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Abstract: Non-alcoholic fatty liver disease (NAFLD) is usually associated with obesity. However, it is
crucial to recognize that NAFLD can also occur in lean individuals, which is frequently overlooked.
Without an approved pharmacological therapy for lean NAFLD, we aimed to investigate whether the
Ganjianglingzhu (GJLZ) decoction, a representative traditional Chinese medicine (TCM), protects
against lean NAFLD and explore the potential mechanism underlying these protective effects. The
mouse model of lean NAFLD was established with a methionine-choline-deficient (MCD) diet in
male C57BL/6 mice to be compared with the control group fed the methionine-choline-sufficient
(MCS) diet. After four weeks, physiological saline, a low dose of GJLZ decoction (GL), or a high dose
of GJLZ decoction (GH) was administered daily by gavage to the MCD group; the MCS group was
given physiological saline by gavage. Untargeted metabolomics techniques were used to explore
further the potential mechanism of the effects of GJLZ on lean NAFLD. Different doses of GJLZ
decoction were able to ameliorate steatosis, inflammation, fibrosis, and oxidative stress in the liver;
GL performed a better effect on lean NAFLD. In addition, 78 candidate differential metabolites
were screened and identified. Combined with metabolite pathway enrichment analysis, GL was
capable of regulating the glucose and lipid metabolite pathway in lean NAFLD and regulating
the glycerophospholipid metabolism by altering the levels of sn-3-O-(geranylgeranyl)glycerol 1-
phosphate and lysoPC(P-18:0/0:0). GJLZ may protect against the development of lean NAFLD by
regulating glucose and lipid metabolism, inhibiting the levels of sn-3-O-(geranylgeranyl)glycerol
1-phosphate and lysoPC(P-18:0/0:0) in glycerophospholipid metabolism.

Keywords: Ganjianglingzhu decoction; lean NAFLD; glycerophospholipid metabolism

1. Introduction

As the most prevalent chronic liver disease, the overall morbidity of non-alcoholic
fatty liver disease (NAFLD) worldwide has significantly increased, from 25.5% to 37.8%
in the last 20 years [1]. NAFLD covers a series of illnesses, including liver steatosis
and non-alcoholic steatohepatitis (NASH), and leads to liver fibrosis and hepatocellular
carcinoma [2]. Increasing evidence has demonstrated NAFLD is closely related to metabolic
syndrome, covering type 2 diabetes mellitus, dyslipidemia, obesity, and hypertension [3].

Pharmaceuticals 2024, 17, 502. https://doi.org/10.3390/ph17040502 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph17040502
https://doi.org/10.3390/ph17040502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://doi.org/10.3390/ph17040502
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph17040502?type=check_update&version=1


Pharmaceuticals 2024, 17, 502 2 of 21

Of note, NAFLD is not exclusive to overweight or obese individuals; it is also discovered
in lean people. NAFLD in lean individuals is far from uncommon, with prevalence rates
around 14.5%, but it is easier to ignore than NAFLD in overweight or obese individuals,
which leads to severe consequences [4].

Lean NAFLD represents a proportion of NAFLD cases that have a normal body mass
index (BMI); an estimated 13.11% of individuals with NAFLD have lean body habitus [5,6].
The World Health Organization’s standard defines normal weight as a BMI between 18.5
and 24.9 kg/m2 [7]. Otherwise, visceral fat accumulation is detrimental to lean NAFLD
patients, making waist circumference a supplementary indicator of BMI [8]. Some reports
show that lean NAFLD patients exhibit a higher fibrosis-4 index and mortality than obese
NAFLD patients [9–11]. At present, the pathophysiology of lean NAFLD remains obscure.

The current treatment for lean NAFLD is to lose 3–5% of weight through lifestyle
intervention, including exercise and dietary changes [12]. Nevertheless, the majority of
patients have difficulty maintaining a lifestyle intervention in practice. Moreover, the
lack of effective therapeutic medicine for lean NAFLD remains a serious problem. The
current medicines for NAFLD are vitamin E, metformin, glucagon-like peptide-1 agonists
(liraglutide), and pioglitazone. Still, their therapeutic role in lean NAFLD needs to be
further explored [5,12]. Therefore, there is an urgent need to conduct research into lean
NAFLD’s pathogenesis and undertake drug development.

The active ingredients in a large number of traditional Chinese medicines (TCMs)
significantly affect NAFLD [13,14]. Due to the lack of pharmaceutical options in lean
NAFLD, we intended to discover a kind of TCM that is effective for lean NAFLD. The
Ganjianglingzhu (GJLZ) decoction is a representative formula that successfully alleviates
hepatic steatosis and inflammation in NAFLD rats [15,16]. Whether it is also effective
against lean NAFLD is unclear.

Therefore, we utilized the methionine-choline-deficient (MCD) diet to imitate the
progression of NAFLD, as first proposed by Shinozuka. In this model, steatohepatitis
develops rapidly, with apparent steatohepatitis lesions at about three weeks, liver fibrosis
at eight weeks, and significant weight loss [17]. The pathological lesions caused by MCD
diet are similar to those of human NAFLD. In addition, we investigated the effects of
the GJLZ decoction on lean NAFLD through untargeted metabolomics. The potential
metabolic biomarkers related to lean NAFLD were identified, and the underlying mecha-
nism was explored. Our findings might also guide the optimization of TCM treatment for
lean NAFLD.

