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Abstract: The epicardial adipose tissue (EAT) or epicardial fat is a visceral fat depot in the heart that
contains intrinsic adrenergic and cholinergic nerves, through which it interacts with the cardiac sym-
pathetic (adrenergic) and parasympathetic (cholinergic) nervous systems. These EAT nerves represent
a significant source of several adipokines and other bioactive molecules, including norepinephrine,
epinephrine, and free fatty acids. The production of these molecules is biologically relevant for
the heart, since abnormalities in EAT secretion are implicated in the development of pathological
conditions, including coronary atherosclerosis, atrial fibrillation, and heart failure. Sympathetic
hyperactivity and parasympathetic (cholinergic) derangement are associated with EAT dysfunction,
leading to a variety of adverse cardiac conditions, such as heart failure, diastolic dysfunction, atrial
fibrillation, etc.; therefore, several studies have focused on exploring the autonomic regulation of
EAT as it pertains to heart disease pathogenesis and progression. In addition, Regulator of G protein
Signaling (RGS)-4 is a protein with significant regulatory roles in both adrenergic and muscarinic
receptor signaling in the heart. In this review, we provide an overview of the autonomic regulation of
EAT, with a specific focus on cardiac RGS4 and the potential roles this protein plays in this regulation.

Keywords: autonomic nervous system; adrenergic receptors; atrial fibrillation; epicardial adipose
tissue; heart failure; muscarinic receptors; regulator of g protein signaling-4; signal transduction

1. Introduction

Epicardial adipose tissue (EAT) is the fat deposit surrounding the heart, located
between the myocardium and the visceral pericardium [1]. At the molecular level, fat
exists as lipid in the form of triglycerides [1]. While body fat is mostly found in adipose
tissue, it also exists within other tissues. EAT, contrary to paracardial fat, separated from
the myocardium by the pericardium, has no physical boundaries with the underlying
myocardium [1]. EAT is perfused by the coronary arteries and serves to store energy in
the form of lipids for the myocardium, for thermoregulation, to protect autonomic ganglia
and neuronal tissue, and regulation of coronary artery vasomotion and luminal size [1].
A range of pathophysiologic mechanisms could contribute to an association between
EAT and atrial fibrillation (AFib) [2]. EAT can lead to Afib via structural and electrical
remodeling of the atria by both direct (infiltration of adipose tissue leading to altered
atrial electrophysiological properties) and indirect mechanisms (secretion of paracrine
modulators of myocardial inflammation and oxidative stress) [2].

2. Sympathetic Nervous System (SNS) of the Heart

The SNS is responsible for orchestrating the body’s response to situations of stress or
emergency (“fight-or-flight”) and communicates with the myocardium directly via cardiac
ganglia along the visceral column (paravertebral ganglia) [3]. The (postganglionic) sympa-
thetic neurotransmitter is norepinephrine (NE), although the neurotransmitter of the pre-
ganglionic neurons of both the sympathetic and parasympathetic systems is acetylcholine

Curr. Issues Mol. Biol. 2022, 44, 6093–6103. https://doi.org/10.3390/cimb44120415 https://www.mdpi.com/journal/cimb

https://doi.org/10.3390/cimb44120415
https://doi.org/10.3390/cimb44120415
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cimb
https://www.mdpi.com
https://orcid.org/0000-0001-9817-6319
https://doi.org/10.3390/cimb44120415
https://www.mdpi.com/journal/cimb
https://www.mdpi.com/article/10.3390/cimb44120415?type=check_update&version=1


