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Abstract: Metformin is a synthetic biguanide used as an antidiabetic drug in type 2 diabetes mellitus,
achieved by studying the bioactive metabolites of Galega officinalis L. It is also used off-label for various
other diseases, such as subclinical diabetes, obesity, polycystic ovary syndrome, etc. In addition,
metformin is proposed as an add-on therapy for several conditions, including autoimmune diseases,
neurodegenerative diseases, and cancer. Although metformin has been used for many decades, it
is still the subject of many pharmacodynamic and pharmacokinetic studies in light of its extensive
use. Metformin acts at the mitochondrial level by inhibiting the respiratory chain, thus increasing
the AMP/ATP ratio and, subsequently, activating the AMP-activated protein kinase. However,
several other mechanisms have been proposed, including binding to presenilin enhancer 2, increasing
GLP1 release, and modification of microRNA expression. Regarding its pharmacokinetics, after oral
administration, metformin is absorbed, distributed, and eliminated, mainly through the renal route,
using transporters for cationic solutes, since it exists as an ionic molecule at physiological pH. In this
review, particular consideration has been paid to literature data from the last 10 years, deepening the
study of clinical trials inherent to new uses of metformin, the differences in effectiveness and safety
observed between the sexes, and the unwanted side effects. For this last objective, metformin safety
was also evaluated using both VigiBase and EudraVigilance, respectively, the WHO and European
databases of the reported adverse drug reactions, to assess the extent of metformin side effects in
real-life use.

Keywords: AMPK; miRNA; antidiabetic drugs; ADRs; sex differences; ADMET; pharmacovigilance;
T2DM

1. Introduction

Metformin (1,1-dimethylbiguanide) is a low-molecular-weight compound derived
from guanidine, which exists in the human body as a cationic molecule (Figure 1). It was
synthesized based on the chemical structure of guanidine derivatives extracted from the
European medicinal plant Galega officinalis L. (Fabaceae), which has been used for cu-
rative purposes since the Middle Ages [1,2]. Various documents attest that as early as
the XVIII century, herbal preparations containing the aerial flowering parts of galega were
recommended for people affected by persistent thirst and frequent urine emissions, charac-
teristic symptoms of diabetes mellitus (DM) [2]. Subsequently, guanidine and its natural
derivative, galegine, were investigated as antidiabetic drugs, demonstrating not only hy-
poglycemic effects but also some toxicity [2]. In 1922, metformin was first synthesized by
Werner and Bell, but it was only later recognized as a hypoglycemic drug [3]. It appears
now curious that in the 1950s metformin was used to treat influenza and malaria, con-
sidering the antihyperglycemic action a side effect [4,5]. Indeed, only many years later,
metformin was approved as an antidiabetic drug in European countries and later in many
other states [6]. In 2011, the World Health Organization included metformin among the
essential drugs for humanity, and, as such, it is still considered [2,7,8].
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Figure 1. The natural compounds guanidine and galegine recognized in Galega officinalis and the 
synthetic derivative metformin that is mainly used in the treatment of type 2 diabetes mellitus. 
Chemical structures were drawn using ACD/ChemSketch 2023.2.1 software. 

Its effectiveness as an antidiabetic drug was recognized worldwide in 1998 thanks to 
the “United Kingdom Prospective Diabetes Study” (UKPDS 34), which showed that in-
tensive glycemic control with metformin reduced cardiovascular mortality and increased 
survival of 342 overweight and obese type 2 diabetic subjects to a greater extent compared 
to sulfonylureas (542 subjects) or insulin (409 subjects) [9]. Afterward, other clinical stud-
ies confirmed the antidiabetic efficacy of metformin and its usefulness in reducing cardi-
ovascular complications related to uncontrolled hyperglycemia. Among these, a retro-
spective study published in 2005 by Johnson et al. demonstrated that treatment with met-
formin alone, or in combination with sulfonylureas, can reduce the risk of cardiovascular-
related non-fatal and fatal events compared to patients treated with a sulfonylurea alone 
[10]. In 2008, Holman et al. published data from monitoring subjects who had been en-
rolled in the UKPDS for over 10 years. This study showed that metformin treatment of 
obese diabetic subjects led to a 21% reduction in diabetes-related conditions, a 33% reduc-
tion in myocardial infarction, and a 27% reduction in all-cause mortality [11]. Likewise, 
the efficacy of the drug in non-obese subjects was confirmed by a retrospective observa-
tional study by Ong and colleagues published in 2006, involving normal-weight or over-
weight subjects [12]. Lastly, in a meta-analysis based on 35 clinical trials, metformin mon-
otherapy (15 trials that included 2424 subjects) showed a reduction in glycated hemoglo-
bin (HbA1c) levels of 1.12% (95% CI 0.92–1.32, p < 0.00001) compared to placebo, no treat-
ment, or only diet [13].  

The effectiveness of metformin in glycemic control and preventing cardiovascular 
diseases is widely evidenced, however, new antidiabetic drugs have been developed in 
recent times, offering themselves as possible therapeutic alternatives. Among these, the 
main contemporary classes in use include the glucagon-like peptide 1 (GLP1) agonists, 
the dipeptidyl peptidase-4 (DPP4) inhibitors (known as gliptins), and the sodium–glucose 
cotransporter 2 (SGLT2) inhibitors (known as gliflozins) [14,15]. Even so, metformin re-
mains one of the most prescribed drugs for the treatment of type 2 diabetes mellitus 
(T2DM) either alone or in association with other antidiabetic drugs [16,17]. This primacy 
is due to its therapeutic efficacy, reduced serious side effects, such as hypoglycemic crises, 
and low cost. However, the new guidelines of the European Society of Cardiology indicate 
that metformin is the first choice drug in patients without overt cardiovascular events, 
without heart failure (HF), and with preserved kidney function (eGFR ≥ 60 mL/min) [18]. 
Similarly, in the American Diabetes Association (ADA) Guidelines 2024, metformin no 
longer appears as the first-choice drug in all antidiabetic treatments, since it has been in-
dicated as a second-line therapy in patients with a high risk for cardiovascular diseases or 
overt heart and kidney diseases [19,20]. In detail, in diabetic patients with previous cardi-
ovascular events without HF, metformin is considered the first-choice drug, as well as the 
analogues of GLP1 and SGLT2 inhibitors, while in patients with HF, the first-line drugs 
are now the inhibitors of SGLT2, while metformin and the GLP1 receptor agonists are the 
second-line drugs [18]. Therefore, the predominance of metformin is partially weakened 
by the newly introduced drugs on the pharmaceutical market. However, metformin 
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synthetic derivative metformin that is mainly used in the treatment of type 2 diabetes mellitus.
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Its effectiveness as an antidiabetic drug was recognized worldwide in 1998 thanks
to the “United Kingdom Prospective Diabetes Study” (UKPDS 34), which showed that
intensive glycemic control with metformin reduced cardiovascular mortality and increased
survival of 342 overweight and obese type 2 diabetic subjects to a greater extent compared
to sulfonylureas (542 subjects) or insulin (409 subjects) [9]. Afterward, other clinical studies
confirmed the antidiabetic efficacy of metformin and its usefulness in reducing cardiovas-
cular complications related to uncontrolled hyperglycemia. Among these, a retrospective
study published in 2005 by Johnson et al. demonstrated that treatment with metformin
alone, or in combination with sulfonylureas, can reduce the risk of cardiovascular-related
non-fatal and fatal events compared to patients treated with a sulfonylurea alone [10].
In 2008, Holman et al. published data from monitoring subjects who had been enrolled
in the UKPDS for over 10 years. This study showed that metformin treatment of obese
diabetic subjects led to a 21% reduction in diabetes-related conditions, a 33% reduction
in myocardial infarction, and a 27% reduction in all-cause mortality [11]. Likewise, the
efficacy of the drug in non-obese subjects was confirmed by a retrospective observational
study by Ong and colleagues published in 2006, involving normal-weight or overweight
subjects [12]. Lastly, in a meta-analysis based on 35 clinical trials, metformin monotherapy
(15 trials that included 2424 subjects) showed a reduction in glycated hemoglobin (HbA1c)
levels of 1.12% (95% CI 0.92–1.32, p < 0.00001) compared to placebo, no treatment, or
only diet [13].