2. Results
2.1. The Analysis of GJLZ Compositions

A total of 37 compounds of GJLZ were identified by UPLC-Q-TOF/MS. The chro-
matograms are exhibited in Figure 1, and the detailed information about the compounds is
summarized in Table S3.
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Figure 1. UPLC-Q-TOF/MS analysis of GJLZ decoction. (a) The base peak chromatogram of GJLZ 
decoction via UPLC-HRMS in negative ion mode. (b) The base peak chromatogram of GJLZ decoc-
tion via UPLC-HRMS in positive ion mode. (c) The UV chromatogram of GJLZ decoction at 280 nm. 
Each number of the peak was identified as the ingredient of GJLZ, the detail information is summa-
rized in Table S3. GJLZ, Ganjianglingzhu. 

2.2. Evaluation of the Lean NAFLD Mode 
2.2.1. Body Weight of Mice 

After one week of adaptive feeding, no significant difference was observed in body 
weight between the MCS and the MCD groups. From the first week to the fourth week, 
the body weight significantly reduced in the MCD group compared with the MCS group, 
as shown in Figure 2a. 
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Figure 1. UPLC-Q-TOF/MS analysis of GJLZ decoction. (a) The base peak chromatogram of GJLZ
decoction via UPLC-HRMS in negative ion mode. (b) The base peak chromatogram of GJLZ decoction
via UPLC-HRMS in positive ion mode. (c) The UV chromatogram of GJLZ decoction at 280 nm. Each
number of the peak was identified as the ingredient of GJLZ, the detail information is summarized in
Table S3. GJLZ, Ganjianglingzhu.

2.2. Evaluation of the Lean NAFLD Mode
2.2.1. Body Weight of Mice

After one week of adaptive feeding, no significant difference was observed in body
weight between the MCS and the MCD groups. From the first week to the fourth week, the
body weight significantly reduced in the MCD group compared with the MCS group, as
shown in Figure 2a.
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group. In the MCD group, we observed the hepatocyte’s steatosis and inflammatory cell 
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2.2.3. Changes in Serum Index of Mice 

Figure 2. Evaluation of the lean NAFLD model in the fourth week. (a) Weight changes in the
fourth week. (b) H&E staining of hepatic tissue (magnification 200×, the scale bar refers to
50 µm). (c) The levels of serum TC, TG, HDL-C, ALT, AST, and FBG. ALT, alanine transaminase; AST,
aspartate transaminase; FBG, fasting blood glucose; HDL-C, high-density lipoprotein cholesterol;
MCD, methionine-choline-deficient; MCS, methionine-choline-sufficient; NAFLD, non-alcoholic fatty
liver disease; TC, total cholesterol; TG, triglyceride. # p < 0.050, ## p < 0.010 and ### p < 0.001: MCD
group compared with the MCS group.

2.2.2. Liver Histology

Morphologic evaluations provided visual evidence of injury from MCD diet-induced
NAFLD (Figure 2b). The H&E results showed typical hepatocytes with well-preserved
cytoplasm, obvious nucleus and nucleolus, liver lobules, and no steatosis in the MCS
group. In the MCD group, we observed the hepatocyte’s steatosis and inflammatory
cell infiltration.
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2.2.3. Changes in Serum Index of Mice

Compared with the MCS group, serum TG and AST (p < 0.05) were significantly
increased, and serum TC (p < 0.01) and FBG (p < 0.001) were significantly decreased, in
the MCD group. Serum HDL-C was decreased and serum ALT was increased mainly in
the MCD group, although no significant difference was exhibited (Figure 2c). Our results
demonstrated that the MCD diet could increase levels of serum liver enzymes, contributing
to dyslipidemia and impairing both liver function and lipid metabolism. Based on the
abovementioned results, the lean NAFLD model succeeded after four weeks.

2.3. Effects of GJLZ on Body Weight

After eight weeks of the experiment, compared with the MCS group, the body weight
(p < 0.001) was significantly reduced in the MCD group. Nevertheless, there was no
significant difference among MCD, GL, and GH groups. During the treatment, MCD, GL,
and GH groups all displayed the trend of weight loss, as shown in Figure 3a.
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Figure 3. GJLZ ameliorated lean NAFLD induced by the MCD diet. (a) Weight changes in the four
groups. (b) Representative images of hepatic H&E staining, Oil Red O staining, and Sirius Red
staining (magnification 200×, the scale bar refers to 50 µm). (c) NAS score of liver and histomorpho-
metric analysis of the positive area with Oil Red O staining and Sirius Red staining. GH, high dose
of GJLZ; GJLZ, Ganjianglingzhu; GL, low dose of GJLZ; MCD, methionine-choline-deficient; MCS,
methionine-choline-sufficient; NAFLD, non-alcoholic fatty liver disease; NAS, NAFLD activity score.
### p < 0.001: MCD group compared with the MCS group; * p < 0.050, ** p < 0.010 and *** p < 0.001:
GL group and GH group compared with the MCD group.

2.4. Effects of GJLZ on Liver Morphology

The liver morphological results revealed severe structural destruction of liver tissue in
the MCD group, heavy fat infiltration, hepatomegaly, and inflammatory cell infiltration
and fibrosis (Figure 3b). The liver morphology and structure were relatively complete;
hepatocellular ballooning was ameliorated, with less inflammatory cell infiltration and
fibrosis in the GL and GH groups compared with the MCD group (Figure 3b,c). According
to the hepatic histological changes, GL and GH could also significantly decrease NAFLD
activity score (NAS) (Figure 3c).

