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Abstract: Hiccups can significantly reduce the quality of life of patients and can occur as a drug
side effect. Previous reports have revealed sex-specific differences in the incidence of drug-induced
hiccups. However, the pathogenesis of drug-induced hiccups remains unknown, and there is limited
evidence on its treatment or prevention. This study examined molecular initiating events (MIEs),
which are the starting point of adverse events, to investigate the drug-induced pathways of hiccups.
We extracted drugs suspected to cause hiccups using the FDA Adverse Event Reporting System, a
large database on adverse drug reactions. Information on drugs suspected to be associated with
hiccups was extracted from the overall population and sex-specific subgroups were divided. In each
data table, the predicted activity values of nuclear receptors and stress response pathways for each
drug were calculated using the Toxicity Predictor, a machine-learning model. Transforming growth
factor-beta and antioxidant response elements were considered an independent factor for hiccups
in the male and female subgroups, respectively. This report first examined one of the mechanisms
of drug-induced hiccups and identified MIEs associated with drug-induced hiccups. The use of
an adverse event database and the machine-learning model, Toxicity Predictor, may be useful for
generating hypotheses for other adverse effects with unknown mechanisms.

Keywords: drug-induced hiccups; FAERS; nuclear receptor; stress response pathways

1. Introduction

Hiccups are a common symptom experienced by many people and are mainly caused
by myoclonus of the diaphragm [1]. Hiccups have been associated with speech, sleep, and
swallowing disorders, weight loss, fatigue, and insomnia [2]. Although not life-threatening,
hiccups can significantly reduce the quality of life of patients. If hiccups occur as a drug
side effect, they can also impact the choice of drug treatment. Therefore, controlling hiccups
that are drug side effects is important for drug therapy.

Hiccups are brief, involuntary spasms of the muscles of the diaphragm accompanied
by coordinated contractions of the glottis closure muscle group [1]. The afferent and effer-
ent pathways of the hiccup reflex arch involve the glossopharyngeal nerve (nineth cranial
nerve), vagus nerve (tenth cranial nerve), nucleus of the solitary bundle tract, nucleus
ambiguous, and peroneal nerve [3]. The exact mechanism of the hiccup reflex arch is
unclear. However, neurotransmitters such as gamma-aminobutyric acid (GABA), serotonin,
and dopamine have been associated with the onset of hiccups. Reflex arches are mediated
by central neurotransmitters (GABA, dopamine, and serotonin) and peripheral neurotrans-
mitters (epinephrine, norepinephrine, acetylcholine, and histamine) [4,5]. There are no
reports on sex differences or physical information about common hiccups experienced
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by healthy individuals. However, male patients have a high incidence of intractable or
persistent hiccups [6].

Several reports have described drug-induced hiccups. Lee et al. revealed a male
predominance for peripheral hiccups based on a meta-analysis. However, there were no sex
differences in hiccups caused by central nervous system disorders [6]. In a study about the
risk factors of patient-induced hiccups, low body mass index, nausea and vomiting, and
cancer drug therapy were associated with hiccups [7]. In other reports, cisplatin [8,9] and
dexamethasone [10] have been suspected to affect the development of hiccups. However,
no studies have analyzed the risk factors for drug-induced hiccups using data from large
databases. Therefore, in a previous study, drug and patient information related to hiccups
was analyzed using data from the Japanese Adverse Drug Event Report (JADER) database
and the FDA Adverse Event Reporting System (FAERS) database via data mining [11,12].
Dexamethasone and several anticancer drugs were identified as independent risk factors for
hiccups. We also established a visualization method for suspected drugs in the adverse drug
reaction database. In a prior study using data from the JADER database, data on the drugs
suspected to affect hiccups were extracted, and the results showed that a patient’s height
is a risk factor for hiccups [11]. Furthermore, in an analysis using FAERS data stratified
according to sex, the drugs suspected to affect hiccups differed significantly between male
and female patients. Among them, nicotine was commonly suspected to be associated
with hiccups in male and female individuals [12]. Hiccups have male predominance [6];
however, their cause has not been elucidated. No studies have yet validated whether the
male predominance of hiccup occurrence is attributed to drug sensitivity or neurological
sex differences.

