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Abstract: Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific 

signaling complexes, which regulate important processes like gene expression, neurotransmitter 

release and neuronal excitability. It is becoming increasingly evident that the so called 

“resistant” (R-type) VGCC Cav2.3 is critical in several physiologic and pathophysiologic 

processes in the central nervous system, vascular system and in endocrine systems. 

However its eponymous attribute of pharmacologic inertness initially made in depth 

investigation of the channel difficult. Although the identification of SNX-482 as a fairly 

specific inhibitor of Cav2.3 in the nanomolar range has enabled insights into the channels 

properties, availability of other pharmacologic modulators of Cav2.3 with different 

chemical, physical and biological properties are of great importance for future 

investigations. Therefore the literature was screened systematically for molecules that 

modulate Cav2.3 VGCCs. 
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1. The Cav2.3 Voltage-Gated Ca2+ Channel  

Cav2.3 belongs to the family of voltage-gated Ca2+ channels which comprises ten different genes for 
ion conducting pore proteins (Figure 1). The ion conducting pore protein of the Cav2.3 VGCCs was 
initially cloned from a rabbit brain cDNA library [1]. After functional expression of the rat Cav2.3 
clone, it was initially speculated that it may represent the low voltage-activated T-type Ca2+ channel, 
which was not yet structurally identified at that time [2]. However, consecutive cloning and expression 
of human Cav2.3 splice variants in X. laevis oocytes or HEK-293 cells revealed a VGCC with 
properties closer resembling a high-voltage-gated Ca2+ channel [3,4]. 

Figure 1. Evolutionary tree of voltage-gated Ca2+ channels (modified according to [5]). 
The cDNA of the putative membrane-spanning regions including the pore loops of the 
human sequences were aligned. 

 

Although the structure of Cav2.3 deduced from sequencing of cDNA has now been known for 
several years [6,7], its physiological and pathophysiological roles are far from fully understood [8–10]. 
Evolutionarily, Cav2.3 may have developed very early [5,11], which may underline its great significance 
in vivo. The total quaternary structure of a Cav2.3-containing native VGCC is still unknown, but may 
contain additional subunits including the well known auxiliary -subunits, which have been shown to 
modulate Cav2.3-mediated inward currents in heterologous expression systems [12,13]. Molecular 
properties of Cav2.3 have been characterized on the amino acid level for functional protein-protein 
interaction [14–16] however to date, Cav2.3 VGCCs have yet to be purified as has been done for  
L-type Ca2+ channels from rabbit skeletal muscle [17–20], and bovine heart [21] and for the neuronal 
N-type Ca2+ channels [22,23]. 

Sequence comparison of the deduced primary sequence revealed the well known intramolecular 
homology pattern, which is known for all voltage-gated Ca2+ as well as for voltage-gated Na+ 
channels. It contains four internal repeats, which have been termed domains I, II, III, and IV. 
Secondary structure analysis predicts 6 transmembrane segments including a random coiled short part 
between transmembrane segment 5 and 6, the pore forming segment (P-loop) [24]. Many of these 
structure predictions resemble the confirmed structural elements in the bacterial and rat voltage-gated 
K+-channel [25,26] and a bacterial Na+-channel [27,28]. 

Additional elements may contribute to the kinetic properties of Cav2.3-mediated inward currents  
as reported for structurally similar ion channels. The segments S6 participate in gating the ion  
channels [29–32], and the P-loops form essential parts of the selectivity filters, thereby also 
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influencing the speed of the ion flux through the pore [33–40]. The segment S4 acts mainly as the 
voltage sensor [41,42], and its detailed orientation to the pore region has been elucidated in crystals 
from the bacterial K+ channel to a great extent [43]. 

Only segments of the cytosolic loops from Cav1.2 L-type VGCCs have been co-crystallized with 
functionally auxiliary subunits [44] or functionally interacting calmodulin [45–48]. Few protein 
interactions of Cav2.3 have been reported such as with a -subunit [15,16] or with novel partners in 
heterologous expression systems [49–52], however, they have yet to be investigated by crystallization. 
The -subunit interaction site with Cav1.1 and Cav1.2 is located in a conserved region between domain 
I and II [53,54], which also contains the interaction site of Cav2.3 with -subunits [14–16]. 