2.5. Effects of GJLZ on Serum Index

Compared with the MCS group, serum TG (p < 0.05), ALT, AST (p < 0.001), and
TBIL (p < 0.05) were significantly increased, and serum TC, HDL-C (p < 0.01), and FBG
(p < 0.001) were significantly decreased, in the MCD group. Serum TG (p < 0.01), ALT, AST,
and TBIL (p < 0.05) were significantly decreased, and serum HDL-C (p < 0.05) was signifi-
cantly increased, in the GL group; serum TG, ALT, and TBIL (p < 0.05) were significantly
decreased, and serum HDL-C (p < 0.05) was increased, in the GH group, compared with
the MCD group (Figure 4a).

2.6. Antioxidative Effects of GJLZ

Previous studies have shown that oxidative stress is of great importance in lean
NAFLD. The liver SOD (p < 0.001) and T-AOC (p < 0.05) were significantly decreased, and
the liver MDA (p < 0.001) was significantly increased in the MCD group, compared with
the MCS group (Figure 4b). The liver SOD and T-AOC were higher, while the liver MDA
was lower, in the GL and GH groups than those in the MCD group (SOD, p < 0.01; T-AOC,
p < 0.05; MDA, p < 0.01 in the GL group; SOD, p < 0.05; MDA, p < 0.001 in the GH group,
Figure 4b). Overall, the results manifested that GJLZ had the effect of anti-oxidation and
alleviating lean NAFLD symptoms.
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Figure 4. Serum index and liver oxidative stress index among the four groups. (a) The levels of
serum TC, TG, HDL-C, ALT, AST, FBG, and TBIL. (b) The levels of liver SOD, T-AOC, and MDA.
ALT, alanine transaminase; AST, aspartate transaminase; FBG, fasting blood glucose; GH, high dose
of GJLZ; GJLZ, Ganjianglingzhu; GL, low dose of GJLZ; HDL-C, high-density lipoprotein cholesterol;
MCD, methionine-choline-deficient; MCS, methionine-choline-sufficient; MDA, malondialdehyde;
SOD, superoxide dismutase; TBIL, total bilirubin; TC, total cholesterol; TG, triglyceride; T-AOC, total
antioxidant capacity. # p < 0.050, ## p < 0.010 and ### p < 0.001: MCD group compared with the
MCS group; * p < 0.050, ** p < 0.010 and *** p < 0.001: GL group and GH group compared with the
MCD group.

2.7. Untargeted Metabolomics Analysis
2.7.1. Quality Control

PCA plots demonstrated a significant separation of liver metabolites between the MCS
and MCD groups, as well as a significant separation between the MCD and GL groups
(Figure 5a–c). Based on the established OPLS-DA model, the predictive index of the model
(Q2) was assessed using seven-fold cross-validation and 200 RPT. Significant segregation of
liver metabolites was observed between the MCS group and the MCD group (Figure 5d),
as well as between the MCD group and the GL group (Figure 5f), in OPLS-DA models.
All samples were within the 95% confidence interval. In the OPLS-DA model, the R2 and
Q2 values were (0.0, 0.911) and (0.0, −0.737) between the MCS group and MCD group
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(Figure 5e), while the R2 and Q2 values were (0.0, 0.894) and (0.0, −0.629) between the
MCD group and GL group (Figure 5g).
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Figure 5. Quality control of the metabolomics data. (a) PCA score plot among the three groups.
PCA showed a clear group separation between the three groups. (b) PCA score plot shows the
metabolic state difference between the MCS group and the MCD group. (c) PCA score plot showing
the difference in the metabolic state between the GL group and MCD group. (d,e) Score plots of
OPLS-DA between the MCS group and the MCD model group and the corresponding coefficient of
loading plots. The OPLS-DA models indicated significant metabolic variations between the MCS
group and the MCD group. (f,g) Score plots of OPLS-DA between the GL group and the MCD
group and the corresponding coefficient of loading plots. The OPLS-DA models indicated significant
metabolic variations between the GL group and the MCD group. GJLZ, Ganjianglingzhu; GL, low
dose of GJLZ; MCD, methionine-choline-deficient; MCS, methionine-choline-sufficient; OPLS-DA,
orthogonal partial least-squares-discriminant analysis; PCA, principal component analysis.

2.7.2. Cluster Analysis

Differential metabolite analysis was performed between the MCS and the MCD groups
(VIP > 1 and p < 0.05), and a total of 553 liver differential metabolites were identified
(Figure 6a); a total of 351 liver differential metabolites were detected between the MCD
and the GL groups (VIP > 1 and p < 0.05) (Figure 6b). Figure 6c shows that fatty acyls,
glycerophospholipids, prenol lipids, steroids, and steroid derivatives were the differential
metabolites between MCS and MCD groups, indicating the successful NAFLD modeling.
The cluster analysis of the metabolites between MCD and GL groups showed that 44.73% of
metabolites were related to fatty acyls, glycerolipids, glycerophospholipids, prenol lipids,
steroids, and steroid derivatives (Figure 6d). To more intuitively represent the differences
in metabolites, cluster analysis heatmaps were used to classify the top 50 liver differential
metabolites between MCS and MCD groups, as well as the principal 50 liver differential
metabolites between MCD and GL groups (Figure 6e,f). We selected 78 metabolites that
kept the same trends between the MCS and GL groups after comparing them with the
MCD group (Tables 1 and S4).
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Table 1. List of the top 10 identified metabolites of the intersection statistics between MCS vs. MCD
and MCD vs. GL in positive and negative ion modes based on UHPLC-Q-TOF/MS.