As shown in a previous study, several case reports and database studies have assessed
the association between hiccups and drugs. However, to the best of our knowledge, only a
few studies have investigated the mechanism of drug-induced hiccups. The small number
of cases involving drug-induced hiccups and the difficulty in predicting their onset are
some reasons for the lack of research. To treat and prevent drug-induced hiccups, the
causative mechanisms should be identified. Therefore, the molecular chemistry related
to the induction of hiccups based on the suspected drug information identified using the
FAERS database was used. By handling information on suspected drugs obtained from
several sources, rare cases of adverse drug reactions, such as hiccups, can be evaluated.
These results may provide leads for novel research to elucidate the pathogenic mechanism
of hiccups.

Numerous factors are involved in the mechanism of the effects of adverse drug
reactions. From the perspective of toxicology, molecular initiating events (MIEs) in the
adverse outcome pathway (AOP) represent an important concept when considering the
mechanism of drug-induced adverse effects [13]. MIEs denote the first interaction between
a molecule and a biomolecule or the biological system in the AOP. Their targets include
nuclear receptors (NRs) and stress response pathways (SPs). NRs are intracellular proteins
that regulate DNA transcription in the cell nucleus by binding to hormones and other
substances. NRs bind directly to DNA and regulate gene expression, and they are associated
with the development, homeostasis, and metabolism of the organism. If a ligand binds
to a NR, a conformational change occurs, which activates the receptor and subsequently
regulates gene expression [14]. SPs are biochemical processes that regulate the response to
various stress signals in cells. Endocrine-disrupting chemicals disrupt the endocrine system
by interacting with NRs and SPs, causing various adverse developmental, reproductive,
neural, and immunological effects in humans and wildlife [15]. Moreover, NRs and SPs
may be involved in adverse drug events.

Drug-induced hiccups may develop hours or days after drug administration and
persist for an extended period [7,10]. Therefore, these phenomena are not controlled on a
millisecond-by-millisecond basis but rather through the development of several molecular
pathways from the time of drug administration. Considering these facts, we believe that
searching for NRs/SRs as MIEs involved in the induction of drug-induced hiccups will
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help elucidate the underlying mechanisms. Therefore, this study aimed to identify NRs
and SPs associated with drug-induced hiccups using Toxicity Predictor, a machine-learning
model. We aimed to construct a combined database to generate hypotheses for clinical
questions. We also aimed to establish our methodology so that this method can be applied
to other side effects with unknown mechanisms.

2. Results
2.1. Prediction of MIEs Associated with Hiccups

There were 26,316 reports of hiccup reversals in the analysis database. Crosstabulation
tables were created for each drug, and the p-values for Fisher’s exact test and the reported
odds ratio (ROR) were calculated. Figure 1 presents a scatter plot (volcano plot) depicting
the results of the univariate analysis for all patient data. There were 169 drugs with
>1000 reports and those considered significant (p ≤ 0.001 based on Fisher’s exact test).
Supplementary Materials Table S1 shows a list of 156 drugs, including the ATC names and
classifications of the suspected drugs. This file only lists important suspect drugs and drugs
classified by the ATC system. Therefore, there is a slight difference in the number of drugs
used in the analysis. Univariate analysis using lnROR as the binary classification value for
the objective variable revealed that the significant factors were the estrogen receptor alpha
with antagonist (ERα), progesterone receptor (PR), androgen receptor with antagonist
(ARα), transforming growth factor-beta (TGF-β), and sonic hedgehog (Shh). Table 1 depicts
the activity types and the results of both univariate and multivariate analyses for each
MIE. The results of the nominal logistic regression analysis were submitted to the MIE. The
results of the univariate analysis with the presence or absence of hiccups as the objective
variable were significant. In the multivariate analysis, odds ratios were used to confirm
independent factors related to hiccups.
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Figure 1. Drugs associated with hiccups. This volcano plot was created by plotting the negative
logarithm of the p-value (−log10p) based on Fisher’s exact test on the y-axis and the natural logarithm
of the ROR (lnROR) on the x-axis. In all patients, drugs with >1000 reports and those considered as
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significant (p ≤ 0.001 based on Fisher’s exact test) were included in the volcano plot. The color of the in-
dividual points represents differences in the log of the number of reports for each drug. The gray plots
indicate drugs with a p-value of >0.001 or <1000 reported cases. The red line on the y-axis represents a
p = 0.001. In this scatter plot, the signal is larger for the points (drugs) plotted in the upper right
corner. The blue-to-red colors represent the number of times an adverse drug reaction was reported.

