Etomidate and Ketamine: Residual Motor and Adrenal Dysfunction that Persist beyond Recovery from Loss of Righting Reflex in Rats
Abstract
:1. Introduction
- 1
- residual etomidate and ketamine would impair functional mobility and motor behavior,
- 2
- residual ketamine would modify anxiety-related behavior, and
- 3
- residual etomidate would impair adrenal function.
2. Experimental Section
2.1. Animals
2.2. Instrumentation
2.3. Evaluation of Test Drug Effects on Animal Behavior
2.3.1. Anesthetic Intervention and Righting Reflex Recovery
2.3.2. Post-Anesthetic Behavioral Testing
2.3.2.1. Balance Beam Test
2.3.2.2. Open Field Test
2.3.3. Adrenocortical Function Testing
2.4. Statistical Analysis
3. Results
3.1. Primary Aim: Residual Effects of Etomidate and Ketamine on Functional Mobility and Motor Behavior
3.2. Secondary Aim: Effects of Ketamine on Anxiety-Related Behavior
3.3 Third Aim: Differential Effects of Etomidate and Ketamine on the Adrenocortical Hormone Production
4. Discussion
4.1. Summary of Findings
4.2. Hyperlocomotion and Hypolocomotion both Translate into Impaired Functional Mobility
4.3. Ketamine Suppresses Adrenal Function
5. Conclusions
6. Limitations
Author Contributions
Conflicts of Interest
References
- Orser, B.A. Depth-of-anesthesia monitor and the frequency of intraoperative awareness. N. Engl. J. Med. 2008, 358, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, C.; Kranaster, L.; Janke, C.; Sartorius, A. Impact of the anesthetic agents ketamine, etomidate, thiopental, and propofol on seizure parameters and seizure quality in electroconvulsive therapy: A retrospective study. Eur. Arch. Psychiat. Clin. Neurosci. 2014, 264, 255–261. [Google Scholar] [CrossRef]
- Jabre, P.; Combes, X.; Lapostolle, F.; Dhaouadi, M.; Ricard-Hibon, A.; Vivien, B.; Bertrand, L.; Beltramini, A.; Gamand, P.; Albizzati, S.; et al. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: A multicentre randomised controlled trial. Lancet 2009, 374, 293–300. [Google Scholar]
- Brown, E.N.; Lydic, R.; Schiff, N.D. General anesthesia, sleep, and coma. N. Engl. J. Med. 2010, 363, 2638–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, J.C.; Moonesinghe, S.R. Introduction to the postanaesthetic care unit. Perioper. Med. (Lond.) 2013, 2, 5. [Google Scholar] [CrossRef]
- Franks, N. General anaesthesia: From molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci. 2008, 9, 370–386. [Google Scholar] [CrossRef] [PubMed]
- Sorge, R.E.; Martin, L.J.; Isbester, K.A.; Sotocinal, S.G.; Rosen, S.; Tuttle, A.H.; Wieskopf, J.S.; Acland, E.L.; Dokova, A.; Kadoura, B.; et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 2014, 11, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Dixon, C.E.; Ma, X.; Kline, A.E.; Yan, H.Q.; Ferimer, H.; Kochanek, M.; Wisniewski, S.R.; Jenkins, L.W.; Marion, D.W. Acute etomidate treatment reduces cognitive deficits and histopathology in rats with traumatic brain injury. Crit. Care Med. 2003, 31, 2222–2227. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Wang, L.; Zhang, Z.; Lu, D.; Lu, M.; Chopp, M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001, 32, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Ortega, E.; Escuredo, L.; Bilbao, A.; Pedraza, C.; Orio, L.; Estivill-Torrus, G.; Santin, L.J.; de Fonseca, F.R.; Pavon, F.J. 1-Oleoyl lysophosphatidic acid: A new mediator of emotional behavior in rats. PLoS One 2014, 9, e85348. [Google Scholar] [CrossRef] [PubMed]
- Jantschak, F.; Brosda, J.; Franke, R.T.; Fink, H.; Moller, D.; Hubner, H.; Gmeiner, P.; Pertz, H.H. Pharmacological profile of 2-bromoterguride at human dopamine D2, porcine serotonin 5-hydroxytryptamine 2A, and α2C-adrenergic receptors, and its antipsychotic-like effects in rats. J. Pharmacol. Exp. Ther. 2013, 347, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Saccone, P.; Cotugno, G.; Russo, F.; Mastrogiacomo, R.; Tessitore, A.; Auricchio, A.; De Leonibus, E. Sensory-motor behavioral characterization of an animal model of Maroteaux-Lamy syndrome (or Mucopolysaccharidosis VI). Sci. Rep. 2014, 4, 3644. [Google Scholar] [CrossRef] [PubMed]