m/z
Retention
Time (min)

Ion
Mode Formula Metabolites VIP p-Value

FC

MCS vs.
MCD

MCD vs.
GL

453.2860415 7.848233333 neg C24H40O5 alpha-Muricholic acid 16.06769146 0.001366585 0.226549791 4.844474413

854.5920444 11.47483333 neg C46H84NO8P PE(22:4(7Z,10Z,13Z,
16Z)/19:0) 11.85212432 0.000161857 1.861265702 0.653574112

373.2735342 8.718383333 pos C24H36O3
3alpha-Hydroxy-5beta-

chola-7,9(11)-dien-
24-oic Acid

10.53291874 0.001324031 0.254796555 4.932638804

469.2808627 6.996783333 neg C24H40O6
3alpha,6alpha,7beta,

12alpha-Tetrahydroxy-
5beta-cholan-24-oic Acid

9.722835203 0.00032875 0.108749729 5.89703359

786.6001094 12.6016 pos C44H86NO9P PS(O-20:0/18:1(9Z)) 9.283616715 0.016021262 1.313988022 0.796299615

526.2928203 10.2723 pos C27H44NO7P LysoPE(0:0/22:6(4Z,7Z,
10Z,13Z,16Z,19Z)) 9.248142084 0.002656101 0.589762419 1.94542687

475.2678339 7.848233333 neg C26H38O5 15-keto Latanoprost 7.181839741 0.001131022 0.312034456 3.641811108
837.5497715 7.848233333 neg C43H83O13P PI(18:0/16:0) 5.834670211 0.002426321 0.074756485 17.15141474
113.0713445 14.8042 pos C5H5NO 2-Hydroxypyridine 5.509739735 7.52517 × 10 −6 1.075065689 0.845072861
165.113551 14.23996667 pos C8H14N4O Carcinine 5.38750534 0.000454935 1.071885203 0.879479787

FC, fold change; GJLZ, Ganjianglingzhu; GL, low dose of GJLZ; MCD, methionine-choline-deficient; MCS,
methionine-choline-sufficient; VIP, variable importance of projection.
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Figure 6. Analysis of different metabolites among three groups. (a) Volcano plot for differen-
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of projection.
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2.7.3. Metabolite Pathway Enrichment Analysis

The KEGG database was applied to explore the relevant metabolic pathway of differen-
tial metabolites between the MCS and the MCD groups and between the MCD and the GL
groups. The analysis of differential metabolic pathways showed significantly affected path-
ways (p < 0.05) and the number of metabolites. When lean NAFLD mice were fed a MCD
diet, the perturbed metabolites were primarily concerned with ABC transporters, purine
metabolism, pantothenate and CoA biosynthesis, choline metabolism in cancer, pyrimi-
dine metabolism, protein digestion and absorption, beta-alanine metabolism, aminoacyl-
tRNA biosynthesis, glycerophospholipid metabolism, arachidonic acid metabolism, cen-
tral carbon metabolism in cancer, amino sugar and nucleotide sugar metabolism, galac-
tose metabolism, cGMP-PKG signaling pathway, carbohydrate digestion and absorption,
linoleic acid metabolism, mineral absorption, morphine addiction, ascorbate and aldarate
metabolism, regulation of lipolysis in adipocytes, sphingolipid signaling pathway, vascu-
lar smooth muscle contraction, and glutathione metabolism (Figure 7a). After treatment
with GL (Figure 7b), the metabolites were related to histidine metabolism, ABC trans-
porters, choline metabolism in cancer, primary bile acid biosynthesis, glycerophospholipid
metabolism, citrate cycle (tricarboxylic acid cycle, TCA cycle), bile secretion, glucagon sig-
naling pathway, carbohydrate digestion and absorption, alanine, aspartate and glutamate
metabolism, pyruvate metabolism, sulfur metabolism, taste transduction, central carbon
metabolism in cancer, and glycerolipid metabolism. We found that citric acid and succinic
acid, belonging to the TCA cycle, glucagon signaling pathway, alanine, aspartate, and
glutamate metabolism, were significantly increased in the GL group; D-Lactic acid was
also elevated in the GL group, which belongs to pyruvate metabolism (Figure 7c). In the
glycerophospholipid metabolism pathway, sn-3-O-(geranylgeranyl)glycerol 1-phosphate
and lysoPC(P-18:0/0:0) were all higher in the MCD group than in the MCS and GL groups
(Figure 7d). Therefore, we focused on the change in sn-3-O-(geranylgeranyl)glycerol 1-
phosphate and lysoPC(P-18:0/0:0) in three groups.

2.8. Spearman Correlation Analysis of Serum Biochemical Indicators, Liver Antioxidant Indicators,
and Differential Metabolites

The Spearman correlation analysis was conducted between serum biochemical in-
dicators, liver antioxidant indicators, and the 78 metabolites selected above (Table S5).
Through this analysis, we discovered that two metabolites belonging to the glycerophos-
pholipid metabolism pathway were closely associated with these indicators. Sn-3-O-
(geranylgeranyl)glycerol 1-phosphate was positively correlated with serum TG, AST, and
liver MDA, while it was negatively correlated with liver SOD; lysoPC(P-18:0/0:0) was
positively correlated with serum ALT, AST, and liver MDA, while it was also negatively
correlated with serum HDL-C, liver SOD, and T-AOC (Table 2).