Table 1. Univariate and multivariate analyses of MIEs associated with drug-induced hiccups.

Univariate Analysis Multivariate Analysis

MIEs Activity
Type 95% CI 95% CI

Odds
Ratio Lower Upper

p-Value
(Fisher’s

Exact Test)

Odds
Ratio Lower Upper

p-Value
(Likelihood
Ratio Test)

p-Value
(Wald Test)

ERaant agonist 0.21 * 0.06 0.69 0.010 0.28 0.06 1.26 0.088 0.097
PR antagonist 0.43 * 0.23 0.82 0.011 0.61 0.30 1.26 0.181 0.181

ARaant agonist 0.33 * 0.14 0.76 0.011 0.65 0.21 1.97 0.445 0.443
TGFb agonist 3.37 * 1.30 8.75 0.014 4.59 * 1.54 13.67 0.002 0.006

PR agonist 0.20 * 0.05 0.76 0.014 0.66 0.12 3.55 0.625 0.628
Shh agonist 0.40 * 0.18 0.89 0.026 0.63 0.25 1.60 0.330 0.329

MIEs: molecular initiating events, ERaant: estrogen receptor alfa with antagonist, PR: progesterone receptor,
ARant: androgen receptor with antagonist, TGFb: transforming growth factor-β, Shh: sonic hedgehog. *: indicates
significant odds ratios in the univariate and multivariate analyses.

2.2. Prediction of MIEs Associated with Hiccups in Male Patients

There were 18,663 reports of hiccup reversals in the data table for men. Crosstabulation
tables were created for each drug, and the p-values for Fisher’s exact test and the ROR
were calculated. Figure 2 presents a volcano plot of the key suspect drugs for hiccups in
male patients. There were 122 drugs with >1000 reports and those considered significant
(p ≤ 0.001 based on Fisher’s exact test) in men. Supplementary Materials Table S1 depicts a
list of 108 drugs, including the ATC names and classifications of the suspected drugs. This
file only lists important suspect drugs and drugs classified by the ATC system. Therefore,
there is a slight difference in the number of drugs used in the analysis. Univariate analysis
using lnROR as the binary classification value for the objective variable revealed that PR,
constitutive androstane receptor (CAR), Shh, androgen receptor lbd (ARlbd), and TGF-β
were identified as significant factors. Table 2 presents the activity types and the results of
both univariate and multivariate analyses for each MIE. The results of the nominal logistic
regression analysis were submitted to the MIE, which showed significant results for the
univariate analysis with the presence or absence of hiccups as the objective variable. In
the multivariate analysis, odds ratios were used to confirm independent factors related to
hiccups in male patients.

Table 2. Univariate and multivariate analyses of MIEs associated with drug-induced hiccups in the
male group.

Univariate Analysis Multivariate Analysis

MIEs Activity
Type 95% CI 95% CI

Odds
Ratio Lower Upper

p-Value
(Fisher’s

Exact Test)

Odds
Ratio Lower Upper

p-Value
(Likelihood
Ratio Test)

p-Value
(Wald Test)

PR agonist 0.326 * 0.152 0.698 0.005 0.60 0.22 1.62 0.318 0.318
CAR antagonist 0.347 * 0.160 0.753 0.009 0.56 0.23 1.41 0.222 0.220
Shh agonist 0.389 * 0.176 0.861 0.021 0.70 0.25 1.97 0.504 0.502

ARlbd antagonist 0.401 * 0.189 0.851 0.025 0.62 0.22 1.70 0.351 0.348
TGFb agonist 2.857 * 1.100 7.423 0.030 3.67 * 1.29 10.45 0.011 0.015

PR: progesterone receptor, CAR: Constitutive androstane receptor, Shh: sonic hedgehog, ARlbd: androgen
receptor lbd, TGFb: transforming growth factor-β. *: indicates significant odds ratios in the univariate and
multivariate analyses.
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Figure 2. Drugs associated with hiccups in male participants. This volcano plot was created by
plotting the negative logarithm of the p-value (−log10p) based on Fisher’s exact test on the y-axis
and the natural logarithm of the ROR (lnROR) on the x-axis. The red line on the y-axis represents
p = 0.001. In male patients, drugs with >1000 reports and those that are significant (p ≤ 0.001 based
on Fisher’s exact test) are included in the volcano plot. The color of the individual points represents
differences in the log of the number of reports for each drug. The gray plots indicate drugs with
p > 0.001 or <1000 reported cases. In this scatter plot, the signal is larger for the points (drugs) plotted
in the upper right corner. The line on the y-axis represents the total average. The blue-to-red colors
represent the number of times an adverse drug reaction was reported.

