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Abstract: Biologics such as monoclonal antibodies (mAb) and soluble receptors represent 
new classes of therapeutic agents for treatment of several diseases. High affinity and high 
specificity biologics can be utilized for variety of clinical purposes. Monoclonal antibodies 
have been used as diagnostic agents when coupled with radionuclide, immune modulatory 
agents or in the treatment of cancers. Among other limitations of using large molecules for 
therapy the actual cost of biologics has become an issue. There is an effort among chemists 
and biologists to reduce the size of biologics which includes monoclonal antibodies and 
receptors without a reduction of biological efficacy. Single chain antibody, camel antibodies, 
Fv fragments are examples of this type of deconstructive process. Small high-affinity peptides 
have been identified using phage screening. Our laboratory used a structure-based approach to 
develop small-size peptidomimetics from the three-dimensional structure of proteins with 
immunoglobulin folds as exemplified by CD4 and antibodies. Peptides derived either from 
the receptor or their cognate ligand mimics the functions of the parental macromolecule. 
These constrained peptides not only provide a platform for developing small molecule 
drugs, but also provide insight into the atomic features of protein-protein interactions. A 
general overview of the reduction of monoclonal antibodies to small exocyclic peptide and 
its prospects as a useful diagnostic and as a drug in the treatment of cancer are discussed. 

Keywords: antibody; CDR; peptidomimetics; Her2; Herceptin; drug-delivery; therapeutics; 
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1. Introduction 

Recent advances in gene expression, protein production and protein engineering have led to the 
realized use of macromolecules as therapeutic agents. Antibodies represent a powerful class of 
therapeutics useful to treat various pathologies [1,2]. There is a need for smaller size of molecular 
agents, easier to deliver (i.e., orally) and less expensive to produce. Reducing a macromolecule into a 
smaller molecule or finding a small molecule to alter the function of target protein is still a challenge. 
Conventionally, small molecules are discovered either from a routine high throughput screening or 
some other equivalent screening methods. Currently there are no facile structure based routine 
methodologies available to convert a macromolecule suitable for therapeutic use into a deconstructed 
organic structure although our laboratory and Kahn’s group have described a general synthetic 
approach to create loop mimics of cyclic subunits of proteins [3]. Alternative avenues to antibodies are 
creating a mini-proteins [4–6] and Fc-fused proteins [7–9]. 

Human insulin was the first protein that was successfully produced using DNA technology for the 
treatment of diabetics [1,10,11]. Since then several recombinant proteins have been introduced for 
clinical use [12–16]. There are currently at least about 350 proteins being developed by biotechnology 
companies [17] and over 30% of them belong to the class of antibodies. Advances come from the 
understanding of several features such as protein’s affinity, half-life and immunogenicity. Technology 
of recombinant protein production has also improved [17]. However, the major impediments in using 
proteins as drugs remain and are their poor tissue penetration, inability to cross blood-brain barrier and 
complex pharmacokinetics, toxicity and drug delivery [18–22]. 

Several therapeutic monoclonal antibodies (mAbs) have been approved or are in clinical trial in one 
or more major markets. Furthermore several radiolabeled mAbs have been approved or are being 
evaluated for in vivo imaging [2,23–26]. Some difficulties that have had to be overcome in recombinant 
antibody therapeutic application relate to immunogenicity [27]. The conventional route to derive 
mAbs is to immunize mice with antigen or peptide fragments derived from the antigen. Such murine 
mAbs have widespread applications in research, but can trigger immune responses because of the 
foreign nature of the protein when introduced into humans. Several approaches have been taken in 
overcoming this problem, which has seen the development of chimeric, humanized and now fully 
human mAbs [28–30]. 

Reducing a large size protein into a smaller molecule or creating a small molecule peptide mimic of 
the parent protein is an active area of research pursued by several laboratories [4,31–35]. The central 
philosophy in creating a mini-protein is to identify small structural domains or a scaffold and engineer 
it for high affinity, specificity and immunogenicity. For example, removal of a natural domain in 
tissue plasminogen activator (tPA) was enough to enhance its usefulness as a therapeutic agent for 
myocardial infarction [17]. 

Small molecular mimics are often designed by using a random screen such as phage display [35–39]. 
In contrast to random screens we have developed a rational structure based strategy to design 
peptidomimetics from proteins, receptors and immunoglobulins [40–48]. Here we focus on design of 
peptidomimetics from monoclonal antibody with more emphasis on anti-erbB peptidomimetics 
(AHNP, AERP) designed from the monoclonal antibody trastuzumab (Herceptin®, Genentech, Inc.) 
and anti-EGFR antibodies, respectively [48,49]. The review is divided into three sections;  
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(1) overview of the structure of antibody which is the basis for much of the progress today, (2) then a 
brief overview of antibodies engineered for clinical use and their limitations and (3) finally the design 
and development of anti-erbB peptidomimetics. 

2. Structure of Immunoglobulin 

Successful use of monoclonal antibody in clinical use comes from our understanding of the 
structure of antibody. This section gives a brief overview of the antibody structure for the readers who 
are unfamiliar with the structural aspects of antibody. 