Curr. Issues Mol. Biol. 2022, 44 6094

(Ach) [3]. Thus, these sympathetic postganglionic fibers are called (nor)adrenergic neurons.
NE and its close relative epinephrine (Epi), a hormone secreted by the adrenal medulla, ex-
ert their actions through three α1, three α2, and three β adrenergic receptor (AR) subtypes,
which are all G protein-coupled receptors (GPCRs) [4–15]. β1ARs are expressed in the heart
(in the sinoatrial and atrioventricular nodes, and in atrial and ventricular cardiomyocytes).
Their activation increases heart rate (positive chronotropy), contractility (positive inotropy),
and atrioventricular node conduction velocity (positive dromotropy) [4–15]. β1AR is also
present in the juxtaglomerular apparatus cells of the kidney where it induces renin release
to activate the renin–angiotensin–aldosterone system (RAAS). β2ARs are mainly expressed
in vascular smooth muscle, skeletal muscle, and in the coronary circulation [6]. Their activa-
tion elicits vasodilatation, which, in turn, increases blood perfusion to target organs. These
receptors reside in non-sympathetic innervated tissues, so they are primarily stimulated
by circulating Epi [6]. In addition, β2ARs display much higher affinity for Epi than for
NE [7]. There are also some low numbers of expression of β2ARs in cardiomyocytes [16].
α1ARs are expressed in vascular smooth muscle proximal to sympathetic nerve terminals
and they mediate vasoconstriction [16–18]. Cardiac myocytes also express some (minute)
levels of α1ARs [16]. Finally, α2ARs are expressed in vascular smooth muscle distal from
sympathetic nerve terminals, where they also elicit vasoconstriction, but they are also in
the central nervous system mediating autoinhibition of sympathetic outflow, and in the
adrenal medulla mediating auto-inhibition of NE and Epi secretion [19–23]. Myocardial
contractility represents the ability of the heart to increase force of contraction, determined
by the strength of the actomyosin filament interaction, which, in turn, depends on the
cytoplasmic Ca2+ concentration of the myocyte [23]. Catecholamine binding to the β1AR is
among the most powerful stimuli for elevation of intracellular Ca2+ concentration in the
cardiomyocyte, and, consequently, for contraction of both the atria and ventricles [10,24].
Of note, the β3AR subtype mediates atrial contraction, but ventricular relaxation rather
than contraction, via nitric oxide generation in the myocardium [25,26].

3. Parasympathetic Nervous System (PNS) of the Heart

The PNS plays, in most (but not all) cases, an antagonistic, to the sympathetic system,
role in regulating heart function [3]. Parasympathetic preganglionic fibers innervate organs
of the thorax and upper abdomen as parts of the vagus nerve, which carries ~75% of all
parasympathetic nerve fibers passing to the heart and many other visceral organs [3]. The
preganglionic fibers synapse within the ganglion, and then short postganglionic fibers leave
the ganglia to the target organ. Thus, in the parasympathetic system, preganglionic neurons
are generally longer than postganglionic neurons [3]. ACh is the neurotransmitter of both
preganglionic and postganglionic parasympathetic neurons (thus, they are called choliner-
gic neurons). ACh exerts its effects via two types of cholinergic receptors called nicotinic
receptors (nAChRs) and muscarinic receptors (mAChRs) [27]. mAChRs are GPCRs located
in the membranes of effector cells at the end of postganglionic parasympathetic nerves and
at the ends of cholinergic sympathetic fibers. Responses from these receptors are excitatory
and relatively slow [3,11]. The nAChRs are ligand-gated ion channels located at synapses
between pre- and postganglionic neurons of the sympathetic and parasympathetic path-
ways. Exactly because they are ion channels, nAChRs produce rapid, excitatory responses,
in contrast to mAChRs [11]. Out of the five different known subtypes of mAChRs, the M2
mAChR is the major cholinergic receptor subtype in the mammalian heart. It is abundantly
expressed in the atria and in conductive fibers, such as the sino-atrial and atrio-ventricular
nodes, but, notably, its expression is negligible in the ventricles [28–30]. This means that
ACh reduces heart rate via this receptor, shortening both action potential duration and con-
duction velocity (negative chronotropy and dromotropy) [31–33]. Regarding contractility,
however, ACh appears capable of directly exerting negative inotropy only in human atrial
myocytes, whereas, in human ventricular myocytes, it merely blocks the positive inotropic
action of the catecholamines, i.e., indirect inhibition of contractility [4], which probably re-
flects the more dense parasympathetic innervation of the human atria and nodal regions vs.
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ventricles. The result is that the effect of PNS on overall cardiac contractility is minimal, at
least in humans [4,33]. M3 receptors are mainly expressed in vascular endothelium, where
they mediate nitric oxide-dependent vasodilatation [3]. In conclusion, the parasympathetic
system opposes the effects of the sympathetic nervous system on heart rate and nodal
conduction but the effect on myocardial contractility is minimal. Nevertheless, reduced
ACh secretion due to decreased neuronal cholinergic activity has been documented to ac-
company various cardiovascular diseases, such as arrhythmias, hypertension, myocardial
infarction, and heart failure [34–42].