2.3. Prediction of MIEs Associated with Hiccups in Female Patients

There were 6268 reports of hiccup reversals in the data table for women. Crosstabula-
tion tables were created for each drug, and the p-values for Fisher’s exact test and the ROR
were calculated. Figure 3 presents a volcano plot of the key suspect drugs for hiccups in
female patients. There were 45 drugs with >1000 reports and those considered significant
(p ≤ 0.001 based on Fisher’s exact test) in female participants. Supplementary Materials Table S1
shows a list of 41 drugs, including the ATC names and classifications of the suspected
drugs. This file only lists important suspect drugs and drugs classified by the ATC system.
Therefore, there is a slight difference in the number of drugs used in the analysis. Based
on the univariate analysis using lnROR as the binary classification value for the objective
variable, the significant factors were antioxidant response element (ARE), CAR, and ARa.
Table 3 depicts the activity types and the results of both univariate and multivariate analy-
ses for each MIE. The results of the nominal logistic regression analysis were submitted to
the MIE, which showed significant results for the univariate analysis with the presence or
absence of hiccups as the objective variable. In the multivariate analysis, odds ratios were
used to confirm independent factors related to hiccups in female patients.
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Figure 3. Medicines associated with hiccups in female patients. This volcano plot was created by
plotting the negative logarithm of the p-value (−log10p) using Fisher’s exact test on the y-axis and the
natural logarithm of the ROR (lnROR) on the x-axis. The red line on the y-axis represents p = 0.001. In
female patients, drugs with >1000 reports and those considered significant (p ≤ 0.001 using Fisher’s
exact test) are included in the volcano plot. The color of the individual points represents differences
in the log of the number of reports for each drug. The gray plots indicate drugs with p > 0.001 or
with <1000 reported cases. In this scatter plot, the signal is larger for the points (drugs) plotted in the
upper right corner. The blue-to-red colors represent the number of times an adverse drug reaction
was reported.

Table 3. Univariate and multivariate analyses of MIEs associated with drug-induced hiccups in the
female group.

MIEs
Activity

Type

Univariate Analysis Multivariate Analysis
95% CI 95% CI

Odds
Ratio Lower Upper

p-Value
(Fisher’s

Exact Test)

Odds
Ratio Lower Upper

p-Value
(Likelihood
Ratio Test)

p-Value
(Wald Test)

ARE agonist 0.08 * 0.01 0.70 0.01 0.12 * 0.01 1.32 0.048 0.083
CAR antagonist 0.18 * 0.03 0.94 0.04 0.50 0.07 3.62 0.483 0.489

ARant agonist 0.20 * 0.05 0.88 0.05 0.24 0.04 1.20 0.073 0.080

ARE: antioxidant response element, CAR: constitutive androstane receptor, ARant: androgen receptor with
antagonist. *: indicates significant odds ratios in the univariate and multivariate analyses.

Figure 4 presents the results of the univariate analysis for the onset of hiccups and
activity of each MIE during drug treatment. By taking the negative value of the ordinary
logarithm of Fisher’s exact test on the vertical axis and the natural logarithm of the odds
ratio on the horizontal axis to create a scatter plot, the MIEs likely to be strongly associated
with the development of hiccups are indicated at the top. We visually confirmed that the
associated MIEs differed for men and women.
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3. Discussion

This study used data from the FAERS database, an adverse drug reaction database, to
identify the key suspected drugs causing hiccups. Furthermore, the association between
the suspected drugs and MIEs was investigated. To the best of our knowledge, there is
limited information on the mechanism of drug-induced hiccups, and no reports based on
adverse events reporting systems have revealed the mechanism of drug-induced hiccups.
In addition, this is the first study that aimed to examine the MIEs, especially NRs/SRs,
of drug-induced hiccups using Toxicity Predictor and the FAERS database. The Toxicity
Predictor can predict the agonist and antagonist activities of a drug in the MIE, which is the
starting point of action of an adverse effect. Previous reports have described methods for
evaluating the MIEs of adverse effects using Toxicity Predictor [13]. We believe that such
methods are reliable [16].