Table 2. The correlation between biochemical indicators and the metabolites.

TG HDL-C ALT AST TBIL SOD T-AOC MDA

sn-3-O-(geranylgeranyl)glycerol
1-phosphate 0.560 * −0.443 0.475 0.569 * 0.29 −0.624 ** −0.354 0.649 **

LysoPC(P-18:0/0:0) 0.362 −0.896 ** 0.741 ** 0.800 ** 0.293 −0.706 ** −0.737 ** 0.738 **

ALT, alanine transaminase; AST, aspartate transaminase; HDL-C, high-density lipoprotein cholesterol; MDA,
malondialdehyde; SOD, superoxide dismutase; TBIL, total bilirubin; TG, triglyceride; T-AOC, total antioxidant
capacity. * Correlation is significant at the 0.05 level (2-tailed); ** correlation is significant at the 0.01 level (2-tailed).
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Figure 7. Metabolite pathway enrichment analysis. (a) KEGG pathway enrichment analysis be-
tween the MCS group and the MCD group. (b) KEGG pathway enrichment analysis between
the GL group and the MCD group. (c) After treatment with GL, the specific differential metabo-
lites in the tricarboxylic acid cycle, glucagon signaling pathway, alanine, aspartate and glutamate
metabolism, and pyruvate metabolism. (d) In the glycerophospholipid metabolism pathway, sn-3-
O-(geranylgeranyl)glycerol 1-phosphate and LysoPC(P-18:0/0:0) were all higher in the MCD group
than in the MCS and GL groups. GJLZ, Ganjianglingzhu; GL, low dose of GJLZ; MCD, methionine-
choline-deficient; MCS, methionine-choline-sufficient. ## p < 0.010 and ### p < 0.001: MCD group
compared with the MCS group; * p < 0.050, and ** p < 0.01: GL group compared with the MCD group.

3. Discussion

Lean NAFLD patients exhibit a normal BMI but have insulin resistance, excessive
visceral adiposity, and metabolic dysfunction, which are typically observed in obese in-
dividuals [18]. At present, there is an increasing consensus that lean NAFLD may be
associated with genetic and environmental factors [19–21]. At the same time, there is no
proven medical treatment for lean NAFLD [22]. Therefore, we designed an experiment to
verify whether GJLZ is effective in treating lean NAFLD. The results showed the following:
(1) GJLZ can alleviate the degree of steatosis, inflammation, fibrosis, and oxidative stress
injury in the liver and antagonize the accumulation of lipids in serum. (2) GJLZ improves
glucose and lipid metabolism in lean NAFLD. (3) GJLZ can regulate glycerophospholipid
metabolism, and the two metabolites from the glycerophospholipid metabolism pathway:
sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) might become novel
targets for lean NAFLD.

In this research, we measured body weight and serum biochemical parameters and
evaluated liver morphology to trial the effect of the MCD diet in modeling lean NAFLD
and the effectiveness of GJLZ in treating lean NAFLD. The MCD diet was able to reduce
weight, FBG, serum TC, and HDL-C; elevate serum TG, ALT, AST, and TBIL; and cause
steatosis, inflammation lobular, hepatocellular ballooning, and fibrosis in the liver, which
was consistent with the results of previous research [23]. After treatment with GJLZ, we
found different doses of GJLZ ameliorate steatosis, inflammation, and fibrosis in the liver,
lessen serum lipid accumulation, and reduce liver damage. This is consistent with the
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research of Dang et al., which showed that GJLZ decoction improved liver steatosis and
inflammation, alleviated the liver injury, and considerably reduced serum AST and ALT
contents in NAFLD [15].

Oxidative stress in the liver is important in the progression of lean NAFLD. SOD,
T-AOC, and MDA are the leading indices that measure the antioxidant capacity. Liver MDA
is the lipid peroxidation product that was elevated in the MCD group when compared
with the MCS, GL, and GH groups; SOD, which is an antioxidant enzyme that makes
significant contributions to diminish oxidative stress, was lower in the MCD group when
compared with MCS, GL, and GH groups [24,25]. The liver T-AOC level was lower in the
MCD group than in the MCS and GL groups. The MCD diet increased liver oxidative stress
and decreased the antioxidant capacity, exacerbating lean NAFLD. GL and GH reduced the
MDA level and improved the liver SOD level; GL also raised liver T-AOC. Those findings
illustrate that different doses of GJLZ improved liver oxidative stress by enhancing the
content of SOD and suppressing the production of MDA; GJLZ could be a prophylactic
medicine in lean NAFLD. The same results for Poria cocos polysaccharides in improving
liver T-AOC and reducing liver MDA levels, one of the components in Poria from GJLZ,
support our research [26].