The effectiveness of metformin in glycemic control and preventing cardiovascular
diseases is widely evidenced, however, new antidiabetic drugs have been developed in
recent times, offering themselves as possible therapeutic alternatives. Among these, the
main contemporary classes in use include the glucagon-like peptide 1 (GLP1) agonists,
the dipeptidyl peptidase-4 (DPP4) inhibitors (known as gliptins), and the sodium–glucose
cotransporter 2 (SGLT2) inhibitors (known as gliflozins) [14,15]. Even so, metformin
remains one of the most prescribed drugs for the treatment of type 2 diabetes mellitus
(T2DM) either alone or in association with other antidiabetic drugs [16,17]. This primacy is
due to its therapeutic efficacy, reduced serious side effects, such as hypoglycemic crises,
and low cost. However, the new guidelines of the European Society of Cardiology indicate
that metformin is the first choice drug in patients without overt cardiovascular events,
without heart failure (HF), and with preserved kidney function (eGFR ≥ 60 mL/min) [18].
Similarly, in the American Diabetes Association (ADA) Guidelines 2024, metformin no
longer appears as the first-choice drug in all antidiabetic treatments, since it has been
indicated as a second-line therapy in patients with a high risk for cardiovascular diseases
or overt heart and kidney diseases [19,20]. In detail, in diabetic patients with previous
cardiovascular events without HF, metformin is considered the first-choice drug, as well as
the analogues of GLP1 and SGLT2 inhibitors, while in patients with HF, the first-line drugs
are now the inhibitors of SGLT2, while metformin and the GLP1 receptor agonists are the
second-line drugs [18]. Therefore, the predominance of metformin is partially weakened by
the newly introduced drugs on the pharmaceutical market. However, metformin retains its
status for its wide use in T2DM and also for several off-label uses, such as impaired glucose
tolerance, obesity, and polycystic ovary syndrome [21,22].
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The main purpose of this review was to point out the data published in the last
10 years concerning the effectiveness and undesirable effects of metformin in its real-world
use, also by using VigiBase and EudraVigilance, respectively, the WHO and European
databases of the reported adverse drug reactions (ADRs) [23,24]. Its pharmacokinetics and
several off-label clinical uses have also been considered. Attention was paid to the potential
differences in efficacy and side effects reported in women compared to men in the clinical
use of metformin.

2. Results
2.1. Pharmacodynamics: Pharmacological Targets

Metformin is an insulin sensitizer as it improves the tissue response to insulin, act-
ing mainly in the liver, muscles, and adipose tissue [25,26]. It decreases glycemia in
T2DM subjects by reducing insulin levels, mainly by decreasing liver gluconeogenesis and
glycogenolysis [26,27]. Blood glucose levels are reduced both after meal and in fasting
conditions, resulting in a decrease in HbA1c, as reported in several clinical trials [11,13].
Its antihyperglycemic effect does not emerge if no insulin secretion occurs [28]. Of interest,
metformin treatment is accompanied by a moderate reduction in body weight (3–4 kg) of
the subjects and, in the long-term use, by a decrease in cardiovascular risk with favorable
effects on vascular endothelium and antioxidant and anti-inflammatory actions [29,30].
A recent study of sex differences of metformin antihyperglycemic effect was evaluated in
Chinese subjects treated for 24 and 48 weeks with this drug, showing a similar reduction in
HbA1c between females and males [31].

The pharmacological mechanisms by which metformin reduces blood glucose con-
centration and exerts tissue-protective effects are still under investigation, increasing the
emphasis on its role as an interesting multitarget agent [32,33]. Furthermore, several authors
have attributed additional therapeutic properties, including antiviral, anti-inflammatory,
immunomodulatory, antitumor, and protective effects on lung and pancreatic tissues [34].
In fact, patients with a recent diagnosis of T2DM have a chronic inflammatory state, evi-
denced by increased levels of IL-6, TNF-α, IL-1β, IL-2 cytokines, and ferritin, which are
curtailed after one year of metformin treatment [35].

Evidence obtained from various experimental models suggests that metformin may
have different mechanisms of action, particularly when administered at low doses rather
than high doses [36,37]. It is generally accepted that metformin acts at the intracellular level
by inhibiting mitochondrial respiratory chain complex-1 and regulating cellular energy
metabolism, even at supra-pharmacological doses (~1 mM) [27,38,39]. This inhibition
can result in an increase in the AMP/ATP ratio and, consequently, the stimulation of
AMP-activated protein kinase (AMPK), which plays an important role as a cell regulator of
lipid and glucose metabolisms [39,40]. The ability to control cellular metabolism, leading
to a situation of relative “energy poverty”, can also explain many of the pleiotropic effects
of metformin related to a reduction in energy availability. Its action could be at least in part
similar to that induced by intermittent fasting, which can prevent age-related mitochondrial
decline and also increase fatty acid oxidation [41–43].

Numerous studies in experimental models of diabetic animals and diabetic or obese
human subjects have shown that in insulin resistance there is a significant decrease in
glucose uptake by glucose transporter 4 (GLUT4) [44–50]. Effectively, metformin increases
insulin-dependent glucose uptake in skeletal muscle and adipose tissue by GLUT4 [51,52].

