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Abstract: Preeclampsia (PE) occurs in 5% to 7% of all pregnancies, and the PE that results from abnormal
placentation acts as a primary cause of maternal and neonatal morbidity and mortality. The objective
of this secondary analysis was to elucidate the pathogenesis of PE by probing protein–protein interac-
tions from in silico analysis of transcriptomes between PE and normal placenta from Gene Expression
Omnibus (GSE149812). The pathogenesis of PE is apparently determined by associations of miRNA
molecules and their target genes and the degree of changes in their expressions with irregularities in the
functions of hemostasis, vascular systems, and inflammatory processes at the fetal–maternal interface.
These irregularities ultimately lead to impaired placental growth and hypoxic injuries, generally mani-
festing as placental insufficiency. These differentially expressed miRNAs or genes in placental tissue
and/or in blood can serve as novel diagnostic and therapeutic biomarkers.
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1. Introduction

Preeclampsia (PE) is a complication of pregnancy with symptoms of high blood pressure,
proteinuria, or other signs of organ damage, and occurs in 5% to 7% of pregnancies. It is one
of the leading causes of maternal morbidity. Annually, PE causes over 70,000 maternal deaths
and 500,000 fetal deaths worldwide [1]. Risk factors for PE include first pregnancy; previous
occurrence of PE; history of hypertension; chronic kidney disease; history of thrombophilia;
pregnancy from in vitro fertilization; family history of PE; type 1 or type 2 diabetes; a body
mass index (BMI) of ≥35 kg/m2; advanced maternal age (≥40 years); and prolonged interval
since last pregnancy [2].

Genetic factors were associated with the occurrence of PE [3]. In a previous study
by Moufarrej et al. (2022), marked cell-free RNA (cfRNA) transcriptomic changes were
observed between normotensive and preeclamptic mothers early in gestation, well before
the onset of PE symptoms [4]. Furthermore, their study validated a panel of 18 genes
using cfRNA expression to identify the mothers at risk of preeclampsia at 5 to 16 weeks of
gestation, long before the manifestation of clinical symptoms [4].

Preeclampsia that originates from abnormal placentation primarily causes maternal and
neonatal morbidity and mortality [5,6]. However, the cause of the abnormal development of
the placenta remains poorly understood [7,8]. Genes were found to be differentially expressed
between PE and normal placenta tissues and were associated with PE pathogenesis [5]. Hence,
studies have been focused on the genetic signature of the placenta from preeclampsia.

Recent advances in high-throughput in silico techniques portray experimental data
into exemplified biological networks. Exploring these biological networks can disclose
the role of individual proteins, protein–protein interactions (PPIs), and corresponding
biological functions. This study intended to use the transcriptomic profiling of mRNA in
preeclamptic (PE) and normal placentae from Gene Expression Omnibus (GSE149812) for
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further in silico analysis to elucidate the involvement of placenta-specific miRNA in the
pathogenesis of PE.

2. Materials and Methods

In this study, differentially expressed PE-associated genes were identified from tran-
scriptome data of PE and normal placenta samples. The gene expression data (profiled by
microarray) and clinical characteristics were downloaded from the Gene Expression Om-
nibus (GSE149812; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149812;
Accessed 7 July 2023). In the primary data, the description included patients’ clinical char-
acteristics, tissue collection, RNA extraction, and microarray analysis methods. An excerpt
of the description is provided below in Sections 2.1 and 2.2.

2.1. Patients and Tissue Collection

Placental biopsies were obtained during cesarean section from both normotensive
patients (n = 3) and those with preeclampsia (n = 3) (early onset type of PE; <31 weeks
of gestation). All patients involved in this study were recruited from the Department of
Obstetrics and Gynecology, the Third Xiangya Hospital, Central South University, Hunan,
China. Pieces of villous tissue (0.5 × 0.5 × 0.5 cm3), approximately 2 cm beside the umbilical
cord insertion, from the middle layer of the placenta midway between the maternal and
fetal surfaces from different areas, were excised, excluding sites of hemorrhage, infarction,
and fibrin deposition. Tissues were immediately placed in 1.0 mL RNAstore Reagent
(CWbiotech Company, Taizhou, China), and then stored at −80 ◦C until use.