Antibodies are composed of two polypeptide chains called “Light chain” and “Heavy chain” and 
often denoted by “L” and “H” respectively. The general structure is shown in Figure 1. Each light 
chain consists of variable domain (VL) and one constant domain (CL); and each H chains consist of 
one of the VL and three constant domains (CH1, CH2 and CH3) (Figure 1). Each domain exhibits a 
characteristic topology called the “immunoglobulin” domain. The three dimensional structure of the 
immunoglobulin domain consists of anti-parallel β-sheets arranged in a “sandwich” fashion (Figure 1). 
Structurally the variable and the constant domains are similar, except the variable domain possesses an 
extra pair of β-sheet strand and an extra loop connecting them. The two sides of the sandwich motif is 
covalently linked by disulfide bonds. Variable forms of the immunoglobulin fold have been widely 
identified in immune modulators, and viral receptors [50–53]. 

Figure 1. (A) Three-dimensional structure of antibody structure (protein data bank code: 
Igg1.ent). Antibody is a Y-shaped molecule with two arms (Fabs) and a stem (Fc region). 
These two domains are connected by disulfide links. The linkers allow a flexible movement 
in the antibody. Carbohydrates in the Fc region are shown as small red and pink spheres. 
(B) Antigen binding domain, Fab is shown in ribbon representation. Light and heavy 
chains are shown in green and purple, respectively. Fab domain is characterized by β-strands 
sandwiched as shown and interleaved with loops called complementary determining region 
(CDR). Six CDR loops mediate antigen specificity and binding. Pictures were created 
using Pymol [54]. 
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Antibody topology can be further divided into two parts: (1) Framework and (2) antigen binding 
regions (complementary determining region). The sequence variability in the VL and VH are limited 
to certain regions called “hypervariable regions” which forms the antigen binding site of the molecule, 
and are also called “complementarity determining region (CDR)”. The remainder is referred to as the 
framework region. The dispositions of the CDRs with respect to framework are shown in Figure 1. 
Each CDR is a loop connecting two β-strands, and has a fixed orientation on the framework, depending 
on its length and sequence characteristics of the individual domain. The VL and VH domains associate 
non-covalently to form a β-barrel structure. This association brings the three CDRs from VL and VH 
together at the binding site. Thus the binding site composed of 3 CDRs from VL and 3 CDRs from 
VH, six CDRs determines the specificity and affinity of antigen binding. 

Our current knowledge on how antibody-antigen interactions occur at the atomic level comes from 
several crystallographic structures of Fab-antigen complexes [55,56]. It is now clear that the six CDR 
loops determine the antigen binding in terms of specificity and affinity. Chothia and Lesk [57] 
compared the conformation of CDR loops from several Fab crystal structures, and identified a common 
fold in CDR1 and CDR2 of light and heavy chains, and termed the standard fold (i.e., polypeptide 
main chain conformation) as “canonical structures”. The canonical structures adopted by CDR1 and 
CDR2 loops are determined by a few key residues, but independent of amino acid composition of 
hypervariable or CDR loops. However, in general, the CDR3 loops from VL and VH do not follow 
this rule, and are known to adopt “non-canonical” conformations. 

CDR3 regions in an antibody play a critical role in the antigen binding and recognition. Analysis of 
several antigen-antibody complex from crystallography revealed that CDR3 from heavy chain makes 
most of the contacts with the antigen [56,58,59]. Further analysis of CDR loops and binding site reveal an 
imprecise correlation between the size of the antigen, number of contacts and affinity [60]. Interestingly, 
naturally occurring camelid antibodies lack light chains and contain only heavy chains. The heavy 
chains possess extended and long CDR3 loops which mediate high specificity and affinity [61,62]. 
The camelid observations of binding by a single CDR coupled with our creation of isolated CDR 
mimetics answer the question of whether specificity and affinity can be achieved by engineering CDR 
loops alone. 

The independent functional role played by framework and CDR in antigen binding led to the 
development of three different engineered products; (1) Single chain antibody variable domain (Fv), 
which is a combination of VL and VH linked by a flexible linker (2) Chimeric antibody and (3) humanized 
monoclonal antibody by CDR grafting [63]. We believe that our demonstration that CDR loops 
function in a context independent manner predicted the success of CDR grafting. 

2.1. Single Chain Antibody 

Single-chain Fvs (scFvs) are recombinant antibody fragments consisting of only the variable light 
chain (VL) and variable heavy chain (VH) domains covalently connected to one another by a flexible 
polypeptide linker. The length of the linkers plays a role in the oligomerization of Fvs [64–66].  
Single-chain Fvs also show a concentration-dependent tendency to oligomerize [64,67,68]. Bivalent 
scFvs are formed when the variable domains of a scFv disassociate from one another and are induced 
to reassociate with the variable domains of a second scFv. Similar rearrangement and reassociation of 
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variable domains from different sFvs can result in the formation of trimers or higher multimeric 
oligomers [68]. Each Fv in a bivalent or multivalent Fv is composed of the VL domain from one scFv 
and the VH domain from a second sFv. Modifying the linker length or the inclusion of antigen may 
stabilize the VL/VH interface against rearrangement such that specific multimeric or monomeric 
forms of scFvs may be isolated. Structural studies from Nuclear magnetic resonance (NMR) and X-ray 
crystallography show that the scFv linker is highly flexible and disordered suggesting that the peptide 
may adopt a random coil-like structure [68,69]. Comparison of CDR loops in Fab and scFv show that the 
conformation remains same [70] suggesting that CDR loops remain independent and their conformation is 
critical for antigen recognition. Smaller size scFvs have an advantage over monoclonal antibody in 
terms of rapid pharmacokinetics and tumor penetration in vivo [71–73]. 