Of interest, recent research has shown that a molecular target of metformin is prese-
nilin enhancer 2 (PEN2), which interacts with the lysosomal glucose-sensing pathway to
activate AMPK, resulting in benefits similar to those generated by fasting [37]. Further-
more, these authors showed by isothermal calorimetry and surface plasmon resonance
measurements that the KD for the metformin–PEN2 interaction is 1.7 and 0.15 µmol/L,
which are values consistent with the intracellular concentration of the drug reached in vivo
in therapeutic use [37]. However, other molecular mechanisms of metformin that are
AMPK-independent have been reported to be related to the oxygen consumption rate,
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tumor suppression, and blocking important pathways such as mTOR [36]. It has also
been suggested that the hypoglycemic effect is in part due to a gut-mediated mechanism
mediated by increased secretion of GLP1 and peptide YY (PYY) through the intestinal
AMPK-dependent pathway [53]. Furthermore, it has also been reported that the increase
in GLP1 is due to an inhibition of the enzyme DPP4, which can also regulate the peptide
YY level, causing a reduction in food intake and an increase in satiety [54–56]. Recently,
Wang and colleagues have highlighted the existence of a DPP4 enzyme produced by the
intestinal microbiota that metabolizes human GLP1, which is potentially active in cases
of impaired intestinal permeability due to inflammation, as occurs in DM [57]. Moreover,
several authors have described that metformin changes the intestinal microbiota while also
decreasing glucose absorption [57–62]. Therefore, the hypoglycemic action of metformin
may also be mediated by intestinal-dependent mechanisms, which could vary depending
on microbiota phenotype [63]. Inhibition of IL-6 mediated signaling by decreasing the
expression of its receptor at the transcription level via AMPK, mTOR, and miR-34a is one
of the newer mechanisms that suggest metformin as a potential treatment for multiple
myeloma [64]. MicroRNAs (miRNAs or miR) are small, single-stranded, non-protein-
coding RNAs that regulate gene expression post-transcriptionally by degrading target
mRNA when there is a perfect match or by inhibiting translation when there is imperfect
complementarity [65]. Different miRNAs can promote or inhibit DM complications [66].
Several authors have explored circulating miRNAs in T2DM compared to healthy sub-
jects, suggesting that specific miRNAs might serve as biomarkers for early diagnosis of
T2DM [66–68]. Various studies have also shown changes in miRNA expression in subjects
treated with metformin [69–71]. A study with 47 patients (20 women and 27 men) with
T2DM showed that a total of 13 miRNAs, such as miR-let-7e-5p, let-7f-5p, miR-21-5p,
miR-24-3p, miR-26b-5p, miR-126-5p, miR-129-5p, miR-130b-3p, miR-146a-5p, miR-148a-3p,
miR-152-3p, miR-194-5p, and miR-99a-5p, were significantly negatively regulated after a
three-month treatment with metformin, while the other 73 miRNAs were not altered [69].
Specifically, metformin significantly altered the expression of miR-148a-3p and miR-194-5p
(p < 0.007), potentially affecting the NF-kB and Wnt signaling pathways [69]. Furthermore,
metformin can up-regulate miRNA-185-5p expression to suppress glucose-6-phosphatase
(G6Pase) and inhibit liver gluconeogenesis, reducing fasting blood glucose levels [72].
Although there are various studies aimed at identifying the effects of metformin on miRNA
expression, the currently available data do not allow for definite conclusions, thus, further
investigations are required involving a larger number of subjects treated with fixed doses
of the drug.

2.2. Pharmacokinetics: Absorption, Distribution, Metabolism, and Excretion (ADME)

Metformin hydrochloride is administered orally along with meals in doses ranging
from 500 to 3000 mg per day, subdivided into two or three times (Figure 2). It has a dose-
dependent antihyperglycemic effect [73–75]. It is also prescribed for children aged at least
10 years. The pharmacokinetics of metformin have been reported to be similar in women
and men, considering the weight differences between the sexes [76].

To limit the occurrence of gastric and intestinal disorders, namely, nausea and diarrhea,
a low initial dose (500 mg, once or twice per day) is administered, and, after 10–15 days,
the dose is increased to obtain the target glycemic control (maintenance dose) [15,77].
Furthermore, it has been observed that taking it during or immediately after meals can help
reduce the typical gastrointestinal side effects [77]. More recently, various types of delayed-
release formulations have been marketed that allow a single evening administration and,
potentially, even fewer gastrointestinal disorders [78–80]. However, comparative clinical
studies between immediate-release and controlled-release formulations are rather limited
and difficult to interpret for the different dosages used, the treatment period, and the
different number of subjects enrolled [78,81].
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Due to its basic hydrophilic nature, the absorption of metformin by simple diffusion
through the intestinal mucosa would be extremely low and unsuitable for therapeutic
use. In fact, absorption is dose-dependent and occurs through an active and saturable
process by means of membrane proteins (transporters) [82]. Thus, after oral administration,
about 40–60% of metformin is absorbed primarily in the proximal small intestine (duode-
num) through the plasma membrane monoamine transporter (PMAT or SLC29A4) and
the organic cation transporters 1 and 3 (OCT1 and 3 or SLC22A1 and 3) [82–84]. The drug
is eliminated through urine via glomerular filtration and tubular secretion, without enzy-
matic biotransformation, in its unchanged form [85,86]. A fecal excretion of an unabsorbed
fraction (20–30%) is reported [85].