2.2. RNA Extraction and Microarray Analysis

Total RNA was extracted using TRIzol following the manufacturer’s instructions.
Cyanine-3 (Cy3) labeled complementary RNA (cRNA) was prepared from 0.5 µg RNA
using the One-Color Low RNA Input Linear Amplification PLUS kit (Agilent Tech. Inc.,
Santa Clara, CA, USA), followed by RNAeasy column purification (Qiagen Inc., Valencia,
CA, USA). The cRNA yield was checked by an ND-1000 Spectrophotometer. Then, 1.5 µg
of Cy3-labeled cRNA (specific activity > 10.0 pmol Cy3/µg cRNA) was fragmented at
60 ◦C for 30 min in a reaction volume of 250 mL containing 1× Agilent fragmentation
buffer and 2 × Agilent blocking buffer. On completion of the fragmentation reaction,
250 mL of 2 × Agilent hybridization buffer was added to the fragmentation mixture and
hybridized to Phalanx Human OneArray ver. 6 Release 1 for 17 h at 65 ◦C in a rotating
Agilent hybridization oven. After hybridization, microarray slides were washed for 1 min
at room temperature with GE wash buffer 1 (Agilent) and 1 min with 37 ◦C GE wash
buffer 2 (Agilent) and then dried immediately by brief centrifugation. Slides were scanned
immediately after washing on an Agilent DNA Microarray Scanner (G2505B) using one
color scan setting for 1 × 44k array slides (scan area of 61 × 21.6 mm2; scan resolution of
10 µm; dye channel set to Green, and Green PMT was set to 100%). The scanned images
were analyzed using Feature Extraction Software 9.1 (Agilent).

2.3. Data Processing

The data were analyzed with GEO2R to identify genes that are differentially expressed
between the two groups. GEO2R uses DESeq2, which is an R package for identifying differ-
entially expressed genes from RNA-seq data [9,10] using negative binomial generalized
linear models, which are suitable for studies with few replicates [10]. A 5-fold relative
difference (p ≤ 0.05) was used as a cut-off for the selection of differentially expressed
(upregulated and downregulated) genes for further in silico analysis.

2.4. In Silico Analysis
2.4.1. Prediction and Analysis of Differentially Expressed Genes

The updated miRNet (http://www.mirnet.ca/, accessed on 1 July 2023) platform was
used [11] to perform interaction analysis, separately, for upregulated and downregulated
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genes. The degree (defined by the number of connections a node has to other nodes) and
betweenness (defined by the number of connections occurring upon a node) of miRNAs
and genes in the network were determined.

2.4.2. Gene Ontology and Functional Annotation Analysis of Genes with the Highest
Degree and Betweenness Centrality

The top 20 up- and downregulated genes with the highest degree and betweenness
centrality were selected, and their tissue expression, associated interacting genes (up
to 6 genes; http://stringdb.org/; accessed on 6 July 2023), and single-cell normalized
expression (https://www.proteinatlas.org/; accessed on 6 July 2023) were investigated.

2.4.3. Gene Ontology Enrichment and KEGG Pathway Analysis

All differentially expressed genes from the network were retrieved to recognize
PPIs. The PPI network was created using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) online database (http://stringdb.org/; accessed on 1 July 2023)
separately for upregulated and downregulated genes [12]. Gene Ontology (GO) functional
annotation for biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were also performed. A p-value of <0.05 was regarded as
statistically significant.

2.4.4. Identification and Analysis of Hub Gene

The PPI networks for upregulated and downregulated genes from the STRING
database were exported to Cytoscape software (version 3.10) [13]. The hub genes were
selected as the top 20 nodes of the PPI network using the Maximal Clique Centrality (MCC)
method [14], which has a better performance on the precision of predicting top essential
proteins. Further analysis was performed using ClueGO [15] to integrate GO terms as
well as KEGG pathways and create a functionally nested or organized GO/pathway term
(k-score = 3). This task compares one set of genes or two lists of genes and comprehensively
visualizes functionally grouped terms [15].