Single chain antibodies (ScFv) are being developed as candidates for drug-delivery and tumor 
imaging [74,75]. Furthermore, scFv are useful for creating bispecific antibodies [76–78]. Despite the 
promise of great utility for medical applications, scFv usage has been disappointing [79] reflecting the 
fact that improved affinity and size-reduction of this type of molecule are still inadequate or not 
optimally understood in a way sufficient for their use in clinics. 

2.2. Humanization of Monoclonal Antibody 

Monoclonal antibodies have proven to be useful drug in treating several diseases ranging from 
autoimmune processes, cancer and other pathologies [2,14,80–83]. The specificity of mAb and ease with 
which they can now be produced using recombinant DNA technology have made them viable therapeutic 
agents. Two major difficulties in using xenogenic (mostly murine) antibodies have been identified:  
(1) xenogenic antibodies do not always trigger the appropriate human effector systems of complement and 
Fc receptors [28,84], and (2) xenogenic antibodies can be recognized by a human anti-murine-antibody 
immune response (HAMA) and cleared quickly reducing the in vivo efficacy [85,86]. Atomic level 
structural understanding has made it easier to overcome some of the major drawbacks such as 
immunogenicity and led to molecular ways to increase half-life [14,17]. 

There are two distinct methods used in creating a humanized antibody; (1) CDR grafting [63]  
and (2) resurfacing (i.e., modifying surface residues to match human form of antibody framework  
regions) [87]. In the first approach, the human antibody framework is retained but CDR loops are 
spliced from their murine origin [88,89]. Detailed description of these two procedures is beyond the 
scope of this review and will be not discussed further. Winter et al. [90] reviewed the details of 
humanization by CDR grafting. Resurfacing is also discussed in other reviews [27,87,91,92]. 

2.3. Proteins to Peptides 

Though humanized antibodies are used in clinical settings, humanizing a xenogenic antibodies does 
not preclude its safety, and still it can elicit anti-idiotypic and anti-allotypic responses after repeated 
administration [27]. Optimally humanized antibodies which induce limited anti idiotypic reactions 
possess relatively long circulating half lives [93]. 

Macromolecules such as full-length humanized mAbs still possess disadvantageous characteristics 
for clinical application: These problems include (1) commercial-scale production may be either difficult 
or costly, (2) macromolecules may be excluded from compartments such as the blood/brain barrier,  
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(3) macromolecules have limited penetration into tissues [18,94] and (4) macromolecules including 
mAbs may induce severe side effects such as induction of anti-idiotypic antibodies and immune 
complex formation [27,28]. 

Smaller peptides represent obvious alternatives to mimic larger macromolecular structures when 
only a defined surface of the protein mediates activity. Design of peptide mimetics has been based on 
both structural and functional data [41,95–98]. While structure-based mimetic derivations can often 
mimic the parent protein functionally, generally these mimetics have less biologically active potency. 
Peptides identified from phage display are occasionally highly potent [99,100], but may not structurally 
resemble or mimic multiple functions of the parent protein. For example, the erythropoietin (EPO) 
mimetic identified from phage display do not have any homology with EPO, but able to mimic the 
hormone function [100]. In recent years, there has been a significant progress in the field of peptide 
chemistry and now peptide mimetics can be used as a template, and through iterations that reduce size 
and increase biological activity, may lead to viable therapeutic reagents [3,41–43,48,96,101–109]. 

2.4. Mimicry of Antigen by Peptides 

Synthetic peptides can mimic the structural and biological characteristics of native proteins [110–113]. 
Synthetic peptides derived from CDR regions of monoclonal antibodies have been shown to act as a 
surrogate idiotype (Id) of the antibodies when used as immunogens [84,114–116]. Also, conformations 
of peptides co-crystallized with mAb have been shown to closely resemble the conformations of their 
cognate sequences in the native proteins [117,118], and many synthetic peptides derived from native 
proteins have been shown to biologically mimic those proteins [119–121]. The determinants that have 
been studied in detail do not have to be derived from a contiguous primary sequence in the native 
antigen to be represented by peptides, but instead can be conformational structures comprised of  
non-continuous residues brought together by folding. For example, a hexapeptide that block antibody 
induced myasthenia gravis-like symptoms in chicken obtained from a phage display library was shown 
to mimic a conformational epitope displayed on the acetylcholine receptor, but has the amino acid 
composition entirely different from the acetylcholine receptor [122]. 

Occasionally, an internal image anti idiotypic antibody (Ab2) will share sequence homology with 
the relevant homologous antigen. Of course, sequence homology is not always found in structurally 
related molecules. Lescar et al. [59] and Malby et al. [123] provide a clear example of two Fabs 
having similar specificity, yet the antigen binding sites are comprised of dissimilar sequences. 