To investigate the association between each suspected drug and NRs/SPs, the objective
variable was a binary variable of lnROR > 0 (positive signal) or <0 (negative signal). A
method to identify prophylactic and therapeutic agents against side effects by focusing
on drugs with positive and negative signals is a method of drug repositioning and has
been attracting significant attention in recent years [17–19]. This study examined the
involvement of NRs/SPs in hiccups by comparing the MIE activities of drugs with positive
and negative signals for drug-induced hiccups.

The data used in this study were classified into the overall cohort and the male and
female subgroups. Drug-induced hiccups occur more frequently in men [6]. In our previous
study using the adverse drug reaction database, hiccups were also more common in men,
and the distinctions regarding the drugs suspected were noted between male and female
patients [11,12]. Based on these findings, our objective was to identify the differences in
NRs and SPs involved in the development of hiccups between male and female patients.



Pharmaceuticals 2024, 17, 379 8 of 15

The multivariate analysis identified the TGF-β agonist as an independent factor associated
with hiccups in the overall dataset. In the male subgroup, TGF-β was an independent
factor based on the univariate and multivariate analyses. In the female group, ARE was an
independent factor in the univariate and multivariate analyses.

To the best of our knowledge, this report is the first to explore the association between
drug-induced hiccups and TGF-β. Toxicity Predictor, a toxicity prediction program, centers
its predictions on the toxicity results of Tox21. To assess the cytotoxicity of a compound in
Tox21, the transduction process by which TGF-β binds to the TGF-β receptor and acts on
nuclear gene expression via the Smad protein is being monitored.

TGF-β is an important cytokine that maintains bodily homeostasis. It has been de-
tected in a broad array of tissues and organs and is known for its roles in inhibiting cell
proliferation and inducing cell differentiation and apoptosis in various cell types. In addi-
tion, TGF-β is involved in processes such as cell differentiation, migration, and adhesion.
Moreover, it plays significant roles in diverse mechanisms including ontogeny, tissue re-
modeling, wound healing, inflammation, immunity, and cancer invasion and metastasis.
TGF-β was identified in the cerebral spinal fluid of mice exhibiting exhaustion. Thus, its
use as a fatigue marker has gained attention [20].

TGF-β, which is ubiquitous and produced in several tissues and cells, is released in
an inactive, latent form (latent TGF-β) that cannot bind to receptors. It becomes activated
when in the vicinity of target cells where it transforms into its active form (active TGF-β)
that can bind to receptors and exert its effects. Astrocytes are known to be one of the major
cells producing and releasing TGF-β in the brain where GABA receptors are located, with
drug action and viral infection having been reported as facilitating factors [21,22]. Known
external factors that activate TGF-β include acids, alkalis, heat, reactive oxygen species,
vitamin A, vitamin D, anti-estrogens, bleomycin, and dexamethasone [23]. The TGF-β
family receptors have been categorized into the following three types: type I, type II, and
type III. Within the signaling pathway, ligand-bound type II receptors initiate the activation
of type I receptors via phosphorylation, followed by autophosphorylation. This process
activates and binds Smad2 and Smad3. After phosphorylation, Smad2/3 associates with
Smad4, leading to the translocation of this complex into the nucleus where it functions
as a transcription factor (Figure 5). The TGF-β/Smad signaling pathway is important
for regulating cell development and growth. Disruptions in this pathway have also been
significantly associated with tumor development [24].

In this study, TGF-β was identified as a novel factor implicated in the induction of
hiccups. Previous research has shown that drug-induced hiccups are more prevalent in
men and that there are sex differences in the drugs commonly implicated [12]. Based on
these findings, TGF-β was identified as an associated factor in both the overall dataset
and specifically in the male subgroup. This discovery could significantly enhance our
understanding of sex differences in hiccups. Moreover, hiccups are associated with GABA,
an inhibitory system neuron, with the GABA derivative baclofen used for treating hic-
cups [25]. TGF-β promotes the growth of dopamine nerves and regulates the GABAergic
nervous system. Although the exact intracellular mechanism of TGF-β is not completely
understood, some studies have revealed that Erk1/2 and GSK3β might increase GABAergic
neurotransmission by inhibiting the phosphorylation of gephyrin, a scaffolding protein
for the GABA receptor [26]. Hence, TGF-β can be associated with the onset of hiccups via
its influence on the GABAergic nervous system. Current evidence showing an association
between TGF-β and drug-induced hiccups is limited. Hence, it is considered a possible MIE
in the mechanistic understanding of hiccups. Ongoing research about the TGF-β signaling
pathway can further clarify its role in neurotransmission.
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Figure 5. TGF-β signaling and the GABA neurotransmission interaction. The TGF-β superfamily
interacts with receptors located on the plasma membrane. Upon binding with TGF-β, type 2 receptors
undergo phosphorylation and subsequently form a complex with type 1 receptors. Activation of this
receptor complex leads to the phosphorylation of Smad, an intracellular signaling molecule, which
then forms a complex. It has been hypothesized that the interaction of TGF-β with GABA receptors
may inhibit the phosphorylation of gephyrin, a scaffolding protein essential for GABA receptors,
thereby enhancing GABAergic neurotransmission. However, the specific details of this interaction
and its mechanisms remain significantly unexplored.