4. Autonomic Dysregulation and EAT: Implications for Human AFib and Heart Failure

The autonomic nervous system has ganglions within the heart located in the EAT
pads that regulate cardiac autonomic nervous input [43]. Vagal stimulation is modulated
through multiple cardiac ganglionic plexi prior to arriving at the sinoatrial and atrioven-
tricular nodes [43,44]. The autonomic dysfunction leading to AFib is well documented.
The cholinergic system contributes significantly to AFib in young, otherwise healthy pa-
tients [45]. Significant PNS innervation of the atrial muscle exists that extends into the
pulmonary circulation [46]. As mentioned above, ACh-activated mAChRs (particularly
of the M2 subtype, which is Gi/o protein-coupled GPCR) stimulate G protein-gated atrial
K+ channels (GIRKs) leading to hyperpolarization (cholinergic potassium hyperpolariz-
ing current, IKACh) (Figure 1) [47]. Through activation of the adenylyl cyclase-inhibitory
Gαi subunits, M2 mAChR also inhibits synthesis and signaling of the second messenger
cyclic 3′,5′-adenosine monophosphate (cAMP), produced by the activation of βARs of the
cardiac SNS (Figure 1) [24,47,48]. This results in shortening of the atrial action potential
duration with increased spatial heterogeneity [48] allowing for AFib occurrence (Figure 1).
On the other hand, the SNS can also trigger AFib or ventricular arrhythmias by directly
eliciting intracellular Ca2+ elevations in response to βAR activation [24,49,50] (Figure 1).
Since autonomic ganglionic plexi are found within the EAT, EAT plays important roles in
regulating autonomic nervous system tone (Figure 2). Indeed, in obese or diabetic individ-
uals, autonomic signals emanating from EAT are dysregulated and cause arrhythmias [51].
Abnormal increase in pericardial or epicardial fat is associated with abnormal regulation of
autonomic nervous system activity, which might lead to increased ventricular arrhythmias
and enhanced morbidity and mortality [51].