Synthetic peptides corresponding to areas of primary sequence shared between antibodies and the 
appropriate protein homologues duplicate functional idiotopes (Id) [124–130]. For example, PAC1, an 
anti-platelet fibrinogen receptor (GPIIβ/IIIα) antibody, has a RYD sequence in its unique third CDR 
of the heavy chain (H3) which is homologous to RGD of fibrinogen. A synthetic peptide encompassing 
the H3 region inhibited fibrinogen dependent platelet aggregation, as well as PAC1 and fibrinogen 
binding to activated platelets [128]. Molecular modeling studies of the H3 site indicate that it occupies 
the same conformational space as the RGD site in bioactive GPIIβ/IIIα [131]. Two anti-thyroid 
stimulating hormone (TSH) receptor mAbs, 4G11 and D2, have sequence homology with TSH α and 
β subunits. Peptides from the CDRs derived from these monoclonals inhibited antibody binding to and 
TSH cAMP production of FRTL-5 rat thyroid cells [128]. Synthetic peptides representing a single 
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CDR reproduced the antagonistic physiology of the mAb. The peptide may mimic the physico-chemical 
topography of the antibody; or functionality can also be imparted through adaptations in the recipient 
molecule or orientation of residues of the peptide to permit appropriate bond formation. 

2.5. CDR Based Viral Inhibitors 

2.5.1. Anti-Reovirus Mimetics 

The first report of successful development of a small peptide mimetic that antagonize reovirus 
binding to its receptor was designed from the CDR loops of an antibody. The anti-reovirus inhibitor 
design was based on the observation that the anti-idiotype antibody can mirror the nature of antigen 
led to the discovery of small synthetic molecules to [40,44,132]. The peptidomimetic was developed from 
the Ab2 (87.92.6) which manifested an internal image of reovirus hemagglutinin type 3 (HA3) [44,133]. 
MAb 87.92.6 was raised against a reovirus neutralizing mAb, 9BG5 [134], and found to serve as an 
anti-reovirus type 3 receptor (Reo3R) antibody. MAb 87.92.6 binding to lymphoma and neuronal cell 
surfaces competitively inhibited reovirus binding [135,136]. 

Significant sequence homology between the second CDRs of the light and heavy chains (L2 and 
H2, respectively) of mAb 87.92.6 was observed with HA3 [40], and synthetic peptides corresponding 
to these CDRs were tested for their ability to mimic mAb 87.92.6. The linear L2 peptide at high 
concentrations inhibited both mAb 87.92.6 and reovirus binding to cells [130] and inhibited ConA-induced 
proliferation of lymphocytes [133]. H2, while playing a minor role in 9BG5-87.92.6 interaction, does 
not mediate 87.92.6 binding of Reo3R [130]. Furthermore, immunization with the L2 peptide coupled 
to a carrier effectively elicited an anti-reovirus 3 neutralizing antibody response, whereas the H2 peptide 
was ineffective [132]. 

With the identification of the residues involved in conferring biological activity of mAb 87.92.6 
using computer modeling the structure of the mAb 87.92.6 L2 site was determined and compared to 
the HA3 epitope. Both the mAb 87.92.6 L2 and the HA3 region of sequence homology were predicted 
to be structures that are reverse turn loops. More specifically, the L2 site was predicted to be a 
distorted β hairpin loop, while the HA3 epitope represented a type 1 β-turn with a G1 β bulge [44]. 
This peptide mimetic was then developed into a non-peptidic form using synthetic chemistry [3] 
revealing the feasibility that CDRs alone can initiate biological effects similar to an antibody. These 
anti-reovirus antibody mimetics were not optimized as inhibitors but the creation of a synthetic 
antibody loop was an important step in creating new types of therapeutics. 

2.5.2. Structure-Based Design of Antibody-like Mimetics 

Work primarily from Roberto Poljak [58,137] revealed that CDR loops are the functional units of 
an antibody’s binding features. Recently, Nakajima et al. [138] have developed a new structure-base 
approach to develop the mimics of pertuzumab based p185erbB2/neu-antibody complex using the epitope 
and paratope information from the antibody-Her2 complex, computationally estimated amino acid 
positional fitness (APF) in their design, and docking studies to develop a small tetra-peptide,  
Ac-Pro-His-Ala-His-Phe [138]. The peptide, HRAP enhanced paclitaxel-induced apoptosis of breast 
cancer cells in a combined treatment approach [139]. 
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We have created a structural-database from the analysis of about 50 antigen-antibody complexes in 
the Protein Data Bank [55,140]. The database consist of primary sequences of CDR regions, definition 
of conformational features of CDR loops in terms of dihedral angles (φ, ψ), contact residues types, and 
solvents if any. Combining the observation that some antigens/antibodies mirror some aspects of 
conformational complementarity, and the variation in the results from the database, a streamlined 
approach has been developed (Figure 2). Some aspects of the approach are discussed in our efforts to 
develop anti-p185erbB2/neu (also known as p185Her2/neu or Her2/neu or Her2) and anti-EGFR mimetics. 

Figure 2. Overall scheme in designing the antibody mimics. A systematic approach has 
been developed to design antibody mimic based on the three-dimensional structure of Fab, 
which involve limited bioinformatics, computational biology and use of surface plasmon 
resonance (SPR). 