To further explore the therapeutic mechanism of GJLZ in lean NAFLD, we chose GL as
a better dosage for treating lean NAFLD according to the careful consideration of serum bio-
chemicals, hepatic oxidative stress level, and histological analysis. Based on metabolomics
analysis, we discovered an abundance of differential metabolic pathways between MCS and
MCD groups; glycerophospholipid metabolism, arachidonic acid metabolism, galactose
metabolism, carbohydrate digestion and absorption, linoleic acid metabolism, regulation
of lipolysis in adipocytes, and sphingolipid signaling pathway were related to glucose
and lipid metabolism, indicating that MCD diets not only cause liver lipid accumulation,
but also induce glucose and lipid metabolism disorder. This is in accordance with the
research of Ye et al. on metabolic disorders in lean NAFLD, which showed that metabolic
diseases such as hypercholesterolemia, diabetes, and elevated blood pressure, or both
elevated blood pressure and hypercholesterolemia, should be the screening criteria for
lean NAFLD, besides BMI [27]. After GL treatment, the pathways related to glucose and
lipid metabolism: glycerophospholipid metabolism, glucagon signaling pathway, carbohy-
drate digestion and absorption, and glycerolipid metabolism were altered. Glucagon can
stimulate lipolysis in adipocytes. The activation of the glucagon signaling pathway may
illustrate that GL can enhance the lipolysis of the adipocytes in the liver to alleviate lean
NAFLD [28,29]. The accumulation of hepatocyte lipids in NAFLD triggers the production
of reactive oxygen species and the rise in oxidative stress [30]. These processes ultimately
lead to mitochondrial dysfunction, which may cause the abnormal process of the TCA
cycle. Research shows that decreased glycolytic/TCA cycle metabolites are associated with
cirrhosis; we can infer that the down-regulation of glycolytic/TCA cycle metabolites may
be linked to liver injury [29]. In the fasted state, lactate and amino acids fail to produce
glucose via gluconeogenesis. TCA cycle intermediates accumulate in hepatocytes, leading
to hepatic steatosis [31]. The up-regulation of the TCA cycle and pyruvate metabolism
pathway and their metabolites suggests that GL may improve glucose and lipid metabolism
in lean NAFLD.

Lipids are a group of complex and diverse molecules; lipid alterations are a common
cause and consequence of NAFLD, alcoholic hepatitis, and steatohepatitis [32]. Glyc-
erophospholipids are involved in cellular signal transduction, the major component of
cellular membranes. The phospholipid family is classified into phosphatidic acid (PA),
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phos-
phatidylserine (PS), cardiolipin (CL), etc. [33]. Glycerophospholipid metabolism involves
diseases like type 2 diabetes mellitus and atherosclerosis, psoriasis, and tuberculosis comor-
bidity [34–36]. When analyzing the 78 common metabolites in three groups, we focused
on two metabolites in glycerophospholipid metabolism: sn-3-O-(geranylgeranyl)glycerol
1-phosphate and lysoPC(P-18:0/0:0), which decreased in the MCS and GL groups and
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increased in the MCD group. LysoPC has diverse roles in cellular processes, including
regulating inflammation, cell differentiation, immune responses, and signaling pathways
in various cell types [37–39]. The elevated lysoPC(15:0) content was causally related to the
risk of high uric acid, high insulin, high homeostasis model assessment of insulin resistance
(HOMA-IR), dyslipidemia, and overweight/obesity, which shows that abnormal lysoPC
metabolism may be connected to the metabolic risk [33,40]. Likewise, the dynamic changes
in sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) may reflect the
injury and recovery of the liver. This suggests that the GL treatment is effective in lean
NAFLD, probably by regulating the glycerophospholipid metabolism. Moreover, sn-3-O-
(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) may serve as biomarkers for
lean NAFLD and have a negative effect on lean NAFLD.

To provide more evidence that the level of sn-3-O-(geranylgeranyl)glycerol 1-phosphate
and lysoPC(P-18:0/0:0) may be associated with the severity of lean NAFLD, we conducted
a correlation analysis of serum biochemical indicators and liver antioxidant indicators,
sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0). They were posi-
tively correlated with serum ALT and AST, indicating sn-3-O-(geranylgeranyl)glycerol
1-phosphate and lysoPC(P-18:0/0:0) may be involved in liver damage. They were posi-
tively correlated with serum TG, while being negatively correlated with serum HDL-C;
this shows that sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) could
lead to dyslipidemia in lean NAFLD. This is consistent with the outcomes of Han et al.,
which showed that patients with coexisting HBV infection, NAFLD, and T2DM exhibit
higher levels of sn-3-o-(geranylgeranyl) glycerol1-phosphate and serum TG, which may
infer that the increase in sn-3-o-(geranylgeranyl) glycerol1-phosphat indicates the excessive
lipogenesis [41]. Sn-3-O-(geranylgeranyl)glycerol, 1-phosphate, and lysoPC(P-18:0/0:0)
were positively associated with MDA and inversely associated with T-AOC and SOD,
suggesting that sn-3-O-(geranylgeranyl)glycerol, 1-phosphate, and lysoPC(P-18:0/0:0) may
exacerbate oxidative stress in the liver. Our discovery is in accordance with the study of
Pang et al., which showed that the HFD diet induced NAFLD with higher HDL, LDL,
TC, TG, FBG, ALT, and AST levels that were positively correlated with the PC and PE
levels [42]. Furthermore, Zhou et al. reported that metabolism of glycerophospholipid
was highly associated with the hepatic injury triggered by Concanavalin A (Con A), which
showed that the glycerophospholipid metabolism pathway was of great importance in Con
A-induced hepatic injury [43]. The correlation analysis of serum biochemical indicators,
liver antioxidant indicators, sn-3-O-(geranylgeranyl)glycerol 1-phosphate, and lysoPC(P-
18:0/0:0) demonstrated that GL may regulate glycerophospholipid metabolism by reducing
sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) levels, thereby ame-
liorating glucose and lipid metabolism disorder and oxidative stress in liver, as well as
hepatic injury. In summary, treating GJLZ could enhance the antioxidant capacity of liver
cells, recover the TCA cycle function, and improve pyruvate and glycerophospholipid
metabolism. Restoration of glycerophospholipid metabolism leads to the downregulation
of sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) levels. It is associ-
ated with the elevation of serum HDL-C, hepatic T-AOC, and SOD, and the reduction in
serum TG and hepatic MDA, thereby restoring glucose and lipid metabolism (Figure 8).