Since metformin exists mostly as a cation in the human organism at the physiological
pH, the distribution and renal excretion are also mediated by endogenous transporters, such
as OCT1, 2, and 3; PMAT; multidrug and toxin extrusion transporters 1 and 2 (MATE 1 and 2
or SLC47A1 and 2); carnitine/organic cation transporter (OCTN1or SLC22A4); serotonin
reuptake transporter (SERT); and thiamine transporter 2 (THTR2 or SLC19A3) [83,87]. Mainly,
the OCT1 transporter is expressed at the intestinal level, controlling oral absorption, while
OCT1 and 2 regulate renal clearance, respectively, at the luminal and basolateral sides of the
proximal and distal tubules [88]. A more detailed description of the transporters involved
in metformin life in the human organism is provided in previous reviews [83,88,89]. As is
known, the protein transporters involved are expressed differently in human tissues and
have high genetic polymorphism, generating wide inter-individual variability in metformin
pharmacokinetics, explaining the range of dosage and different antidiabetic effective-
ness [87,88,90]. The detected Cmax is around 1 µg/mL, and, in general, the optimal plasma
concentration should be less than 2 µg/mL, whereas concentrations greater than 5 µg/mL
are considered unsafe due to the increased risk of severe adverse effects, such as lactic acido-
sis [87,91,92]. However, several authors reported blood concentrations of up to 80 µg/mL
in subjects treated with metformin, showing high variability in the pharmacokinetics of this
drug [93]. Aging is known to lead to a progressive decline in renal function, which can re-
sult in an increase in metformin blood concentration that may require a dose reduction [94].
A recent meta-analysis of 14 clinical trials (408 subjects) shows that food intake reduces
Cmax by 40% and delays it by ~29%, decreasing the area under the curve by ~28% [95].
In particular, a diet rich in fat and high in calories can significantly decrease the amount
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and rate of absorption [95]. Metformin binds marginally to plasma proteins, while it is
found within erythrocytes, which form a secondary distribution compartment [82,85,93,96].
The apparent volume of distribution is between 63 and 276 L, while the terminal half-life
(t1/2) is 4.0–8.7 h [97,98]. Metformin can cross the human placenta and is detectable in small
amounts in breast milk with a milk-to-plasma ratio between 0.35 and 0.71 [99]. Its renal
clearance is ~510 ± 120 mL/min, and its half-life is approximately 5 h [82]. When renal
function is impaired, renal clearance decreases proportionally with creatinine clearance,
thus prolonging the half-life and increasing the plasma concentration. For this, metformin
use is contraindicated when the estimated glomerular filtration rate (eGFR) is less than
30 mL/min/1.73 m2 [100].

2.3. Metformin and Vascular Diseases

The macro- and microvascular complications caused by hyperglycemia are widely de-
scribed in the literature and are also identified as panvascular diabetic disease (PVDD) [101–103].
In fact, macro- and microvascular complications can coexist, appearing in specific organ
damage according to the characteristics of diabetic patients and resulting in several dif-
ferent diseases, such as heart failure, stroke, peripheral vascular disease, chronic kidney
disease, diabetic retinopathy, and autonomic neuropathy [104–106]. Metformin, in addition
to its proven hypoglycemic action, has the potential to reduce hyperinsulinemia, which is a
factor that can worsen metabolic disorders such as hyperlipidemia and endothelial dysfunc-
tion [107]. This may provide greater cardiovascular protection than insulin secretagogues
such as sulfonylureas and glinides, which raise insulin levels [108,109]. The “2022 Chi-
nese Expert Consensus on Risk Assessment and Management of Panvascular Disease in
Patients with T2DM” recommends metformin alone, or in combination with GLP1 receptor
agonists or SGLT2 inhibitors, as a first-line hypoglycemic agent in the absence of explicit
contraindications [110]. Moreover, the ADA Guidelines 2024 indicate the role of GLP1
agonists and SGLT2 inhibitors in the treatment of atherosclerotic cardiovascular diseases,
including peripheral artery disease (PAD) [20].

Several in vitro and in vivo studies have shown that metformin plays a protective
role against endothelial dysfunction, protecting vasodilation and decreasing inflammation
and oxidative damage [111–114]. Numerous studies have found that women are more
susceptible to PAD than men, and women affected by diabetes have an increased risk
of developing symptomatic PAD [115–117]. Furthermore, patients with DM and PAD
are more likely to develop ischemic ulcers or gangrene, also leading to “diabetic foot”,
than non-diabetic subjects [118,119]. Notably, poor glycemic control is an independent
risk factor for PAD [120]. It has recently been observed that the prevalence of PAD is
the same in both sexes in high-income countries, while it is more recurrent in women in
low- and middle-income countries, especially in younger subjects [121]. Furthermore, DM
causes higher all-cause mortality in women than in men due to cardiovascular diseases
with more manifest endothelial dysfunction than diabetic males [122,123]. A few clinical
studies have been planned to evaluate the efficacy of metformin in PAD, and enrolled
subjects are generally treated with other drugs, such as antiplatelets, statins, and antihyper-
tensives. For this reason, the effective role of this drug in the progression of PAD is still
unclear. In patients undergoing revascularization for chronic ischemia of the limbs, Khan
and colleagues showed that subjects treated with metformin (n = 147) had a significant
improvement in survival at 60 months compared to those treated with insulin (n = 216)
or other oral antihyperglycemic drugs (n = 196). However, unfortunately, there was no
significant improvement in patency rates or limb salvage after endovascular reperfusion
interventions [124]. A prospective study that enrolled 100 T2DM subjects with PAD after
a 12-month follow-up showed the effectiveness of metformin in reducing adverse limb
events, suggesting the usefulness of the drug in these patients [125]. Therefore, to deter-
mine whether metformin can play a role in symptomatic PAD, regardless of antidiabetic
action, a prospective study, compared to placebo, is ongoing in non-diabetic subjects with
intermittent claudication, called “Metformin BenefIts Lower Extremities with Intermittent
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Claudication” (MOBILE IC trial) [126]. The expected date for a first analysis of the results
has been set for 2026 [108].

2.4. Metformin and Brain

Metformin can cross the blood–brain barrier and reach a significant concentration
in the central nervous system (CNS), causing pleiotropic effects [127]. Although the data
obtained are not always consistent, several studies have suggested the use of metformin
in various diseases that affect SNC [128,129]. In male and female mice with spinal cord
injuries, 200 mg/kg metformin administered subcutaneously for 14 days increased oligo-
dendrogenesis in both sexes [130]. Additionally, it increased the activation of neural stem
and progenitor cells in females and reduced the activation of microglia in males [130].
The neurogenesis and oligodendrogenesis induced by metformin were caused by its action
on atypical protein kinase C (aPKC)-mediated phosphorylation of the CREB-binding pro-
tein (CBP) [131–133]. Other authors also suggested that metformin has anti-inflammatory
effects in injured brains, reducing microglia activation via the NF-κB-MAPK signaling
pathway [134]. An additional molecular pathway has been reported suggesting activation
of Ser/Thr kinase partitioning defective 1 (Par1)/MARK, which is a downstream target of
tumor suppressor kinase B1 (LKB1) [135].

Cerebral amyloid angiopathy (CAA) often leads to senile dementia and cerebral lobar
hemorrhages and is commonly identified in subjects with Alzheimer’s disease (AD) [136].
Numerous epidemiological studies have demonstrated that individuals with T2DM have
a significantly higher probability of developing AD [137,138]. In APP23-ob/ob mice, a
model of CAA and T2DM, metformin (350 mg/kg daily) administered for about 14 months
reduced the number of cerebral blood vessels with amyloid β deposits, increasing the
insulin-degrading enzyme (insulysin) [136]. However, there are conflicting data on the
development of the effect of metformin on the amyloidosis typical of AD. A protective
effect due to a decrease in amyloid secretion, generally described as an AMPK-independent
pathway, has been reported [139]. However, an increase in amyloid-β formation with
higher doses via AMPK activation has also been described, which may exacerbate the
pathogenesis of AD [140–142].