 

2.6. CDR Based p185erbB2/neu Receptor Inhibitors 

The human homologue of neu, c-erbB-2, Her2 was identified and characterized [94,141,142]. The 
oncogenic point mutation found in p185neu has not been found associated with human neoplasia, but 
the human p185erbB2/neu protein is overexpressed in a variety of adenocarcinomas typically as a result 
of erbB2/neu gene amplification. A number of studies have suggested that overexpression of 
erbBr2/neu is closely linked to the neoplastic process. Observation of p185erbB2/neu amplification was 
first described for a human gastric tumor [143–145] and Slamon and colleagues [146,147] examined 
the protein, DNA, and RNA levels of c-erbB-2 in breast and ovarian adenocarcinomas and correlated 
p185erbB2/neu amplification with a poor clinical outcome. Amplification of the erbB2/neu gene and 
subsequent overexpression of p185erbB2/neu was identified in 25%–30% of primary breast and ovarian 
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tumors. Tumors with higher gene copy numbers of erbB2/neu correlated with a poorer patient prognosis. 
Some, but not all, studies have confirmed these results and have been the subject of several  
reviews [148,149]. P185erbB2/neu overexpression also appears to be associated with non-small cell  
lung [150], stomach and colon [151], and a high percentage of pancreatic adenocarcinomas [152]. The 
importance of levels of the p185erbB2/neu protein as a prognostic indicator is supported by studies 
demonstrating a functional linkage between p185erbB2/neu overexpression and cellular transformation. 
Studies by Drebin et al. [153–155] and DiFiore and others (reviewed in [156]) describes in vitro and  
in vivo assays correlating the overexpression of human p185erbB2/neu or rat p185neu with their 
transforming activity. 

Our original work led to the discovery of several anti rat p185erbB2/neu monoclonal antibodies  
that were biologically active and able to reverse the malignant transformation of neu oncogene 
transformed cells [154]. The prototypic antibody 7.16.4 was able to bind both rat and human forms of 
neu proteins. Later monoclonal antibodies were developed using similar immunization strategies but 
employing human proteins and cells as immunogens. This led to the development of the 4D5 
monoclonals [157]. These 4D5 antibodies were humanized [158] leading to rhuMAb 4D5 
(trastuzumab) [153–155,157,159,160]. Trastuzumab (Herceptin) is now widely used in the treatment 
of breast cancer. 

2.6.1. Comparison of Rat and Human Forms of Monoclonal Antibodies 

Two anti-p185 antibodies: the monoclonal antibody 7.16.4 and rhuMAb 4D5 which were raised 
against the the ectodomain of rat (neu) and the human p185erbB2/neu homologue respectively showed 
that the structure of these two antibodies are structurally similar in the variable region, especially the 
CDR3 region, which dominantly determines antibody-antigen interactions [161]. Functionally 7.16.4 
can also inhibit p185erbB2/neu mediated proliferation and transformation. Furthermore 7.16.4 compete 
with trastuzumab (Herceptin) for binding to cell surface of p185erbB2/neu [161]. Reciprocally, the 
rhuMAb 4D5 shows binding to the rat p185neu indicating that these two antibodies share an epitope 
on the p185 receptor [161] (Figure 3A). These observations suggested that the conformation adopted 
by HCDR3, which as mentioned is the most dominant binding surface of the antibody, might be 
crucial for the binding to the ectodomain of p185erbB2/neu receptor. 

The anti-p185erbB2/neu antibody mimetic—The initial attempts to create a mimetic consisted of 
several peptide analogues derived from L1 and H3 of both 7.16.4 and 4D5 [162]. Since the two 
antibodies share an overlapping epitope, the secondary structures adopted by the CDR peptide analogs 
were expected to adopt similar backbone conformations in the complex even though they slightly 
differ in primary sequence. Structural comparison of the trial structures was then used to screen for 
potential candidate. One of the exocyclic peptidomimetics (Phe-Cys-Gly-Asp-Gly-Phe-Tyr-Ala-Cys-
Tyr-Met-Asp-Val) showed moderate activity. A careful analysis by high-performance liquid 
chromatography (HPLC) revealed two prominent peaks and isolation of the peaks showed that one 
species had higher activity. Upon sequencing, it was noted that the glycine3 was missing. A model 
without glycine3 revealed a more rigid and preference to adopt a classical β-turn than the original 
peptide. The putative contact residues of the mimetic appear to have a comparable relative disposition 
[root-mean-square (rms) deviation for Cα atoms is 2.2 Å] to that of the parent antibody [48]. To 
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enhance stability folding and avidity, aromatic modification at the termini was employed [42,163,164]. 
In addition to amino acid residues from CDR, amino acid residues proximal to the CDR may be 
involved in antigen interaction [56]. We have used extended residues (Met-Asp-Val) beyond the 
stabilizing cysteine residues for all of the Anti-Her2/Neu Peptidomimetic (AHNP) species we created. 
The Met-Asp-Val residues were chosen from the framework region of the 4D5 antibody to extend the 
surface area at the interface of interaction. The solution structure of AHNP is shown in Figure 3B. 