Since the autonomic nervous system crucially regulates heart rhythm and ganglion-
ated plexi are located in EAT (Figure 2) [52,53], activation of these plexi can cause both
parasympathetic and sympathetic stimulation, resulting in shortened action potentials and
increased calcium transients, respectively (Figure 1) [44]. EAT can influence these encased
ganglionated plexi contributing to arrhythmogenesis. Indeed, botulinum toxin injection in-
hibits ACh release from preganglionic nerve terminals into epicardial fat pads and reduces
cardiac autonomic nervous activity and AFib by potentially suppressing ganglionated
plexi [54,55]. In biopsies, explants, or primary cultures obtained from the EAT of 85 pa-
tients that underwent open-heart surgery, M3 mAChR (a Gq/11 protein GPCR that induces
calcium signaling) was found upregulated after adipogenesis induction and cholinergic
fibers in EAT were detected by vesicular ACh transporter levels and acetylcholinesterase
activity [55]. ACh treatment modified the secretome of the EAT of these patients, with vari-
ous EAT-secreted proteins displaying differential levels between patients who developed
AFib post-surgery compared to those who did not [56]. Thus, cholinergic activity of EAT
regulates the interplay among EAT, autonomic nervous system dysfunction, and AFib in a
clinically meaningful manner [57]. Another study examined the relationship between vagal
response during cryoballoon catheter ablation for AFib and cardiac autonomic nervous
system modulation by evaluating EAT locations and heart rate variability analysis [57].
Vagal effects on the cardiac autonomic nervous system in patients with paroxysmal AFib
who underwent second-generation cryo-balloon ablation were compared between patients
receiving vagal stimulation and patients that did not. The vagal response-receiving group
exhibited greater EAT volume encasing the left atrium-left superior pulmonary vein junc-
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tion than the non-vagal stimulated group [57]. Additionally, volume of the EAT occupying
this anatomical location correlated well with changes in heart rate variability immediately
post-cryoablation [57]. Thus, EAT volume on top of the left atrium–left superior pulmonary
vein junction is useful for heart rate variability assessment and autonomic nervous system
modulation of the heart [57]. A similar study from a Turkish group demonstrated that
patients with higher EAT volume displayed significantly more heart rate variability and
turbulence compared to patients with lower volume EAT [58]. The authors concluded
that autonomic imbalance is directly related to EAT thickness and, thus, EAT volume
and composition may play an important arrhythmogenic role, not necessarily limited to
Afib [58]. Further support for this was provided by a study in Japanese obese subjects,
which performed a cross-sectional analysis of their EAT thickness [59]. These authors found
that higher EAT thickness correlated with impaired recovery and lower cardiorespiratory
fitness compared to subjects with lower EAT thickness. Moreover, higher EAT thickness in
men was reported to represent cardiac autonomic dysfunction and poor parasympathetic
response to exercise [59,60].
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Figure 1. Important mechanisms underlying cardiac autonomic dysfunction contributing to heart
failure or AFib pathogenesis, and possible roles of RGS4 in them. SNS, Sympathetic nervous system;
GIRK, G protein-gated (coupled) inwardly rectifying K+ channel; cAMP, Cyclic 3′,5′-adenosine
monophosphate; ACh, Acetylcholine; mAChR: Muscarinic cholinergic receptor; AR, Adrenergic
receptor; IKACh, Cholinergic potassium (hyperpolarizing) current. See text for details.
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Figure 2. Pathophysiological interplay between EAT cells, autonomic neurons, and the myocardium.
EAT dysfunction, caused e.g., by inflammation, increases SNS tone (NE release from sympathetic
neurons), and, perhaps, PNS tone (ACh release) within the heart, through elevated secretion of
adipokines and FFAs. This leads to sympathetic hyperactivity and autonomic dysfunction of the
myocardial cells, contributing to heart failure, AFib pathogenesis, coronary heart disease, and other
myocardial maladies. Of note, the very same adipokines and FFAs, whose secretion from EAT is
increased, can also directly (i.e., independently of autonomic nerve activation) affect the cardiomy-
ocytes, inducing apoptosis, inflammation, and other maladaptive processes that also contribute to
heart failure progression. NE, Norepinephrine; SNS, Sympathetic nervous system; ACh, Acetyl-
choline; PNS, Parasympathetic nervous system; TNFα, Tumor necrosis factor-α; IL-6, Interleukin-6;
LPT, Leptin; ADPN, Adiponectin; PAI-1, Plasminogen activator inhibitor-1; FFAs, Free fatty acids
(saturated). See also text.