The II-III linker harbors a unique site located within the arginine-rich stretch, which is responsible 
for Ca2+-mediated modulation of the Cav2.3 voltage-gated Ca2+ channel [55]. It may be involved in the 
protein kinase C (PKC)-mediated signaling to Cav2.3 [56], linking Cav2.3  signaling to muscarinic 
receptor activation [57–61] and perhaps also to muscarinic enhancement of the “toxin-resistant”  
R-type Ca2+ current in hippocampal CA1 pyramidal neurons [62]. Cav2.3 also contains the better 
known, carboxyterminal Ca2+/calmodulin interaction site, which was not only found for the members 
of the Cav2/non-L-type but also for members of the classical L-type Ca2+ channel subfamily [63]. 

Structurally, a broad set of splice variants can be predicted from the different cloning approaches 
(Table 1), which result from alternate use of exon 19 encoded arginine-rich segment in the II-III loop, 
as well as from the alternate use of exon 45 in the carboxyterminal region [7]. Cav2.3d was originally 
cloned as a fetal splice variant from human brain [4]. Interestingly, the major splice variants (Table 2) 
deduced from RT-PCR studies differ between brain regions [64] in mice. Splice variants of Cav2.3 
from different species (see also Tables 1 and 2) as well as auxiliary subunits are tissue-specifically 
expressed [9]. In addition to expression in neuronal [65–69] and endocrine tissues [70–85], Cav2.3 
transcripts have also been detected in mamalian heart [86–88], kidney [70,86,89], sperm [90–93], 
spleen [3], and retina [94–97]. Furthermore, the subcellular distribution of Cav2.3 has been 
investigated revealing both somatodendritic and presynaptic expression [98] with additional functional 
specificities [99]. 

Table 1. Splice variants of voltage-gated Cav2.3 R-type Ca2+ channels. Exon 19 is encoding 
an arginine-rich segment of the cytosolic loop between domain II and III, which is 
responsible for a transient positive Ca2+ feedback, when cytosolic Ca2+ is increasing by 
Ca2+ influx through the channel itself. Exon 45 is encoding a carboxyterminal insertion of 
unknown function. Details of exon 20 sequence are found in [7]. 

Nomenclature, splice 

variant 
Structure related to alternate exons expressed (+) 

Expression  

(tissue and species) 
Ref. 

Novel terms Old terms 
Exon 19  

(57 nts) 

Segment (21 nts)  

in exon 20 

Exon 45 

(129 nts) 

Cav2.3a alpha1E-1 - + - Rat cerebellum [100] 

Cav2.3b alpha1E-2 + - - Less important in CNS [3] 

Cav2.3c alpha1E-3 + + - Dominant in CNS [3] 

Cav2.3d alpha1Ed + + + Human fetal brain [4] 

Cav2.3e alpha1Ee - + + Pancreas, kidney, heart [70,101] 

Cav2.3f alpha1Ef + - + Rat cerebellum [100] 
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Table 2. Transcripts of major splice variants of voltage-gated Cav2.3 R-type Ca2+ channels 

expressed in different brain regions [64]. 

Brain region (mouse) Major splice variant Miscellaneous 

Neocortex Cav2.3c Minor amounts of Cav2.3e 

Hippocampus Cav2.3c Minor amounts of Cav2.3e 

Thalamus Cav2.3c Substantial amounts of Cav2.3e and Cav2.3f 

Cerebellum, mesencephalon, medulla oblongata Cav2.3e  minor amounts of Cav2.3a 

In heterologous expression systems, Cav2.3c [3] and Cav2.3d [4,102] inward currents are activated 

at test potentials of about −30 mV. The single channel conductance is about 14 pS [103], and the 

channel kinetics measured by patch-clamp recordings reveal a fast activating and inactivating channel 

type with transient inward current characteristics [7,55], similar but not as fast as observed for T-type 

voltage-gated Ca2+ channels [13]. 