Figure 3. (A) Three-dimensional structure of p185erbB2/neu complexed with rhu4D5 
(Herceptin) (PBD code: 1N8Z [165]) is shown in molecular surface model. The ectodomain 
of Her2/neu consists of four subdomain, and each are shown in different shades of red 
color. The antibody, rhu4D5 binds to the membrane proximal, subdomain IV (SbdIV) of 
Her2. Based on the shared binding features, the mAb 7.16.4 is also expected to bind to the 
membrane proximal SbdIV. (B) Solution structure of anti-Her2/neu peptidomimetic 
(AHNP) as determined by NMR is shown in ball-and-stick model. Atoms are colored as 
follows: Carbon (green), Nitrogen (blue), Oxygen (red), and sulfur (yellow). Amino acid 
residues in AHNP are indicated by one letter codes. 

 

The entropy loss in the conformation of the peptidomimetic (deletion of flexible glycine) resulted 
in 300 nM binding affinity for the ectodomain of p185erbB2/neu. Thus, exocyclic peptides that adopt 
rigid and comparable ring sizes to β-turns may be expected to show high affinity and binding activity. 
Though the Kd of the AHNP is less potent than that of the monoclonal antibody, their Koff rate is 
comparable which suggests that both antibody and AHNP form a stable complex. 

2.6.2. In Vivo Tumor Growth Inhibition by AHNP 

Shepard et al. [166] have shown that murine monoclonal antibody 4D5 localizes to the site of 
tumors in athymic mice and inhibits the growth of p185erbB2/neu overexpressing human tumor 
xenografts. We demonstrated that AHNP mimic the antibodies’ function in vivo [48]. 

A B 
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In vivo growth of T6-17 transfected fibroblasts expressing human p185erbB2/neu was evaluated in 
athymic mice. We have tested the efficacy of AHNP in two set of studies: (1) AHNP was administered 
intraperitoneally (IP) three times weekly following inoculation of tumor cells in the flank. Sustained 
treatment with AHNP resulted in inhibition of tumor xenograft formation (i.e., prevent tumor formation) 
and (2) When AHNP administered intraperitoneally (IP) after the development of small palpable tumors 
derived from the T6-17 fibroblast, AHNP inhibited progression of tumor formation in these animals. 
These observations show that AHNP could inhibit progression of growth of established tumors. 

Since AHNP showed increased apoptosis of tumor cells when treated with chemotherapeutic agents 
in vitro, we examined the same effects in vivo. We investigated the effects of AHNP treatment 
combined with doxorubicin in vivo. We compared the in vivo growth of already-established T6-17 
tumor xenografts in athymic mice. Although AHNP and doxorubicin independently showed inhibition 
of established tumor growth, administration of both AHNP and doxorubicin additively increased 
growth inhibition of tumor xenografts (Figure 4). 

Figure 4. Inhibition of tumor growth in mice by AHNP: About 2 × 106 T6-17 cells 
suspended in 200 μL of PBS were injected subdermally in the right thigh of nude mice. Six 
days after tumor allograft, tumors reached approximately 200–230 mm3 in volume. Animals 
were regrouped into 4 treatments groups-control, AHNP alone, doxorubicin alone, and 
AHNP in combination with doxorubicin. 100 μg of doxorubicin was given at day 6 and 
day 20. AHNP was administered (200 μg) intraperitoneally three times a week from day 6 
after tumor allograft. Tumor growth was monitored three times weekly for 4 weeks. Tumor 
volume was calculated by the formula: π/6 × (larger diameter) × (smaller diameter)2. The 
figure is reproduced from Park et al. [48] with permission from Nature. 
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Thus AHNP demonstrated remarkable biological activity and high affinity for the P185erbB2/neu 
receptor. These studies indicate that the approach described here can be translated into clinical use 
after further modification of AHNP to improve its pharmacokinetics. 

Trastuzumab (Herceptin) mediates its tumor effects by receptor downmodulation, and ADCC as 
well as through cell cycle arrest [167,168]. AHNP cannot engage ADCC mechanisms, but is potent  
in vivo. Based on the interface mimetics derived from p185erbB2/neu [169], we hypothesize that AHNP 
by binding to the membrane proximal domain of p185erbB2/neu promote a defective complex concomitantly 
altering the p185erbB2/neu mediated signaling pathway. We are currently investigating if the mimetics 
promote defective receptor complex using X-ray crystallography. 

2.7. AHNP Function Is Context Independent in Terms of Adjacent Peptidic Regions 

The constrained exocyclic peptide AHNP functionally mimics intact antibody albeit with a lower 
affinity. Generally attempts to use CDR grafting and CDR based affinity maturation are restricted to 
immunoglobulin fold containing proteins. It has been unclear if the structure and function of CDR 
peptidomimetics such as AHNP would be retained in the context of non-immunoglobulin proteins. 
This feature is of importance if AHNP is to be exploited for diagnostics and therapeutics. 

To investigate this property of environmental context, we fused the AHNP peptidomimetic to 
several non-immunoglobulin proteins such as streptavidin, IP-10/CXCL10 and vimentin. AHNP fused 
to tetrameric streptavidin (SA) revealed increased avidity (8.8 nM) and retained significant comparable 
biological activity to the h4D5 [170]. These studies suggest that peptidomimetics derived from the 
CDR of antibody can function in a context independent manner. Zhang et al. [171] have found the 
AHNP fused SA has been successfully to bind p185erbB2/neu proteins with high affinity. 

