and green tea catechins have been shown
to disturb bacterial cytoplasmic membranes through hydrogen peroxide [207,208]. An-
other flavone, Artocarpin, obtained from the Moraceae family, with prenyl in position 3
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and a (1E)-3-methylbut-1-enyl moiety in position 6, presented remarkable antibacterial
activity [197,209–211].

8. Conclusions

Plants are excellent wound healers, and when used in the context of different wound
models, they can be employed as part of proper measures to treat wounds and control
the healing process. Thus, herbal medicines have gained popularity in several countries.
The factors that must be considered in the healing of a lesion are the wound closure
rate, epithelialization, tensile strength, histopathology, and granuloma weight. This study
discusses how traditional medicines could play important roles in wound healing. Modern
knowledge of these bioactive principles can provide alternatives to improve or accelerate
wound healing with minimal toxicity. The preliminary evidence and results in the current
literature suggest that this is an active area of study. In future studies, factors such as the
potential toxicity to human cells, kinetics and speed of healing, wound types, chronicity,
timing of application, and dose of therapeutic agent must be considered. The preparation of
formulations that include medicinal plants as part of their release and distribution systems
for their anti-inflammatory, antioxidant, and wound-healing properties requires further
investigation. These proposed studies on natural or synthetic formulations can be achieved
by acquiring certain quantities of pure compounds and their extracts for standardization.
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