2. Selective and Non-Selective Antagonists of Cav2.3 

The first “pharmacoresistant” Ca2+ current in vivo was recorded and published in 1993 [104,105], 

which means it occured between the years 1987 (the first cloning of a VGCC subunit [106]) and 1994 

(final cloning of the remaining high-voltage gated Ca2+ channels). Doe-1, cloned from Discopyge 

ommata, represented a novel Ca2+ channel type, which was insensitive towards dihydropyridines, but 

was antagonized rather than activated by 5 µM Bay K. This channel type was only slightly and readily 

reversibly inhibited by 5 µM -conotoxin-MVIIC, was insensitive towards -agatoxin-IVA, and fully 

reversibly blocked by -conotoxin-GVIA, an irreversible antagonist of N-type Ca2+ channels [104]. 

Interestingly, the same group identified a similar Ca2+ current component in rat cerebellar granule 

neurons and called the doe-1-like component “R-type current” [105]. 

The peptide antagonist SNX-482, which was initially purified from the venom of the tarantula 

Hysterocratis gigas [107] blocks Cav2.3 with an IC50 value of 15–30 nM and was the first and still is 

the only Cav2.3-prevalent antagonist,. At concentrations higher than 500 nM SNX-482 also inhibits  

N-type Ca2+ currents [107], wherease L-type Ca2+ currents are inhibited by about 25% at concentrations 

of 200 nM SNX-482 [108]. Therefore, it only can be regarded as Cav2.3-prevalent, but not as  

Cav2.3-specific or -selective. 

In cerebellar granule cells, two Cav2.3 isoforms could be distinguished from eachother by their 

varying SNX-482 IC50 values of 6 nM and 81 nM, and a third R-type Ca2+ current component by its 

insensitivity to SNX-482 [109]. 

The first gene inactivation of Cav2.3 led to knock-out mice, which in cerebellar granule cells and in 

DRG neurons still expressed a drug insensitive Ba2+ current. The peak inward current (IBa) was even 

larger than in cultured mouse neurons from contol mice (knock-out IBa 113 ± 27 pA (n = 5 ); control  

85 ± 21 pA (n = 9)) [110]. Only the wild type cultured neurons were inhibited by SNX-482, but not the 

neurons from Cav2.3-deficient mice, leading to the conclusion that a non-Cav2.3-dependent R-type 

current may exist. 

In murine hippocampal and neocortical neurons, Cav2.3 contributes not only to the SNX-482-sensitive 

component of the R-type Ca2+ current, which was recorded in the presence of combination of Ca2+ 

channel antagonists (-conotoxin-GVIA, 2 µM; -conotoxin-MVIIC, 3 µM; -agatoxin-IVA, 200 nM; 
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nifedipine, 10 µM), but also to the SNX-482-insensitive part [66]. Interestingly, the voltage of  

half-maximal activation (V1/2, act) was shifted to more positive voltages in all three cell types 

investigated (dissociated CA1 pyramidal cells, dentate gyrus cells, neocortical neurons), specially in 

the neocortex, where it was reduced from –68 ± 2 mV to –58 ± 7 mV [66]. Overall, it may be useful to 

keep in mind that the R-type Ca2+ current may be more than only the Cav2.3-gene encoded Ca2+ 

channel in neuronal tissues [8,111,112]. 

Divalent and trivalent heavy metal cations were often used to antagonize either all voltage-gated 

Ca2+ inward currents (Cd2+, La3+) or to specifially inhibit some T-type and the R-type Ca2+ current 

(Ni2+). Unfortunately, the half maximal concentrations for Cav2.3 and Cav3.2 are close to each other 

(10–30 µM), rendering Ni2+ blockade unsuitable for distinction of Cav2.3 currents in tissue in which 

Cav3.2 is also expressed. Physiologically, homeostasis of other divalent cations like Cu2+ and Zn2+ may 

play an important role [10,113,114], notably also in neurodegenerative disease [115]. 

Table 3 summarizes the effect of drugs and toxins on Cav2.3 reported in the literature. Most drugs 

in the table are non-selective, in the sense that currents through other Ca2+ channel Cav1 subunits are 

also antagonized with an IC50 not larger than tenfold. Many substances show inhibitory effects on 

Cav2.3 or on R-type Ca2+ currents. One set of drugs is related to anticonvulsive effects, others are used 

as anesthetic drugs. Even high concentrations of classical Ca2+ channel antagonists can inhibit Cav2.3 

induced inward currents as shown for the dihydropyrdines isradipine [87] and nicardipine [116]. 