In the analysis of the female subgroup, ARE, one of the mechanisms associated with
protection against oxidative stress, was found to be a factor associated with hiccups. The
odds ratio (OR: 0.08 [0.01–0.70]) indicates a negative signal for drug-induced hiccups, which
may be associated with hiccup inhibition. The Tox21 program monitors ARE activation via
the Nrf2/antioxidant response signaling pathway to assess compound toxicity.

Nrf2-ARE is an important signaling pathway that regulates the expression of antioxi-
dant enzymes. In the cytosol, Nrf2 binds to Kelch-like ECH-associated protein 1 (KEAP1)
in the cytoplasm, and its activity remains low under normal physiological conditions [27].
When cells are exposed to oxidative stress, Nrf2 unbinds KEAP1 and moves into the nu-
cleus to bind with ARE (Figure 6). This promotes the transcription and expression of a
series of antioxidant enzymes, including heme oxygenase-1 (HO-1), superoxide dismutase
(SOD), and thioredoxin (Trx) [28].

Currently, there are no reports on hiccups and oxidative stress. However, drugs that
have been reported as important suspect drugs for hiccups (e.g., nicotine, dexamethasone,
and anticancer drugs) increase oxidative stress. Nicotine causes increased oxidative stress,
leading to greater neuronal apoptosis, DNA damage, reactive oxygen species, and lipid
peroxides. Nicotinic acetylcholine receptors (nAChRs) have been identified in tissues
other than those in the nervous system, and their effects on nicotinic receptors have been
associated with acute and chronic effects [29]. Glucocorticoid levels increase if the organism
is stressed, which is accompanied by an increase in free radicals. Dexamethasone ingestion
mimics the adverse effects of increased corticosterone in vivo [30]. These findings may



Pharmaceuticals 2024, 17, 379 10 of 15

explain why hiccups are associated with oxidative stress. The fact that the current study
showed the involvement of ARE in the inhibitory side of hiccups may also support an
association between hiccups and oxidative stress. We believe that ARE was an independent
factor only in the female subgroup because of sex differences regarding the suspected drug
for hiccups. Hence, future studies on oxidative stress and sex differences in antioxidant
mechanisms should be performed. Regarding the independence of factors in this subgroup
analysis, the results of the multiple logistic regression analysis showed that ARE had a
p-value of <0.05 based on the likelihood ratio test but not the Wald test (Table 3). As a
possible cause for the uncertainty of the results, the small number of female patients used
in this analysis might have affected the test. It is necessary to wait for the accumulation
cases involving female patients to corroborate the current results and ensure the validity of
the discussion.
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The results of the current study indicated that should pathways related to NRs and
SPs be associated with the induction of hiccups, the mechanism of their development
may differ between men and women (Figure 4). However, given the clear sex differences
in drug-induced hiccups, some sex hormone receptor involvement in the mechanism
underlying the onset of drug-induced hiccups can be expected. The NR activities we
used to predict hiccups included the agonist and antagonist activities of the androgen and
estrogen receptors. However, no significant correlation had been observed between these
activities and the induction of hiccups. The limited number of reports on hiccups compared
with other side effects may explain why no relationship between sex hormone receptors
and hiccups could be detected.