Of note, a neural pathway from the cervical vagus trunk to the sinoatrial node and
left atrium has been suggested to run through the sinoatrial node-encasing EAT but to
eventually converge at the atrioventricular node-encasing EAT, thus serving as an “in-
tegration center” for the former EAT in modulation of sinoatrial node function [61]. In
other words, the atrioventricular node-encasing EAT may play a more critical role in the
initiation and maintenance of AFib. However, a study in patients undergoing coronary
artery bypass grafting (CABG) surgery showed that, although maintenance of the EAT
prevented attenuation of parasympathetic tone after CABG, it did not reduce post-surgery
AFib or total hospital costs in any appreciable way [62]. As far as EAT involvement in
diabetic heart abnormalities is concerned, a study examined EAT metabolism in heart
failure patients with or without diabetes and found that the glucose uptake differential
between basal and insulin stimulation was significantly depressed in epicardial vs. control,
subcutaneous adipocytes [63]. Moreover, lipolysis induced by isoproterenol, a βAR full
agonist, was lower in EAT than in subcutaneous fat, correlating well with lipolysis, lipid
storage, and inflammation-related gene expression [63]. Finally, fatty acid composition of
both fat tissues was significantly altered by diabetes. In conclusion, significant metabolic
differences exist between EAT and subcutaneous adipose tissue in diabetic heart failure and
EAT metabolism could be targeted therapeutically for diabetic heart failure treatment [64].

Finally, an Italian study in systolic heart failure patients identified a highly significant
correlation between EAT thickness and the extent of cardiac sympathetic denervation [65].
Specifically, EAT thickness was reported to be useful as an independent predictor of SNS
dysfunction, since left ventricular mass, EAT thickness, and cardiac sympathetic denerva-
tion were found to correlate well with one another in systolic heart failure patients [66].
EAT becomes thicker as cardiac SNS activity decreases and left ventricular mass increases.
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In addition, this study demonstrated that EAT is a source of catecholamines itself, as both
NE and Epi were present in higher concentrations in EAT compared with subcutaneous
adipose tissue [66]. In heart failure patients, NE levels were increased 5.6-fold in EAT
compared with subcutaneous adipose tissue and 2-fold compared with plasma [66]. Impor-
tantly, these increases were attributed to increased catecholamine biosynthesis within the
EAT, since the catecholamine biosynthetic enzymes tyrosine hydroxylase and dopamine
beta-hydroxylase were found massively upregulated at both the mRNA and protein levels,
compared to the control, subcutaneous adipose tissue of the patients [66]. Although the
reported elevations in expression of these enzymes were astonishingly huge (~8-fold for
the mRNAs and ~15-fold (!) for the proteins), raising concerns about the accuracy of the
reported values, this study clearly identified human EAT as a significant source of both
NE and Epi, at least in the context of systolic heart failure, which might contribute to the
well-documented SNS hyperactivity that accompanies and aggravates human heart fail-
ure [65,66]. The increased catecholamine biosynthetic activity of EAT in systolic heart failure,
which is obviously the result of a thickened EAT (higher volume EAT contains more adipocytes
synthesizing more catecholamines), adds to the total catecholamine accumulation in the failing
heart’s EAT [65]. In conclusion, this study provides evidence for EAT thickness being an index
of cardiac SNS activity and derangement and for use in determining prognosis in systolic heart
failure patients. However, whether these findings apply also to diastolic heart failure or HFpEF
(heart failure with preserved ejection fraction) patients [67–69] remains an open question.

5. RGS4 and EAT Regulation

Regulator of G protein Signaling (RGS)-4 is highly expressed in the heart and brain [70–74].
This protein belongs to the B/R4 group of RGS proteins and inactivates Gi/o- and Gq/11 pro-
tein signaling by effectively serving as guanosine triphosphatase activating protein (GAP)
for the alpha subunits of these G proteins [70–75]. Importantly, RGS4 has been reported,
uniquely among RGS proteins, to directly bind Gi/o-derived free Gβγ subunits and phos-
pholipase C (PLC)-β, thereby blocking PLCβ activation and downstream calcium signaling
independently of its GAP action on the Gα subunits [76,77]. RGS4 is abundantly expressed
in the sinoatrial and atrioventricular nodal regions of the heart, as well as throughout the
atrial muscle [78,79]. Exogenous overexpression of RGS4 in cardiomyocytes attenuates
endothelin receptor signaling, reducing PLCβ activation, contractility in the long term,
and cardiac hypertrophy [80–82]. Indeed, RGS4 ameliorates cardiac hypertrophy induced
by pressure overload via direct inhibition of the Gq protein-dependent pro-hypertrophic
signaling in murine hearts [80–82]. RGS4 is upregulated in rat hypertrophic hearts [83]
and, importantly, in human failing hearts from both acute and end stage chronic heart
failure patients [84,85]. Moreover, RGS4 protects against abnormal calcium transients and
signaling that leads to tachyarrhythmias/AFib (Figure 1) [86].