Routinely, in order to block L-type voltage-gated Ca2+ channels, a dihydropyridine concentration of 

around 10 µM is chosen by electrophysiologists. Considering that such high concentrations of 

isradipine or nicardipine substantially block E-/R-type Ca2+ currents, lower concentrations of e.g., 

isradipine of 0.5 µM are more suitable, in order to observe antagonism by low concentrations of  

SNX-482 as shown for cardiac E-/R-type Ca2+ currents in murine myocytes [101]. However, one has 

to keep in mind that SNX-482 may block L-type Ca2+ current at elevated concentrations [108]. 

3. Physiological Functions, in Which Cav2.3 may be Involved, as Deduced from Cav2.3-Deficient 

Mice 

Many of the experimental results from gene-inactivated mice cannot automatically transferred to 

human physiology and pathophysiology of human diseases. But some basic conclusions may be drawn 

from these investigations of Cav2.3-deficient mice, which were generated and analysed in several 

different laboratories (for detail, see Kamp et al. [8]). 

Cav2.3 is expressed in many regions of the CNS and also in peripheral organs and tissues, which 

makes it difficult to explore its full function in vivo. Cav2.3 triggers or participates in the release of 

several neurotransmitters such as dopamine in the substantia nigra [117]. In the hippocampus Cav2.3 

contributes to fast glutamatergic transmission [118], where it is also involved in long term potentiation 

at the mossy fiber – CA3 synapses. Therefore, Cav2.3 participates in basic processes related to learning 

and memory formation [67,119–121]. Furthermore, Cav2.3 is an important regulator in spines: 

activation of Cav2.3 triggers opening of small conductance Ca2+-activated K+-channels in CA1 

hippocampal pyramidal neurons [122–124], suggesting spine-restricted local microdomains, which are 

important for synaptic signalling [125]. R-type Ca2+ currents, which were recorded as Ni2+-sensitive 
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tail currents, are available at  resting potential and contribute to after-depolarization, and thus to the 

initiation of burst firing in CA1 hippocampal neurons [126]. 

Table 3. Selected antagonists of Cav2.3 (modified according to: Wrubel, 2009 [127]). 

Recombinant Cav2.3 was expressed in different cell lines and was cotransfected with 

auxiliary subunits (-subunits from different species). Note, trace metals must be applied 

under well defined conditions, which provide buffering of the cation of interest [10]. 

Abbreviations: n.t. = not tested. 

Substance Application 
IC50 or Kd 

[µM] 

Amount of 

max. Inhibition 
Selectivity Ref. 

SNX-482 Peptide toxin 0.015–0.030  Cav2.3-prevalent [107,108,128–130] 

-Aga-IVA Peptide toxin 0.051 80% non-selective [116] 

-Aga-IIIA Peptide toxin 0.003–0.010 100% non-selective [107] 

Ni2+ Unphysiological 27.4/303 100% non-selective [3,131] 

Cd2+ Unphysiological 0.8 100% non-selective [3] 

Zn2+ Trace element 31.8 >90% non-selective [132] 

Zn2+ (calibrated) Trace element 1.3 100% non-selective [10] 

Cu2+ Trace element 0.018 100% non-selective [10] 

Topiramate Anticonvulsive 50.9 >70% non-selective [133] 

Lamotrigine Anticonvulsive >10  non-selective [134] 

Sipatrigine Anticonvulsive 10 100% non-selective [134] 

202W92 Anticonvulsive 56 100%  [134] 

Ethosuximide Anticonvulsive 20000 100% non-selective [135] 

MPS (-methyl-

phenylsuccinimide) 
Anticonvulsive 2300 100%  [135] 

Phenytoin Anticonvulsive 360 100%  [135] 

Phenobarbital Anticonvulsive 2700 >80%  [135] 

Pentobarbital Anticonvulsive 600 100%  [135] 

Halothane Inhalation anaesthetic    [136,137] 

Isoflurane Inhalation anaesthetic 206 100%  [136,138,139] 

Fomocaine Local anaestetic 95 100%  [140] 

Procaine Local anaestetic    [140] 