Another study on TGF-β and sex differences observed a difference in gene expression
in the lens of male and female rats with cataract formations induced by TGF-β [31]. The
mentioned report suggests that sex differences may be associated with the expression and
activation of TGF-β. Given that reports on sex differences in TGF-β in humans are limited,
future studies need to examine these sex differences in more detail.
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4. Materials and Methods
4.1. Database Information

This study used data from the FAERS database. The FAERS is a large database of infor-
mation on adverse drug events collected from all regions globally. In total, 14,836,467 cases
reported between 1 January 2004 and 31 March 2022 were downloaded from the FDA
website [32]. Figure 7 shows the procedure for creating the data tables.
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Figure 7. Data analysis table. The FAERS data used in this study comprised five tables: demographic
characteristics of the patients and management information (DEMO), drug and biological information
on reported adverse events (DRUG), and Medical Dictionary for Regulatory Activities (MedDRA)
terminology coding adverse events (REAC). Duplicate data were removed from each table. The
DRUG and REAC tables were incorporated into the DEMO table using the primary ID. This table
was defined as the data table for analysis. All patient data contained in the DEMO table were used.
Using this data table for analysis, the male and female subgroups were created.

4.2. Definitions of Adverse Events and Suspected Drugs

The International Council for Harmonization of Technical Requirements for Pharma-
ceuticals for Human Use developed MedDRA [33] as a repository of medical terminology
for symptoms, signs, and diseases. In this study, hiccups were treated as a common term for
adverse drug reactions. According to the adverse drug reaction reported, the drugs listed
in the FAERS database are classified as primary, secondary, concomitant, and interacting
drugs. In this study, all drugs were treated as suspected drugs.

4.3. Extraction of Drugs Suspected of Causing Hiccups

The drugs suspected to induce hiccups vary widely according to sex [11,12]. Thus, the
overall analysis data table and subgroup tables divided based on sex were used to extract
the suspected drugs (Figure 7). For the subgroup analysis, cases of unknown gender were
excluded. The number of “hiccups” reported as adverse effects for each drug was calculated
as the presence of hiccups. In each group, cross-tabulations were performed based on
two categories (the presence/absence of hiccups and the presence/absence of the suspect
drug) to calculate the ROR, and any significant result was evaluated using Fisher’s exact
test (Table 4). Supplementary Materials Table S1 shows the p-values, ROR, and number of
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reports for each drug. A scatterplot (volcano plot) was then created by plotting the negative
log of the p-value from Fisher’s exact test for each group on the y-axis and the natural log of
the ROR (lnROR) on the x-axis. The drugs with a p-value of <0.001 based on Fisher’s exact
test and with an ROR of >1 were suspected to cause hiccups. Supplementary Materials
Table S1 shows the list of important suspected drugs and their ATC classification, which
were divided according to the overall population and sex-specific subgroups.

ROR =
n11/n12

n21/n22
=

n11 · n22

n12 · n21

Table 4. Crosstabulation and formula for the reported odds ratios (RORs) of hiccups.

Hiccups Other Adverse Events

Suspected drugs n11 n12

Other drugs n21 n22

4.4. MIE Activity Prediction Using Toxicity Predictor

Toxicity Predictor [34] is a web-based application developed and operated by Meiji
Pharmaceutical University. In this study, it was used to explore the AOPs of drug-induced
hiccups. Furthermore, Toxicity Predictor, which was developed as part of the Drug Discov-
ery Information System Development Project of the Japan Agency for Medical Research
and Development, can convert molecular structures obtained from input files into three-
dimensional (3D) structures. In addition, it is a quantitative structure–activity relationship
(QSAR) model-based toxicity prediction system that can evaluate agonist and antagonist
activity against 56 MIEs. QSAR is a machine-learning algorithm that can learn mathe-
matical associations between the chemical structure of a molecule and its biological or
chemical activity to create a predictive model. MIE 3D structures and predicted results can
be downloaded in the SDF and CSV formats, respectively [16].

To predict MIE activity using Toxicity Predictor, the simplified molecular-input line-
entry system was combined for each drug in each table. Using the Toxicity Predictor, the
agonist and antagonist activity (MIE activity) of drugs targeting NRs and SPs for each
group was calculated. The cutoff values for the predicted MIE activity were determined
using the Youden method. The calculated MIE activities were normalized to establish a
cutoff value of 0.5. Thus, the predicted labels of compounds with normalized predicted
values of >0.5 were assigned a value of 1. Meanwhile, those with predicted values of <0.5
were assigned a value of 0. Supplementary Materials Table S2 depicts the predicted values.