At the same time, RGS4 is essential for the cholinergic regulation of heart rate through
the M2 mAChR [78,87,88]. Indeed, RGS4 (and its homolog RGS6) is required for desen-
sitization and rapid deactivation, as well as normal activation, of M2 mAChR-mediated
IKACh, as it inactivates M2 mAChR-induced Gi/o protein signaling that operates this cur-
rent (Gi/o protein-derived free Gβγ opens the G protein-gated inwardly rectifying K+

channels (GIRKs) responsible for IKACh) (Figure 1) [78,87,88]. Thus, RGS4 may protect
not only against calcium signaling-induced tachyarrhythmias and AFib, but also against
cholinergic-induced bradycardia (Figure 1).

Finally, we recently reported on the crucial role of RGS4 in regulation of the free fatty
acid receptor (FFAR)3, also known as GPR41 [89]. FFAR3 is a GPCR activated by short
chain fatty acids, e.g., propionate, butyrate, and regulates cardiovascular function via
effects in peripheral sympathetic neurons, wherein it promotes neuronal firing and NE
synthesis/release [90]. RGS4 was found to inactivate cardiac FFAR3 Gi/o protein signaling,
resulting in cardioprotection against short chain fatty acid-dependent pro-inflammatory
and pro-fibrotic effects [89]. In addition, cardiac βARs stimulate RGS4 to impede this
FFAR3 signaling [89]. Importantly, RGS4 also opposed FFAR3-dependent NE release from
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sympathetic neurons co-cultured with cardiac myocytes, thereby preserving cardiac βAR
function [89]. This provides another line of evidence for the cardioprotective role of RGS4
against inflammation and fibrosis, two maladaptive processes of the heart known to lead to
AFib, arrhythmias, and heart failure [91,92].

Based on all the above, it is tempting to speculate that RGS4 may be involved in the
autonomic regulation of EAT, as it is clearly (and in a very essential manner) involved in
the autonomic regulation of the myocardium. Investigations of RGS4 expression levels
in human EAT and of potential alterations in epicardial fat RGS4 levels in heart disease
(e.g., heart failure, AFib) are certainly worth pursuing, since RGS4 levels may very well
correlate (in an inverse proportional manner) with levels of SNS and PNS activities in EAT
of cardiovascular patients.

6. Conclusions

Although our understanding of the relationship between EAT and AFib or heart
failure has increased dramatically in recent years, this exciting new field of research is still
in its infancy. An increasing number of clinical and epidemiological studies demonstrate
consistent associations between epicardial fat and AFib, but more research is needed
to establish causation. Additional evidence from larger, prospective cohort studies is
imperative to draw statistically meaningful comparisons of the different visceral adipose
tissues and sub-depots of epicardial fat. Both basic science and translational studies are
needed to enhance our understanding of the mechanisms underlying the role of EAT in
the autonomic dysfunction that precipitates AFib and heart failure. Identification and
validation of novel molecular targets, such as RGS4, whose role in autonomic regulation
of the myocardium and of EAT is only beginning to unravel, will be key to obtaining
the full picture of EAT’s role in cardiac physiology and disease and how to exploit this
fat deposit for therapeutic purposes. Obesity will continue to emerge as a principal risk
factor and causative trigger of both AFib and heart failure, but also of other cardiovascular
diseases in the coming years. Thus, investigations into the roles the various human body fat
depots, including EAT, play in the pathophysiology of AFib and heart failure will certainly
continue to be one of the hottest research areas in biomedicine. The race to come up with
new weapons to equip the cardiologist of the future to combat heart disease is only bound
to intensify.
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