- Cotten, J.F.; Le Ge, R.; Banacos, N.; Pejo, E.; Husain, S.S.; Williams, J.H.; Raines, D.E. Closed-loop continuous infusions of etomidate and etomidate analogs in rats: A comparative study of dosing and the impact on adrenocortical function. Anesthesiology 2011, 115, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Cotten, J.F.; Husain, S.S.; Forman, S.A.; Miller, K.W.; Kelly, E.W.; Nguyen, H.H.; Raines, D.E. Methoxycarbonyl-etomidate: A novel rapidly metabolized and ultra-short-acting etomidate analogue that does not produce prolonged adrenocortical suppression. Anesthesiology 2009, 111, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Gunter, K.B.; White, K.N.; Hayes, W.C.; Snow, C.M. Functional mobility discriminates nonfallers from one-time and frequent fallers. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M672–M676. [Google Scholar] [CrossRef] [PubMed]
- Korttila, K. Recovery and driving after brief anaesthesia. Anaesthesist 1981, 30, 377–382. [Google Scholar]
- Ward, B.; Imarengiaye, C.; Peirovy, J.; Chung, F. Cognitive function is minimally impaired after ambulatory surgery. Can. J. Anaesth. 2005, 52, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ishizeki, M.; Mita, N.; Wada, S.; Araki, Y.; Ogura, H.; Abe, M.; Yamazaki, M.; Sakimura, K.; Mikoshiba, K.; et al. Cdk5/p35 is required for motor coordination and cerebellar plasticity. J. Neurochem. 2014, 131, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Singleton, R.H.; Yan, H.Q.; Fellows-Mayle, W.; Dixon, C.E. Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J. Neurotrauma 2010, 27, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Radtke, F.M.; Franck, M.; Hagemann, L.; Seeling, M.; Wernecke, K.D.; Spies, C.D. Risk factors for inadequate emergence after anesthesia: Emergence delirium and hypoactive emergence. Minerva Anestesiol. 2010, 76, 394–403. [Google Scholar] [PubMed]
- Cheng, V.Y.; Martin, L.J.; Elliott, E.M.; Kim, J.H.; Mount, H.T.; Taverna, F.A.; Roder, J.C.; Macdonald, J.F.; Bhambri, A.; Collinson, N. α5GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J. Neurosci. 2006, 26, 3713–3720. [Google Scholar] [CrossRef] [PubMed]
- Treit, D.; Fundytus, M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. BioChem. Behav. 1988, 31, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Choleris, E.; Thomas, A.W.; Kavaliers, M.; Prato, F.S. A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 2001, 25, 235–260. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Dupuis, R.; Costentin, J. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav. Brain Res. 1994, 61, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Fujakova, M.; Palenicek, T.; Brunovsky, M.; Gorman, I.; Tyls, F.; Kubesova, A.; Ripova, D.; Krajca, V.; Horacek, J. The effect of ((−)-2-oxa-4-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), an mGlu2/3 receptor agonist, on EEG power spectra and coherence in ketamine model of psychosis. Pharmacol. Biochem. Behav. 2014, 122, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.S.; Carvalho, A.C.; Trevisan, M.T.; Andrade, G.M.; Nobre-Junior, H.V.; Moraes, M.O.; Magalhaes, H.I.; Morais, T.C.; Santos, F.A. Mangiferin ameliorates 6-hydroxydopamine-induced cytotoxicity and oxidative stress in ketamine model of schizophrenia. Pharmacol. Rep. 2012, 64, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Gazal, M.; Valente, M.R.; Acosta, B.A.; Kaufmann, F.N.; Braganhol, E.; Lencina, C.L.; Stefanello, F.M.; Ghisleni, G.; Kaster, M.P. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur. J. Pharmacol. 2014, 724, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Bergman, S.A. Ketamine: Review of its pharmacology and its use in pediatric anesthesia. Anesth. Prog. 1999, 46, 10–20. [Google Scholar] [PubMed]
- Kohrs, R.; Durieux, M.E. Ketamine: Teaching an old drug new tricks. Anesth Analg. 1998, 87, 1186–1193. [Google Scholar] [PubMed]
- Seamans, J. Losing inhibition with ketamine. Nat. Chem. Biol. 2008, 4, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Olney, J.W.; Newcomer, J.W.; Farber, N.B. NMDA receptor hypofunction model of schizophrenia. J. Psychiatr. Res. 1999, 33, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Reus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Ferraro, A.K.; Vitto, M.F.; Cesconetto, P.; Souza, C.T.; Quevedo, J. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav. Brain Res. 2011, 221, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Sinner, B.; Graf, B.M. Ketamine. Handb. Exp. Pharmacol. 2008, 182, 313–333. [Google Scholar] [PubMed]
- Bowery, N.G.; Hudson, A.L.; Price, G.W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 1987, 20, 365–383. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Pennefather, P.S.; MacDonald, J.F.; Orser, B.A. The general anesthetic propofol slows deactivation and desensitization of GABA(A) receptors. J. Neurosci. 1999, 19, 10635–10646. [Google Scholar] [PubMed]