We made several discoveries in this study. Firstly, we found that GJLZ, an effec-
tive medication from TCM, may treat lean NAFLD. Secondly, according to untargeted
metabolomics analysis, we found that GL ameliorated lean NAFLD by regulating glucose
and lipid metabolism, and sn-3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-
18:0/0:0) were screened from the glycerophospholipid metabolism pathway. However,
this research has some limitations. First, the number of mice was six to eight in each
group; therefore, a larger sample size is required to verify the accuracy of our experimental
outcomes. Second, there are no general methods to model lean NAFLD in mice. Thus,
the MCD diet mouse model was constructed to model lean NAFLD, which significantly
impacted the mouse’s longevity and failed to demonstrate metabolic features, including the
usual insulin resistance and visceral fat accumulation, in lean NAFLD patients. Still, it is of
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interest to study the pathogenesis of lean NAFLD. Third, lipidomics must be applied in
subsequent research after we revealed the importance of lipid metabolism in the treatment
of lean NAFLD using GJLZ. Fourth, in our research we did not explore the beneficial
effects of GJLZ supplementation on lean NAFLD due to direct effects on the liver or due to
indirect effects via other tissues; thus, more experiments are needed to further investigate
the beneficial effects of GJLZ on lean NAFLD. Finally, genomics, transcriptomics, and
proteomics should be utilized in the continuing exploration to systematically search for
the mechanism.
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4. Materials and Methods
4.1. Preparation of GJLZ Decoction

The original prescription of the GJLZ decoction comprised Glycyrrhizae Radix et
Rhizoma (6 g), Zingiberis Rhizoma (12 g), Poria (12 g), and Macrocephalae Rhizoma (6 g),
which was set as the low-dose group of the GJLZ decoction (GL group). The dosage of the
high-dose group of the GJLZ decoction (GH group) was 1.5 times that of the GL group. We
purchased granules from Sichuan Neo-Green Pharmaceutical Technology Development
Co., Ltd. (Chengdu, China). A quantity of 1g of Glycyrrhizae Radix et Rhizoma, Zingiberis
Rhizoma, Poria, and Macrocephalae Rhizoma granules was equivalent to 7 g, 21 g, 17 g,
and 7 g of herbs, respectively. The granules were mixed according to the proportion
of the GJLZ decoction. The dose of intragastric administration in mice was calculated
as 12.33 times the clinical adult dose; the low dose (614.70 g·kg−1·d−1) and high dose
(922.05 g·kg−1·d−1) of the GJLZ decoction were administered to mice in the experiment.

4.2. Component Analysis of GJLZ Decoction

The composition of the GJLZ decoction was analyzed by UPLC-Q-TOF/MS. The
ultra-high-performance liquid chromatography (UPLC) system was Waters H-Class UPLC
system (Waters Corporation, Milford, MA, USA), the chromatographic column was a
Waters ACQUITY UPLC® HSS T3 (2.1 × 150 mm, 1.8 µm, Waters Corporation, Milford,

www.figdraw.com
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MA, USA), and the column temperature was 30 ◦C. The sample injection volume was 2 µL.
The mobile phase was an aqueous solution of acetonitrile (A) and 0.1% formic acid (B); the
DAD wavelength ranged from 190 to 400 nm. The flow rate was 0.3 mL/min. The gradient
elution program is exhibited in Table S1.

The AB Sciex Triple TOF® 4600 system (AB SCIEX LLC, Framingham, MA, USA) with
an ESI ion source was used to perform MS analysis. Samples were analyzed in negative
and positive ion modes; the parameter set is shown in Table S2.

4.3. Mouse Preparation and Sampling

Male C57BL/6 mice (9-week-old; n = 38) were immediately kept in a specific pathogen-
free room after being purchased from the Vital River (Beijing, China). After being adaptively
fed for one week and weighed, they were randomly divided into a lean NAFLD model
group (provided with the MCD diet, #519580, Dyets, Wuxi, China), having 27 mice, and a
control group (provided with the methionine-choline-sufficient (MCS) diet, #519581, Dyets,
Wuxi, China), having 11 mice. After feeding of the MCD and MCS diets for four weeks,
three mice from the MCD diet model and MCS diet control groups were sacrificed. To
estimate the model, serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein
cholesterol (HDL-C), alanine transaminase (ALT), aspartate transaminase (AST), and fasting
blood glucose (FBG) were determined, and the liver tissues of mice were stained with
hematoxylin, eosin (H&E).

Subsequently, the lean NAFLD model group was randomly divided into three groups:
model group (MCD group, n = 8), GL group (n = 8, 614.70 g·kg−1·d−1), and GH group
(n = 8, 922.05 g·kg−1·d−1). The GL group and GH group received intragastric adminis-
tration of varying concentrations of the GJLZ decoction; the control group (MCS group,
n = 8) and MCD group were given 7.5 mL·kg−1·d−1 physiological saline by gavage. In the
eighth week, the mice from each group were sacrificed, and arterial blood and liver tissue
were taken and immediately stored at −80 ◦C. The animal experiments were approved
by the Animal Ethics Committee of the Shanghai Model Organisms Center (IACUC NO.
2022-0034-1).