The population-based “Singapore Longitudinal Aging Study”, which evaluated
365 subjects with T2DM, aged 55 years and older, who were followed for at least 4 years and
treated with metformin compared to placebo, showed a significant inverse association with
cognitive impairment in cross-sectional and longitudinal analyses, reporting significant
protection after 6 years of metformin therapy [143]. A crossover double-blind RCT was
carried out on 24 survivors of pediatric brain tumors who received cranial radiation [144].
With the idea that metformin can increase NPCs and repair brain damage, the authors
administered metformin (1000 mg/m2 orally, twice daily for 12 weeks), showing enhanced
performance in declarative and working memory tests [144]. Given the small number of
enrolled subjects, even if the results obtained are promising, they certainly need to be vali-
dated in a larger number of subjects through further RCTs. It should be noted that a recent
meta-analysis of 19 RCTs that explored the risk of cognitive dysfunction, dementia, AD, or
Parkinson’s disease (PD), considering a total of 285,966 subjects, revealed that exposure to
metformin used for antidiabetic treatment did not reduce the incidence of degenerative
CNS diseases (OR 1.04, 95% Cl 0.92 to 1.17) and, regrettably, significantly increased the
frequency of Parkinson’s disease (OR 1.66, 95% CI 1.14 to 2.42) compared to non-metformin
users [145].

Overall, clinical data on the effects of metformin on preventing and treating cognitive
and, in general, neurodegenerative CNS diseases are still fragmentary and inconsistent.
Consequently, no definitive conclusions can be drawn.

2.5. Metformin and Cancer

It is generally recognized that DM increases the risk of various types of cancer [146,147].
A recent prospective longitudinal cohort study with 428,568 newly diagnosed T2DM
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subjects, showed that the risk for all-cause cancer was approximately 10% higher in diabetic
patients, and the relative risk was higher when T2DM was diagnosed at a younger age [148].
Recently, retrospective studies have shown that T2DM subjects taking metformin display
a lower risk of cancer than a healthy population or diabetic patients never treated with
metformin [149–151]. Several RCTs assessed the impact of metformin on mortality in
diabetic patients with colorectal cancer (CRC), showing that it can reduce all-cause mortality
and cancer-specific mortality [152–154]. However, not all investigations are in agreement;
in fact, some have not found a significant protective association between metformin and
survival in patients with CRC [155,156].

A recent meta-analysis that considered 8 cohort studies from 2012–2019 showed that
CRC subjects with T2DM treated with metformin had a lower overall mortality, even not
specific-cause mortality, than CRC patients with T2DM who did not receive metformin [157].
Of interest, this study evidenced a lower mortality in women among CRC patients with
T2DM using metformin than in those who did not receive it [157]. Previously, a significant
reduction in sex-related incidence was revealed in women treated with low doses of
metformin in a prospective cohort study from Taiwan [158]. A meta-analysis based on
37 studies for a total of more than 1.5 million subjects showed that metformin reduces
the incidence of cancer in the liver (−78%), pancreas (−46%), colon (−23%), and breast
(−6%), as well as mortality from liver and breast cancer [159]. The marked reduction in
the incidence of certain types of cancer, such as those of the liver and pancreas, may be
explained by the known fact that insulin resistance plays a pivotal role in their growth [160].
Of interest, a large meta-analysis of 121 cohorts, including more than 19 million individuals
with about one million all-site cancer events, showed that T2DM is associated with an
additional risk of all-site cancer of 6% higher in women than in men [161]. In more detail,
DM caused a significantly higher relative risk in women than men for oral, stomach, and
kidney cancers and leukemia, whereas the opposite was observed for liver cancer [161].

In general, several systematic reviews and meta-analyses gave comparable results, but
with differences in the type of cancer treated, the time and dose of exposure to metformin,
the presence of concomitant treatments, etc.; thus, there remains the need to study the real
usefulness of metformin in cancer patients regardless of its use as an antidiabetic drug.

2.6. Metformin and COVID-19

Recent studies reported that patients with DM have a higher risk of death and a higher
probability of being hospitalized with Severe Acute Respiratory Syndrome CoronaVirus-2
(SARS-CoV-2) than those without diabetes [162–164]. A recent systematic review revealed
that diabetic patients experienced worse clinical outcomes during the COVID-19 pandemic,
with an increase in all-cause mortality and diabetes-related mortality; in particular, clinical
outcomes worsened in women, children, and individuals of ethnic minorities [165].

Metformin has given promising results in diabetic subjects with Coronavirus Disease
2019 (COVID-19) because, in addition to its hypoglycemic action, it also has antiviral,
anti-inflammatory, and immunomodulatory properties [166,167]. Epidemiological data col-
lected from T2DM subjects treated with metformin for glycemic control during the course of
COVID-19 revealed a significant reduction in the mortality rate related to the viral disease
by a factor of ~3 times [168]. A meta-analysis of 10,233 subjects confirmed the association
between metformin use and mortality reduction after adjustment for various comorbidities
such as obesity, hypertension, cardiovascular disease, and kidney disease [169]. Similarly,
an observational cohort study with data from T2DM individuals reported a significantly
lower risk of COVID-19-related mortality in patients treated with metformin [170]. An-
other study suggested the existence of differences between female and male subjects with
respect to the outcomes of severe SARS-CoV-2 syndrome in T2DM subjects treated with
metformin [171]. Indeed, retrospectively analyzing the cohort of diabetic or obese women
(BMI ≥ 30 kg/m2) infected with the virus showed a reduction in the severity of the disease
and in the mortality rate. The advantage was not proven in the male cohort [171]. Fur-
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thermore, a second retrospective cohort study described that metformin use decreased the
onset of acute respiratory distress syndrome in women with DMT2 and COVID-19 [172].

One aspect of metformin therapy that has raised concern, especially in the case of
severe SARS-CoV-2 infection, is the risk of metabolic acidosis, since there is a general
consensus that this drug has a higher risk of lactic acidosis compared to other antidiabetic
agents [173]. However, despite this alarm, no increase in mortality from COVID-19 has
been observed among metformin-treated individuals [174]. Otherwise, the authors dis-
covered a significant association between metformin use and decreased heart failure and
inflammation damage. In particular, metabolic acidosis was observed in patients taking
high doses of the drug, with an impairment of renal function and a worsening of the clinical
progression of COVID-19 [174]. Although it is one of the most commonly prescribed antidi-
abetic drugs due to its effectiveness in DM, even for those infected with the SARS-CoV-2
virus, ongoing monitoring is recommended for patients with impaired renal function to
accurately determine appropriate therapeutic dosages [175,176]. The discontinuation of
metformin is recommended if the eGFR drops below 30 mL/min/1.73 m2, as indicated in
patients not affected by COVID-19. Otherwise, the patient would be exposed to excessively
high blood concentrations that can cause metabolic acidosis. For this, more attention should
be paid to individuals affected by severe COVID-19, among whom a reduced renal function
is noted in the various acute sequelae [177,178].