4.5. MIEs Associated with Hiccups

In each data table for the overall population and for the male and female subgroups,
only the drugs suspected to be associated with hiccups were extracted. The selection
criteria included the presence of at least 1000 adverse event reports and a p-value of ≤ 0.05,
as determined using Fisher’s exact test. The objective variable was a binary variable
with an lnROR of >0 or lnROR of <0. Univariate analysis was performed using the MIE
activity (1-0) of each drug as the explanatory variable. In addition, to extract independent
risk factors for each factor, logistic regression analysis was performed with lnROR as the
objective variable and NRs and SPs, which were significant in the univariate analysis,
as explanatory variables.

4.6. Statistical Analysis

In this study, the objective variable was the binary classification of the ROR (lnROR ≥ 0,
lnROR < 0). Hence, the ROR of a drug is significantly higher for a given adverse effect. For
example, the adverse event is more likely to occur in other drugs. The explanatory variables
were the probability for MIE activity calculated using Toxicity Predictor, normalized to



Pharmaceuticals 2024, 17, 379 13 of 15

a cutoff value of 0.5, and binary classified values. Univariate analysis was conducted to
evaluate the NRs and SPs associated with hiccups. If the result of Fisher’s exact test was
significant in the positive direction, it was considered a factor associated with the induction
of hiccups. In contrast, if the result of Fisher’s exact test was significant in the negative
direction, it was a factor related to the inhibition of hiccup induction. Using MIEs that
were significant in the univariate analysis, a multivariate analysis was performed to extract
independent risk factors for hiccup inversions. The likelihood ratio test and the Wald
test were used to evaluate the independence of each factor. The significance level was set
at p < 0.05. The pairwise method was used to evaluate internal correlation. An internal
correlation was considered to exist if the Spearman’s rank-order correlation coefficient
[ρ2] was >0.9. In this study, no internal correlation was found, and each factor was treated
as independent. All analyses were performed using JMP Pro 17 software (SAS Institute
Inc., Cary, NC, USA).

4.7. Limitation

This study is entirely database based. Therefore, it has several limitations. The
NR activity values used in this study were predicted using the QSAR and may differ
from the activity values obtained experimentally. To compare the actual and predicted
values, drugs with >5000 reported cases and ROR > 1 were selected among the key sus-
pect drugs. For TGF-β and ARE, the presence or absence of activity by actual values
(Positive (1)/Negative (0)) and the presence or absence of activity by predicted values were
compared (Supplementary Materials Table S3). For ARE, only 2 of the 14 drugs available
for comparison had different results. For TGF-β, all results were the same. Although these
findings suggest that the accuracy of the predictions is reliable, it should be noted that
some results differ and are based on predicted values.

The FAERS, the other database used in this study, which comprises a spontaneous
report of adverse drug reactions, is particularly useful for detecting rare and serious adverse
drug reactions. Moreover, it is an important source of information for evaluating the safety
of drugs. In particular, the FAERS database has a stronger reporting bias because it includes
cases in which patients who have taken the drug are enrolled as reporters [35]. In addition,
the presence of drugs that have already been found to be associated with adverse events
may affect the occurrence of adverse drug event-associated signals [36].

In this study, the number of reports and the p-value obtained using the exact test were
examined along with the ROR obtained via univariate analysis when detecting the signal,
thereby avoiding a simple comparison of RORs and treating them semiquantitatively. This
strategy was based on the hypothesis that a signal detection indicator considered highly
significant based on the number of reports and p-values would have excellent reliability [12].
Additionally, the number of adverse drug reaction reports varies depending on when the
drug was launched. If the number of drug reports is low, the OR may be unreliable. To
minimize the impact of the number of drug reports available, our analysis only included
situations with >1000 reports of adverse drug reactions. Evaluation of drugs new to the
market should be performed with caution until more reports become available.

5. Conclusions

The FAERS database was used to examine the association between NRs and SPs as well
as drug-induced hiccups. We successfully extracted MIEs associated with drug-induced
hiccups. Current case reports have reported on hiccups. However, to the best of our
knowledge, this report is the first to consider the pathogenesis of hiccups. This method
can be applied to other adverse drug reactions, and it may be useful for elucidating the
mechanism of adverse drug events.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ph17030379/s1, Table S1: The suspected drug list and ATC classification;
Table S2: The MIE activity using QSAR Toxicity Predictor; Table S3: Comparison of MIE activity
determination using actual values with activity determination using predicted values.

https://www.mdpi.com/article/10.3390/ph17030379/s1
https://www.mdpi.com/article/10.3390/ph17030379/s1
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