4.4. Histological Analysis of Liver Tissue

The liver tissues of mice fixed with paraformaldehyde were made into paraffin sections
and stained with H&E and Sirius Red. Frozen sections were utilized for Oil Red O staining.
The staining area was calculated by ImageJ-win64.

4.5. Serum Biochemical and Liver Oxidative Stress Indicator Analysis

An automatic biochemical analyzer detected the serum TC, TG, HDL-C, ALT, AST,
and total bilirubin (TBIL) (Chemray 240, Rayto, Shenzhen, China). The liver malondialde-
hyde (MDA), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) were
measured using the assay kits from Nanjing Jiancheng Bioengineering Institute according
to the instructions (Nanjing, China).

4.6. Untargeted Metabolomics Analysis

L-2-chlorophenylalanine was purchased from Shanghai Heng Chuang Bio-technology
Co., Ltd. (Shanghai, China). Acetonitrile, formic acid, methanol, and water were acquired
from Thermo Fisher Scientific (Thermo Fisher Scientific, Waltham, MA, USA). All reagents
were appropriate for the high-performance liquid chromatography analysis.

4.6.1. Metabolite Extraction

The liver sample was weighed (30 mg) and then transferred to a 1.5 mL tube with
two small steel balls. A mixture of 400 µL of methanol and water (4/1, v/v) and 4 µg/mL
of L-2-chlorophenylalanine (internal standard) were added to each sample. A quantity
of 300 µL of the supernatant was taken after grinding the samples and centrifugation.
A further 300 µL of methanol and water (1/4, v/v) was added to each sample and the
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supernatant (150 µL) was then collected in each tube. Aliquots of all samples were pooled
to make quality control (QC) samples.

4.6.2. UPLC–MS/MS Analysis

The metabolic profiling was analyzed using the VION IMS QTOF mass spectrometer
(Waters Corporation, Milford, MA USA) and ACQUITY UPLC I-Class system (Waters
Corporation, Milford, MA, USA). The chromatographic column was an ACQUITY UPLC
HSS® T3 (2.1 × 100 mm, 1.8 µm), and the column temperature was 45 ◦C. The sample
injection volume was 3 µL. The mobile phase was composed of an aqueous solution of A
(water) and B (acetonitrile/methanol 2/3 (v/v 0.1%) plus 0.1% formic acid; the flow rate was
0.4 mL/min. The data were collected using a combination of full scan mode (m/z ranging
from 50 to 1000) and MSE mode, alternating two independent scans during operation
with different collision energies. The QCs were utilized to provide the data that could be
evaluated for reproducibility by periodically injecting them throughout the analysis.

4.6.3. Bioinformatics Analysis

The raw LC-MS data were processed by the Proggenesis QI V2.3 software (Nonlinear,
Dynamics, Newcastle, UK) for baseline filtering, peak identification, peak extraction, peak
alignment, and normalization. Compounds were identified by secondary fragmentation,
mass-to-charge ratio, and isotopic distribution. The qualitative analysis was based on the
Human Metabolome Database (HMDB), Lipidmaps (V2.3), EMDB, PMDB, METLIN, and
self-built databases. The data matrix consisted of a combination of positive and negative
ion data.

Principal component analysis (PCA) was utilized for estimating the analysis pro-
cess’s stability and the samples’ distribution through R. Differential metabolites between
groups were identified by orthogonal partial least-squares-discriminant analysis (OPLS-
DA). Seven-fold cross-validation and 200 response permutation testing (RPT) were used
to prevent model overfitting. The two-tailed Student’s t-test and the variable importance
of projection (VIP) values in the OPLS-DA model were used to screen out differential
metabolites (VIP > 1.0 and p < 0.05). The KEGG database (http://www.kegg.jp) was used
to identify the differential biological pathways of metabolite data, which was accessed on
14 September 2023.

4.7. Statistical Analysis

SPSS 26.0 software was used for statistical analyses. The two-tailed Student’s t-test
(between two groups) and one-way analysis of variance (ANOVA) (between multiple
groups) were used for the data that had a normal distribution, and the nonparametric
test was utilized for non-normal distributions. Data are presented as the mean ± SD in
this study.

5. Conclusions

The efficacy and mechanism of GJLZ in treating lean NAFLD were studied for the first
time, and the low dose (i.e., the original prescription dose) was found to have a better ther-
apeutic effect on lean NAFLD. The analysis of untargeted metabolomics exhibited that GL
may regulate glucose and lipid metabolism to alleviate lean NAFLD. Glycerophospholipid
metabolism plays a crucial role in the treatment of lean NAFLD using GL. Furthermore, sn-
3-O-(geranylgeranyl)glycerol 1-phosphate and lysoPC(P-18:0/0:0) are likely to be involved
in aggravating lean NAFLD and may serve as diagnostic and therapeutic biomarkers for
lean NAFLD in the future.

http://www.kegg.jp
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(Sciex Triple TOF 4600 LC-MS); Figure S1: Food intake of mice; Table S3: Main component iden-
tification of GJLZ decoction [44–48]; Table S4: List of the identified metabolites of the intersection
statistics between MCS vs. MCD and MCD vs. GL in positive and negative ion mode based on
UHPLC-Q-TOF/MS; Table S5: The correlation between biochemical indicators and the metabolites.
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