2.7. Metformin and Weight Control

Overweight and obesity in diabetic subjects increase the risk of many cardiovascular
diseases and even cancer [179,180]. Obese individuals are believed to have a compro-
mised intestinal barrier, leading to impaired intestinal permeability [181]. Reduced body
weight has been found to improve intestinal conditions by restoring the selectivity of the
intestinal barrier [182,183]. A moderate low-calorie diet together with increased physical
activity after 2 and 12 months improved enteral permeability by decreasing chemerin
and lipopolysaccharide-binding protein (LBP) levels in adolescents with abdominal obe-
sity [184]. Assuming that body weight reduction can produce similar results regardless
of the method used, metformin has been studied in a group of overweight or obese sub-
jects in the “Survivorship Promotion In Reducing IGF-1 Trial” (SPIRIT) [185]. Contrary to
expectations and unlike the diet intervention, 6 and 12 months after the drug treatment,
metformin did not decrease the level of blood LBP despite achieving a similar degree of
weight loss (3%) [185].

Both metformin and gliflozins have been shown to reduce hyperglycemia and HbA1c
and are being approved for the treatment of T2DM [186,187]. Gliflozins act as SGLT2
inhibitors by causing glucose urinary excretion in the proximal tubules, decreasing hy-
perglycemia and body weight [188–191]. A sub-analysis of a prospective, multicenter,
open-label RCT has considered 29 elderly T2DM subjects, receiving sitagliptin as the base
antidiabetic treatment, who were treated with either ipragliflozin (50 mg daily) or met-
formin (500 mg daily), showing that after 24 weeks, the visceral adiposity index decreased
with each one [192]. Furthermore, the recent post-hoc analysis compared the metabolomic
changes associated with 50 mg ipragliflozin versus 1000 mg metformin daily for 24 weeks
in 30 diabetic subjects receiving sitagliptin as basal treatment, showing that the reduc-
tion in the visceral fat area was higher with ipragliflozin (−19.8%) than with metformin
(−2.5%, p = 0.002), as well as for waist circumference and body weight [193]. In general,
the metabolomic profile of several biomarkers was different between the metformin and
ipragliflozin groups. Briefly, with metformin, a moderate reduction in LDL was high-
lighted, and the levels of citrulline, octanoic acid, indole-3-acetaldehyde, and hexanoic
acid were also reduced [193]. Whereas, hypotaurine, methionine, methyl-2-oxovaleric acid,
3-nitrotyrosine, and cyclohexylamine levels increased [193]. Furthermore, ipragliflozin
treatment showed a significant increase in hematocrit and a greater increase in severe liver
steatosis compared to metformin treatment [193].
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A new possibility of metformin use is for weight control in patients treated with an-
tipsychotics, which generally cause an unwanted increase in weight with higher cardiovas-
cular risk. A recent review that considered 5 clinical trials in 227 participants suggests that
metformin may be effective in preventing weight gain caused by antipsychotic drugs [194].
However, there were no adequate clinical trials, and the number of patients enrolled was
relatively low. Therefore, additional trials are necessary to validate this use.

2.8. Metformin and Polycystic Ovary Syndrome

Polycystic ovary syndrome (PCOS) is among the most common reproductive en-
docrine disorders, affecting approximately 4 to 20% of women in their reproductive
years [195–198]. The “International Evidence-based Guidelines for the Assessment and
Management” of PCOS recommended that adult women should be treated with combined
oral contraceptive pills (COCP) using low-dose preparations, which is an off-label pill use,
in the presence of hyperandrogenism and/or irregular menstrual cycles [199]. Metformin is
recommended to treat metabolic disorders that are common in PCSO, either as a standalone
treatment or as an additional therapy [199,200]. This endorsement is based on the fact
that nearly half of women with PCOS are overweight or obese and may have impaired
glucose tolerance, hyperinsulinemia, or overt T2DM [201,202]. It is important to note that
metformin aids in regulating menstrual cycles and improving fertility [196,199].

Recently, an open-label prospective RCT compared a combination of metformin
(1000 mg twice daily) and canagliflozin (100 mg daily), an SGLT2 inhibitor, with met-
formin alone for a 3-month treatment in 51 overweight or obese non-diabetic PCOS women
aged 18–40 years [203]. Metformin alone showed similar effects to combination therapy on
menstrual frequency, weight control, hyperandrogenemia, and insulin resistance, although
a greater reduction in testosterone levels and total area under curves of glucose and insulin
was observed with combination therapy [203]. Another RCT involving 52 overweight
participants compared the efficacy of metformin alone (1000 mg twice daily) with a com-
bination of metformin and liraglutide (metformin taken twice daily, orally, along with
liraglutide 1.2 mg once daily, subcutaneously). The results indicated comparable improve-
ments in menstrual cycles, anthropometric measures, and glucose metabolism after the
12-week treatment period [204]. However, the combination of metformin and liraglutide ex-
hibited superior efficacy in improving reproductive abnormalities and hyperandrogenemia,
possibly modulating the hypothalamic–pituitary–ovarian axis [204].

Recently, Greff et al. conducted a systematic review of selected 26 RCTs, includ-
ing 1691 women with PCOS, comparing the efficacy and safety of inositol compared to
metformin or placebo treatments [205]. The authors demonstrated that inositol exhib-
ited efficacy comparable to metformin in terms of weight loss, cycle normalization, and
testosterone levels. In addition, improvements in hyperinsulinemia and carbohydrate
metabolism were observed compared to the placebo group, suggesting that inositol may
not be inferior to metformin treatment regarding glucose control [205]. A meta-analysis
of 9 RCTs with a total of 612 subjects showed that the administration of myo-inositol
(2000 to 4000 mg daily) compared to metformin (1500 to 2550 mg daily) could be more
effective in lowering triglycerides and cause fewer side effects of metformin [206].

A very recent meta-analysis of 46 RCTs has been performed as a 2023 update of the
“International Evidence-based Guidelines for the Assessment and Management of PCOS”,
highlighting that metformin is superior to hormonal treatment in controlling the blood
sugar, overweight, and lipid profile of PCSO subjects [207,208]. Therefore, metformin is
considered a second-line treatment in PCOS that offers benefits for the management of
menstrual and ovulatory disorders, hirsutism, and metabolic and cardiovascular disor-
ders [209,210].