Octanol Organic solvent  206 100%  [135] 

(+)-ACN Steroid anaestetic 5.3–10.2 100%  [141] 

(+)-ECN Steroid anaestetic 9.9–16.1 >70%  [141] 

Flecainide Antiarrhythmic  320   [140] 

Penfluridol Antipsychotic 13   [140] 

Verapamil Antihypertensive 100 100% non-selective [142] 

Diltiazem Antihypertensive 220 100% non-selective [4,142] 

Isradipine Antihypertensive 9.1 100% non-selective [87] 

Nicardipine Antihypertensive 1 n.t. non-selective [116] 

Mibefradil Antihypertensive 0.4/6.5 100% non-selective [143] 

Amiloride Diuretic 7400 100% non-selective [135] 

Ethoxyzolamide 
Carboanhydrase 

inhibitor/anticonvulsive 
1 70%  [144] 

Eugenol Analgetic    [145] 

Bisphenol A 
Environmental 

pollutant 
26 50% non-selective [146] 
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The existance of a fetal brain Cav2.3 isoform [4] and the changes in expression of Cav2.3 during 

neuronal development point to an important role of Cav2.3 during early prenatal stages [147–149]. At 

nerve terminals of the calyx of Held, N- and R-type Ca2+ channels are replaced by P-/Q-type Ca2+ 

channels during development [150]. 

Cav2.3-deficient mice reveal altered pain response [151], and transcripts of two different splice 

variants of Cav2.3 could be identified in rat nociceptive neurons [152]. The major splice variant was 

Cav2.3e, which was also detected in the cerebellum, heart and endocrine system (Tables 1 and 2). 

Cav2.3 is highly expressed in the amygdala, in which the R-type Ca2+ current represents the largest 

component of high-voltage gated Ca2+ currents. Cav2.3-deficient mice exhibited signs of enhanced fear 

assuming that Cav2.3-based R-type Ca2+ currents in the amygdala may be associated with fear [153]. 

Cav2.3-deficient mice represent an important model for convulsive and non-convulsive seizures as 

was summarized in [9]. Based on the initial detection of Cav2.3 transcripts in the insulinoma cell  

line INS-1 [70,73], additional investigations were performed with Cav2.3-deficient mice, which 

showed disturbance not only of glucose-induced insulin release [72,75], but also of glucose-mediated 

glucagon suppression [74], and more important even disturbances of glucose-mediated somatostatin-

release [80]. 

SNX-482 sensitive R-type Ca2+ current was related to the release of gonadotropin-releasing 

hormone [81] and of oxytocin [76,77]. Overall, peptide hormone release often appears to be triggered 

by Cav2.3 VGCCs, possibly by producing the global increase in cytoxolic Ca2+ required for refilling of 

the readily releasable pool of granules during the second phase of insulin release [75,154]. 

After cerebral aneurysm rupture and subarachnoidal hemorrhage Cav2.3 has been shown to 

contribute to cerebral artery constriction i.e., vasospasm [155], a devastating delayed event causing 

often fatal strokes. Accordingly intracisternal administration of SNX-482 reduced delayed vasospasm 

in a rat model of subarachnoid hemmorhage [156]. 

The expression of Cav2.3 in cardiomyocytes is still under discussion: Cav2.3 protein has yet to be 

detected reliably in murine cardiomyocytes, but transcripts could be amplified by single cell RT-PCR 

from microscopically identified murine cardiomyocytes [87,88]. Furthermore, Cav2.3 ablation causes 

cardiac arhythmia and disturbances in autonomic cardiac control, suggesting that Cav2.3 in pacemaker 

cells as well as in autonomic nerve endings may participate in cardiac signalling [101]. 

In future, more specific Cav2.3 modualtors will be a key in establishing the exact role of Cav2.3 in 

the physiological and pathophysiological processes, that it contributes to. Furthermore, recent evidence 

points to Cav2.3 as a potential pharmacologic target in therapy of epilepsy, chronic pain, endocrine 

disturbances and vasospasms after subarchnoid hemmorhage. In this light, non-ion selective Cav2.3 

inhibitors with favourable pharmakokinetics could represent new therapeutic strategies for these disorders. 
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