The implication of context independence of CDR like loops is that it represents an intrinsic feature 
of exocyclics such they can operate in any framework and this feature anticipated their use in so called 
humanization of antibodies [172,173]. 

2.8. AHNP Is a Novel Small Molecular Probe for p185erbB2/neu Biology, Diagnosis, Drug Delivery and 
Therapeutics 

One of the advantages of reducing the mass of the targeting agent is an increased diffusional 
penetration into the tumor. For example, it has been estimated that a 150-kDa molecule would require 
one week to reach an intratumoral concentration equal to one-half its concentration in the blood at a 
distance of 1 mm from the vessel wall while a 400 Da molecule would require less than an hour [174]. 
The AHNP molecule is about 1.5 kDa which is still larger than a typical small molecule, but it can be 
used as a template to design a much smaller non-peptidic molecule from its three dimensional 
structure as reported in the case of reo virus inhibitors [3]. On the other hand, it is much smaller than 
soluble Fv, which are being developed for cancer treatment [72,73,93]. Fantin et al. [175] engineered a 
chimeric peptide, BHAP by conjugating AHNP to a mitochondrial proapoptotic peptide, PAP to target 
Her2 expressing tumor cells. The chimeric peptide selectively targeted Her2 expressing human breast 
cancer cells including Herceptin resistance cell lines, and inhibited tumor growth in vitro and in vivo. 
Furthermore, Fentin et al. [175] conjugated BHAP to biotin to create a tetrameric unit and targeted 
Her2 expressing human breast cancer cell lines. The tetrameric BHAP show significant (80 fold 
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improvement over BHAP) biological effect in breast cancer tumor cells. These studies show that as a 
small peptide AHNP is facile in developing new therapeutics. 

In vitro and in vivo evaluation, AHNP functions like the monoclonal antibody, Trastuzumab 
(Herceptin). This general procedure do not require humanization which is a laborious process and yet 
can elicit human anti-mouse antibody (HAMA) [27,83,90,176]. AHNP is a better candidate for tumor 
treatment in this regard. In preliminary experiments, AHNP shows a reasonable in vivo stability. AHNP 
can be improved for better pharmacokinetics. Since AHNP mediated enhanced growth inhibition when 
combined with chemotherapeutic agents such as doxorubicin, radiation [48] and taxol [177], AHNP 
may serve a role in the treatment of tumors. Use of Trastuzumab in combination with anthracyclines in 
breast cancer treatment displayed cardiovascular toxicity [178]. Currently, no reliable tests available to 
predict cardiotoxicity of p185erbB2/neu targeting agents. Nonetheless, in a preliminary study, AHNP has 
been shown to less effect on cultured atrial myocardial tissues compared to the anti-Her2 antibody [179] 
treatment suggesting that targeting p185erbB2/neu receptors using a small molecule might obviate the 
side-effects of antibody based therapies. 

Small antibody fragments have been engineered for radioimmunotherapies [176], but their success 
is limited by the large size and circulating half-life [14,72,73]. The smaller size of AHNP and its high 
affinity binding to ectodomain makes it a suitable candidate for immunotherapy and as a diagnostic 
agent. Towards this goal, we attempted improved the affinity and half-life of AHNP by fusing the 
peptide to streptavidin (SA). 

AHNP as vector for drug delivery—Recent advances in the development of nanoparticles opened 
up a new avenue for diagnostics and drug-delivery. Earlier, we shown that bi-functional conjugated 
with taxol as effective approach for tumor specific drug delivery [177]. To expand the potential of 
AHNP, we developed AHNP based polymersome based nanoparticles for delivery of doxorubicin [180]. 
In a preliminary study, AHNP conjugated forms showed moderate efficacy in delivering the 
chemotherapeutic agent to tumors in mice [181]. One of the reasons for the sub-optimal activity was 
traced back to AHNP conjugation to the polymersomes, where aromatic residues included for the 
stability in AHNP promoted aggregation in the presence of polymer. Furthermore, the terminal 
aromatic residues collapsed the conformation due to clustering of hydrophobic residues based on 
computer simulation studies [140]. Currently, AHNP is being reengineered so that it can be used in 
poly-β-maleic acid based nanoparticles. 

While AHNP need to be reengineered for nanoparticles, some novel uses of AHNP have been 
reported. Afshar et al. [182] have fused AHNP to the C-terminus of mutant human purine nucleoside 
phosphorylase to deliver prodrugs that upon delivery induce cytotoxic effect to tumor cells. Other 
applications include fusing streptavidin (for detection/diagnosis purposes) [170] and using cell-penetrating 
TAT for targeting transcription factor involved in p185erbB2/neu transduction [183]. 