An RCT of 65 women with PCOS treated with COCP (150 mg desogestrel + 30 µg
ethinylestradiol) alone, metformin (2000 mg daily) plus COCP, or metformin alone for
12 months showed significant differences in miRNA levels between the metformin-treated
groups and those receiving COCP alone [211]. Among 22 selected miRNAs known to be
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related to PCOS, lipid, and glucose disorders, miR-122, mi-R29a, and miR-223 decreased
significantly, suggesting their role in metformin protection in PCOS subjects [211].

However, not all the data reported in the literature are consistent. A systematic review
that included 44 RCTs (2253 women), with 39 studies in adult women (2047 subjects)
and 5 in adolescent women (206 subjects), found no significant evidence that metformin
treatment alone is more effective than COCP, or vice versa, or than combined COCP and
metformin administration [212]. New clinical studies stratified by age and symptoms must
be performed to validate the therapeutic use of metformin in women with PCOS.

2.9. Metformin and Thyroid Disorders

Endocrine autoimmune diseases account for most thyroid diseases (TDs), which have
a high prevalence in the global population (5%), occurring at least 5–8 times more frequently
in females than males [213–216]. TDs are distinguished by either an increase in thyroid
activity, that is, Graves’ disease, or a decrease in activity, that is, Hashimoto’s thyroiditis.
Autoimmune thyroid diseases can lead to altered glucose metabolism, thereby heightening
the risk of developing DM [217,218].

To investigate the influence of metformin on thyroid function, a clinical study has
recruited 19 healthy male volunteers, showing that metformin does not alter iodine uptake
in the thyroid gland [219]. However, various clinical studies performed in hypothyroid
subjects have shown that metformin reduces thyrotropin (TSH) levels even if the mechanism
involved is not fully understood [220,221]. A prospective study considered 100 euthyroid
subjects (68 females and 32 males) with insulin resistance treated with metformin (1700 mg
daily) for six months, resulting in a significant decrease in body weight, insulin resistance,
and TSH level and, in addition, a reduction in thyroid volume and the size of thyroid
nodules [222]. The authors suggested that hyperinsulinemia per se may promote an increase
in thyroid size and the presence of nodules that may improve through the use of metformin,
which decreases hyperinsulinemia. In fact, insulin, through IGF-1 signaling, is known to
modulate thyroid gene expression, as an additional factor in thyrocyte proliferation and
the differentiation of thyrocytes. In addition, metformin can cause antiproliferative effects
by suppressing the activity of the mammalian target of rapamycin (mTOR) [223,224].

A systematic review and meta-analysis that considered about 150 subjects showed that
metformin moderately reduces the size of thyroid nodules and decreases the level of TSH
and insulin resistance, even if it does not change the size of the thyroid gland [225]. These
results are in agreement with those obtained in a previous meta-analysis that enrolled
240 patients with benign thyroid nodules and insulin resistance [226].

2.10. Adverse Drug Reactions: The Benefit/Risk Ratio

Subjects taking metformin, especially in the first one–two weeks of intake, frequently
experience nausea, vomiting, and abdominal discomfort, with a prevalence of 8 to 21% [206].
Several investigations suggested that the gastrointestinal (GI) side effects are mitigated by
starting therapy with low doses and taking the drug during meals [227]. Moreover, the
administration of controlled and gradual release formulations may be useful in reducing
GI discomforts [228,229]. To explain these gut effects, metformin has been suggested
to cause 5-hydroxytryptamine release at the intestinal level, then act by a mechanism
independent of 5-HT3 receptors [230]. In fact, several authors, through in vitro and in vivo
investigations, showed that GI disorders may depend on the genotype of SERT and OCT1
transporters [231,232]. Furthermore, metformin can also increase intestinal release of GLP1,
which is known to slow gastrointestinal transit and reduce appetite (anorectic effect) [54].

Indeed, various clinical studies have shown that about 34% of subjects who begin
metformin treatment undergo at least one ADR during a 1-year follow-up period [107,233].
It was also observed that the proportion of undesirable effects was higher among women
than among men [233,234]. In particular, the longitudinal study “Lareb Intensive Monitor-
ing (LIM) program” of the Dutch National Pharmacovigilance Center Lareb has included
1712 diabetic subjects with an average age of 58 years, of which 40.9% were women,
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who were followed for 12 months by an online questionnaire [233]. The study showed
that women reported ADRs more frequently in the first period of metformin treatment
(at 2 and 6 weeks of starting therapy) than men, while in the following period the recur-
rence of the reported adverse effects was the same between the two sexes [233]. These
studies highlighted the usefulness of carefully evaluating the beginning dose of metformin,
as the dose required for antidiabetic treatment in women is generally lower than in men.
Women who receive a lower initial dose than men could reduce the appearance of ADRs
by improving their adherence to T2DM treatment.

Other side effects commonly reported are headache, dizziness, fatigue, pruritus, and
dysgeusia [233,234]. One of the most feared adverse reactions to metformin treatment is lac-
tic acidosis, which is a rare event with an incidence of 1 in 30,000 patients but can lead to fatal
outcomes [91,235]. Generally, the observed cases occurred in patients who received high
doses and/or had severe hepatic and renal impairment, old age, and alcoholism [236,237].
In particular, the risk of ADRs increases in patients receiving polytherapy because of
drug–drug interactions. Various reviews are available in the literature regarding this
topic [238–242].

Prolonged use of metformin is linked to the reduced vitamin B12 and elevated levels
of homocysteine and methylmalonic acid, which can lead to anemia and diabetic periph-
eral neuropathy [243–245]. Patients with DM2 were studied in an RCT to examine the
effects of prolonged use of metformin, observing that vitamin B12 levels were significantly
lower in the metformin group (231 vs. 486 pmol/L; p < 0.001), with a frank deficiency in
18 patients (31%) compared to 2 subjects (3%) of the untreated group [246]. It should be
noted that the metformin dose is inversely correlated with the amount of serum vitamin and
clinically more severe peripheral neuropathy [246]. These data highlight the importance of
monitoring the level of vitamin B12 in patients undergoing prolonged metformin therapy
and also in subjects who, due to dietary choices, such as vegans, have an additional risk of
vitamin B12 deficiency [247]. Recently, a dose-dependent correlation between long-term
metformin use and peripheral neuropathy has been confirmed in a clinical trial in Chinese
subjects with T2DM [248]. In addition, vitamin B12 deficiency has also been associated
with the worsening of various other CNS diseases and, in particular, of PD, explaining
the potential correlation between metformin treatment and the worsening of Parkinson’s
disease [145,249].