- Markram, H.; Toledo-Rodriguez, M.; Wang, Y.; Gupta, A.; Silberberg, G.; Wu, C. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004, 5, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Aldrete, J.A.; Kroulik, D. A postanesthetic recovery score. Anesth Analg. 1970, 49, 924–934. [Google Scholar] [PubMed]
- Ely, E.W.; Inouye, S.K.; Bernard, G.R.; Gordon, S.; Francis, J.; May, L.; Truman, B.; Speroff, T.; Gautam, S.; Margolin, R.; et al. Delirium in mechanically ventilated patients: Validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001, 286, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- De Jong, F.H.; Mallios, C.; Jansen, C.; Scheck, P.A.; Lamberts, S.W. Etomidate suppresses adrenocortical function by inhibition of 11 beta-hydroxylation. J. Clin. Endocrinol. Metab. 1984, 59, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Schulte, H.M.; Benker, G.; Reinwein, D.; Sippell, W.G.; Allolio, B. Infusion of low dose etomidate: Correction of hypercortisolemia in patients with Cushing’s syndrome and dose-response relationship in normal subjects. J. Clin. Endocrinol. Metab. 1990, 70, 1426–1430. [Google Scholar] [CrossRef] [PubMed]
- Cotten, J.F.; Forman, S.A.; Laha, J.K.; Cuny, G.D.; Husain, S.S.; Miller, K.W.; Nguyen, H.H.; Kelly, E.W.; Stewart, D.; Liu, A.; et al. Carboetomidate: A pyrrole analog of etomidate designed not to suppress adrenocortical function. Anesthesiology 2010, 112, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.L.; White, P.F.; Kan, P.B.; Rosenthal, M.H.; Feldman, D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N. Engl. J. Med. 1984, 310, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Albert, S.G.; Ariyan, S.; Rather, A. The effect of etomidate on adrenal function in critical illness: A systematic review. Intensive Care Med. 2011, 37, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.L.; White, P.F. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology 1984, 61, 647–651. [Google Scholar] [CrossRef]
- Cuthbertson, B.H.; Sprung, C.L.; Annane, D.; Chevret, S.; Garfield, M.; Goodman, S.; Laterre, P.F.; Vincent, J.L.; Freivogel, K.; Reinhart, K.; et al. The effects of etomidate on adrenal responsiveness and mortality in patients with septic shock. Intensive Care Med. 2009, 35, 1868–1876. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.L., Jr. Should we use etomidate as an induction agent for endotracheal intubation in patients with septic shock?: A critical appraisal. Chest 2005, 127, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Ulleras, E.; Ohlsson, A.; Oskarsson, A. Secretion of cortisol and aldosterone as a vulnerable target for adrenal endocrine disruption-screening of 30 selected chemicals in the human H295R cell model. J. Appl. Toxicol. 2008, 28, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.F.; Beishuizen, A.; Spijkstra, J.J.; Girbes, A.R.; Strack van Schijndel, R.J.; Twisk, J.W.; Groeneveld, A.B. Predicting a low cortisol response to adrenocorticotrophic hormone in the critically ill: A retrospective cohort study. Crit. Care 2007, 11, R61. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, E.K.; Glazener, C.H. Hypoxemia after general anesthesia in children. Anesth. Analg. 1986, 65, 267–272. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Gil, D.; Mueller, N.; Moreno-Duarte, I.; Lin, H.; Ayata, C.; Cusin, C.; Cotten, J.F.; Eikermann, M. Etomidate and Ketamine: Residual Motor and Adrenal Dysfunction that Persist beyond Recovery from Loss of Righting Reflex in Rats. Pharmaceuticals 2015, 8, 21-37. https://doi.org/10.3390/ph8010021
Diaz-Gil D, Mueller N, Moreno-Duarte I, Lin H, Ayata C, Cusin C, Cotten JF, Eikermann M. Etomidate and Ketamine: Residual Motor and Adrenal Dysfunction that Persist beyond Recovery from Loss of Righting Reflex in Rats. Pharmaceuticals. 2015; 8(1):21-37. https://doi.org/10.3390/ph8010021
Chicago/Turabian StyleDiaz-Gil, Daniel, Noomi Mueller, Ingrid Moreno-Duarte, Hsin Lin, Cenk Ayata, Cristina Cusin, Joseph F. Cotten, and Matthias Eikermann. 2015. "Etomidate and Ketamine: Residual Motor and Adrenal Dysfunction that Persist beyond Recovery from Loss of Righting Reflex in Rats" Pharmaceuticals 8, no. 1: 21-37. https://doi.org/10.3390/ph8010021
APA StyleDiaz-Gil, D., Mueller, N., Moreno-Duarte, I., Lin, H., Ayata, C., Cusin, C., Cotten, J. F., & Eikermann, M. (2015). Etomidate and Ketamine: Residual Motor and Adrenal Dysfunction that Persist beyond Recovery from Loss of Righting Reflex in Rats. Pharmaceuticals, 8(1), 21-37. https://doi.org/10.3390/ph8010021