2.9. CDR Based Epidermal Growth Factor Receptor (EGFR) Inhibitors 

We have had reasonable success in creating anti-erbB mimetics that disable p185erbB2/neu in vitro 
and in vivo [48]. We therefore used the deduced structure of the monoclonal antibodies C225 and 425 
resolved by X-ray crystallography [184] to design anti-EGFr mimetics. A bioactive anti EGF receptor 
Peptidomimetic, (AERP) has been designed using the C225 heavy chain CDR3 region as a template. 
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It appears to adopt a β-turn and an anti-parallel β-sheet secondary structure as deduced through 
minimization modeling studies (Figure 5). Conformational features combined with the pharmacophore 
from the CDR3 loop appear to be responsible for the bioactivity we have observed. These mimetics 
are modified to include aromatic amino acid residues to enhance the stability of folding and avidity [42]. In 
addition, we have incorporated a small tail of three framework-derived residues, which we have found 
to provide additional functional surfaces for binding [48]. 

Figure 5. Three-dimensional structure of AERP. Molecular model of AERP (carbon-green; 
nitrogen-blue; oxygen-red and sulfur-yellow) is in stick model. The exocyclic peptide, 
AERP adopt a combination of a β-turn and an anti-parallel β-sheet structure to create a 
large ring-size structure. Amino acid residues are indicated in one letter code. Intra-molecular 
hydrogen bonds are shown in dash-lines. 

 

We obtained baculovirus-produced and partially purified ectodomain forms of EGFr species from 
Lemmon (University of Pennsylvania). The ectodomain construct was further purified by high 
performance gel filtration chromatography. 

Kinetic binding characteristics of AERP to the ectodomain of the EGF receptor were studied  
using biosensor techniques showed that AERP binds to the EGF receptor with an approximate  
affinity of 400 nM. At optimum surface density (3600 RU), AERP bound to EGF receptors in a  
concentration-dependent manner with a dissociation pattern (koff) within an order of magnitude to that 
of the C225 mAb (data not shown). In a preliminary study, AERP inhibited EGF mediated tumor 
growth in transformed cell lines. In NE99 cell lines that overexpress the EGFR [185], treatment with 
the AERP resulted in a dose dependent 40% inhibition of cell growth driven by recombinant EGF 
(data not shown). On the other hand, Jurkat cells which do not overexpress EGF receptors were 
unaffected by AERP or CD4.M3 (an unrelated anti-CD4 mimetic) treatment (data not shown). 
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Unexpectedly, AERP inhibited cell growth of EGFR and p185erbB2/neu-expressing cells suggesting that 
AERP might bind to epitope shared by EGFR and p185erbB2/neu. Interestingly, when AERP and AHNP 
where synthesized as chimera, the anti-tumor activity in transformed cells were comparable to  
anti-p185erbB2/neu antibody (Table 1). Further improvement of the chimera is being developed for 
diagnostics and therapy. 

Table.1. Anti-Proliferative effects of AERP-AHNP chimeric peptide. 

Peptide Mimetic Concentration (μg/mL)
% Inhibition 

T6-17 (Her2++) A431 (EGFR++) 
AHNP 10.0 73.92 19.07 
 1.0 48.03 22.63 
AERP 10.0 10.08 15.44 
 1.0 0.35 1.63 
AERP-AHNP 10.0 92.82 22.51 
 1.0 72.25 11.86 
h4D5 (trastuzumab) 1.0 51.07 8.77 

2.10. AERP as Single-Photon Emission Computed Tomography (SPECT)-Agent for Tumor Imaging 

AERP binds to both p185erbB2/neu and EGFR with reasonable affinity, and thus potentially a suitable 
candidate for diagnosis purposes. In a preliminary study, AERP was coupled to SPECT agent 99mTc 
and used for tumor imaging in breast cancer animal model. AERP coupled 99mTc through diethylene 
triamine pentaacetic acid (DTPA) showed tumor-specific accumulation. The tumor-to-blood ration 
was 3.2 comparable to that of scFv [49]. However, the conjugated peptide also retained significant 
amount in liver and kidney. Further work is in progress to improve peptides’ pharmacokinetics for 
diagnosis of breast cancer. 

3. Future Direction for Peptides as Therapeutic Agent 

Peptides that mimic antibodies are novel species with great potential for diagnosis, and treatment, 
which remains to be validated. However, peptides’ short half-life and weak affinity compared to 
antibody are main obstacles for the peptides to be useful in clinical settings. It remains to be examined 
if lack of ADCC capabilities by the antibody mimic will also limit its utility. To overcome some of the 
limitation, we have attempted to engineer antibody mimics for targeted delivery. Since our work 
demonstrated that a large antibody can be reduced to a small peptide, several studies report modified 
peptides either chemically to as fusion proteins hold greater promise for therapeutic purposes. A great 
need is the engineering of these peptides as oral drug, which would not only enhance the drug 
pipeline, but also would greatly reduce healthcare costs. 

4. Conclusions 

We have successfully developed a method to reduce the macromolecular structure of a monoclonal 
antibody to a small secondary structure mimetic that has high affinity and in vivo activity against 
tumor growth. AHNP functionally mimic the antibody function and thus it can be considered as a true 
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“antibody mimic”. As mentioned before, creation of such small antibody mimics not only eliminates 
the laborious humanization of antibodies, but also provides a new avenue in the design of antibody-based 
therapy. To our knowledge, AHNP and AERP are the first rationally designed anti-receptor small 
peptidomimetics that bind to the ectodomain of an oncoprotein. We believe that this approach may lead to 
the design of small molecule compounds which may be used as novel receptor-based anticancer 
therapeutics in man. 
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