It can be expected that the widespread use of metformin in therapy will be accom-
panied by increased reports of side effects worldwide. To verify this point, the current
search using the VigiBase resource shows a total of 120,083 reports of ADRs since the
1990s until 10 January 2024 [250]. The majority of spontaneous side effects occurred in the
Americas (41%), Asia (31%), and Europe (24%) and were mainly distributed in patients
aged 45–64 years (35%) of female sex (56%) [250]. Figure 3 shows the side effects found in
the database in decreasing order of frequency; among the most recurrent ADRs, those in
the GI (24%), in agreement with the data from clinical trials. Some cases of lactic acidosis
and hypoglycemia (metabolism and nutrition disorders), drug ineffectiveness, and fatigue
(general disorders) were also attested (Figure 3). The ADR ratio (ADRs in women/ADRs in
men) obtained from records in VigiBase is 1.43, suggesting a higher risk of ADRs in women
than in men. In agreement, several studies have shown that women are more likely to expe-
rience adverse reactions caused by hypoglycemic drugs, including metformin [233,234,251].
At least in part, the failure to adjust the dose of metformin administered to women may
explain the increased appearance of side effects compared to men.

ADR research has also been implemented in EudraVigilance, the European database
of suspected ADR reports, to more closely identify reports in Europe and then make a
comparison between the two resources. In EudraVigilance, by a search up to 27 January
2024, a total of 42,557 cases were found, of which 16,436 were in subjects aged 18–64 years,
and 16,248 in older subjects aged 65–85 years. Among the reports, those related to women
were the majority, equal to 21,635 (50.8%). Most cases were reported in France (25%), fol-
lowed by Italy (16%), and then Germany (14%). Unlike VigiBase data, the most frequently



Pharmaceuticals 2024, 17, 478 13 of 25

reported ADR group was “Metabolic and nutritional disorders” (Figure S2). Consider-
ing the smaller size of the European database, the information from both databases is
generally comparable.
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Figure 3. VigiBase reports of ADRs potentially caused by metformin in real-word therapy. GID = gas-
trointestinal disorders; MND = metabolism and nutrition disorders; GDA = general disorders and
administration side conditions; Inv = investigations; NSD = nervous system disorder; SSD = skin and
subcutaneous tissue disorders; IPC = injury, poisoning, and procedural complications; RUD = renal
and urinary disorders; PsD = psychiatric disorders; RTD = respiratory, thoracic, and mediasti-
nal disorders; MCD = musculoskeletal and connective tissue disorders; CaD = cardiac disorders;
VaD = vascular disorders; InI = infections and infestations; PrI = product issues; EyD = eye disorders;
HBD = hepatobiliary disorders; ISD = immune system disorders; BSD = blood and lymphatic system
disorders; SMP = surgical and medical procedures; NMU = neoplasms benign, malignant, and
unspecified. Created with GraphPad Prism 10.1.2 software.

Very few clinical studies have reported sex-related differences in efficacy and safety
in the therapeutic use of metformin. The main differences identified in this review are
summarized in Table 1.

Table 1. Sex-related differences in diabetes mellitus complications and therapeutic use of metformin.

Female versus Male References

Diabetes mellitus Higher all-cause mortality [122,123]
Higher risk PAD [115–117]

Higher RR for oral, stomach, and
kidney cancers, and leukemia [160]

Met: antihyperglycemic effect No difference [31]

Met: pharmacokinetics No difference, considering weight
difference and monitoring eGFR. [76]

Met: ADRs Higher [23,24]

Met: CRC-specific mortality * Lower [156]
Met: CRC incidence rate * Lower [157]

Met: COVID-19 * Lower severity and mortality [170,171]
* = Diabetic and/or obese subjects; ADRs = adverse drug reactions; CRC = colorectal cancer; eGFR = estimated
glomerular filtration rate; Met = metformin treatment; PAD = peripheral arterial disease; RR = relative risk.
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3. Materials and Methods

In this review, publications identified using the PubMed database were considered by
searching up to the end of February 2024. The search was restricted to items published in
English in the last 10 years by using the keywords “metformin” and “gender differences”
(Figure S1). Additionally, five inclusion criteria were added: (1) full text, (2) clinical trial,
(3) meta-analysis, (4) randomized controlled trial, and (4) systematic review, selecting in
this way 30 items. Studies related to the use of metformin in combination with other
antidiabetic agents have generally been excluded. Instead, several other manuscripts were
reviewed according to their relevance to the selected topic through a search in PubMed,
Google Scholar, and ResearchGate to find additional relevant items. The benefit–risk profile
was studied by analyzing the side effects reported in VigiBase, the WHO database, and
EudraVigilance, the European database of ADRs [23,24]. The ratio of cases in women
versus men was calculated; a deviated value of more than 20% from 1.0 in both directions
(0.8–1.2) indicates the potential impact of sex on the frequency of ADRs [252,253].

4. Conclusions

RCT and post-marketing records indicate that metformin is effective and safe in
treating hyperglycemia, particularly in type 2 diabetes mellitus. In addition, several clinical
studies suggest its use in many other conditions, including polycystic ovary syndrome,
weight control in obesity, and as an add-on therapy for various types of cancer. However,
there is less evidence for its use in thyroid disorders and neurodegenerative diseases.
Despite metformin being on the market for many decades, the interest in validating new
clinical uses has not waned, which is surprising. Currently, there are numerous RCTs
being developed to verify new applications of metformin. Therefore, new progress can be
expected in its clinical use.

The administration of low doses in conjunction with meals can reduce the extent of
side effects at the gastrointestinal level, which are generally mitigated gradually in the
first two weeks of intake. In order to improve patient compliance and reduce metformin
ADRs, it is advised to start with lower doses in all subjects, particularly women, and
then gradually increase them to achieve glycemic control. Moreover, monitoring kidney
function, particularly in older patients, is recommended.

Existing data on metformin use in real life have not shown significant differences in
the antihyperglycemic response between women and men, while adverse drug reactions
in women are reported more frequently. A greater care in the choice of posology might
decrease the occurrence of side effects in both sexes. It is surprising that women have
shown advantages in using metformin to reduce the incidence and mortality of colorectal
cancer and improve recovery in COVID-19 compared to men. Additionally, metformin
is a drug that has an explicit use, although off-label, in the treatment of polycystic ovary
syndrome in women, even at a young age.

In summary, metformin continues to be a drug with satisfactory risk-benefit and
cost-benefit ratios, which, by reducing blood glucose, decreases the damage caused by
hyperglycemia and is useful in many other diseases related to metabolic disorders.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph17040478/s1, Figure S1: Flowchart of articles obtained
by the PubMed search for metformin up to February 2024; Figure S2: Reports of spontaneous ADRs
on metformin obtained by consulting EudraVigilance.
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