2.4.5. Gene Ontology and Functional Annotation Analysis of Hub Genes

The hub genes and their roles, tissue expression, and protein–protein interactions
(up to 6 closely related genes) for differentially expressed genes in women with PE
from STRING (http://stringdb.org/; accessed on 4 July 2023) and human protein atlas
(https://www.proteinatlas.org; accessed on 4 July 2023) were investigated. To substantiate
their presence, tissue expression and organelle localization were presented.

2.4.6. Comparison of miRNAs of Different Types of Preeclampsia

For comparison of different types (early- vs. late-onset; mild vs. severe) of preeclamp-
sia, we selected DE genes in early-onset severe preeclampsia, late-onset severe preeclampsia,
and late-onset mild preeclampsia from RNA-seq on 65 high-quality placenta samples that
included 33 from 30 PE patients and 32 from 30 control subjects reported by Ren et al.,
2021 [16]. These DE gene sets representing different types of PE were subjected to gene-
miRNA interaction analysis.

3. Results

The transcriptomic (mRNA) profiling between PE and normal placenta tissues from
Gene Expression Omnibus (GSE149812) recognized 28,254 genes (Supplementary File S1).
There were 79 and 60 up- and downregulated genes, respectively (Supplementary File
S1). Of those differentially expressed genes, 52 and 42 up- and downregulated genes,
respectively, were at a 5-fold difference (p ≤ 0.05; Supplementary File S2). The gene–
miRNA interaction network analysis revealed the involvement of 45 upregulated and
32 downregulated genes.
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From the gene–miRNA interaction network analysis, the degree and betweenness
for the 45 upregulated genes were calculated. The 45 upregulated genes interacted with
829 miRNAs and 33 transcription factors (Figure 1). The degree and betweenness ranged
from 1 to 19 and 0 to 16,641.0, respectively, for the 829 interacting miRNAs. The degree
and betweenness ranged from 1 to 169 and 0 to 62,836.6, respectively, for the 45 upreg-
ulated genes. The degree and betweenness of the gene–miRNA interaction network for
upregulated miRNAs is shown in Supplementary File S2.
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that interacted with 829 miRNAs and 33 transcription factors (p < 0.05). Green circles denote genes.
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Similarly, from the gene–miRNA interaction network analysis, the degree and be-
tweenness for 36 downregulated genes were calculated. The 36 downregulated genes
interacted with 1057 miRNAs and 39 transcription factors (Figure 2). The degree and
betweenness ranged from 1 to 19 and 0 to 24,476.6 for the 1057 interacting miRNAs. The de-
gree and betweenness ranged from 1 to 223 and 0 to 161,133.4 for the 36 downregulated
genes. The degree and betweenness of the gene–miRNA interaction network for the
downregulated miRNAs is shown in Supplementary File S3.

The interaction network for the top 20 upregulated genes is presented in Figure 3.
The degree and betweenness ranged from 28 to 129 and 12,741.0 to 62,386.6 for the top
20 upregulated genes (Table 1). The interaction network for the top 20 downregulated
genes is presented in Figure 4. The degree and betweenness ranged from 44 to 223 and
22,680.9 to 161,133.4 for the top 20 downregulated genes (Table 2). In addition, the top
up- and downregulated genes’ tissue expressions, single-cell normalized expressions
(https://www.proteinatlas.org/; accessed on 7 July 2023), and functions are given in
Tables 3 and 4, respectively.
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Table 1. Top 20 upregulated genes in the placenta with high degree and betweenness centrality in
preeclamptic compared to normotensive women.

High Degree Centrality High Betweenness Centrality

# ID Degree Betweenness # ID Degree Betweenness

1 TGFBR1 129 62,386.63603 1 DUSP4 124 66,214.0901
2 DUSP4 124 66,214.0901 2 TGFBR1 129 62,386.63603
3 TMCC1 122 60,207.54204 3 TMCC1 122 60,207.54204
4 EMP1 113 59,488.02209 4 EMP1 113 59,488.02209
5 BHLHE40 111 53,832.72771 5 BHLHE40 111 53,832.72771
6 PDS5A 105 46,221.20935 6 PDS5A 105 46,221.20935
7 PPIG 96 41,670.73543 7 PPIG 96 41,670.73543
8 IPPK 70 28,805.24642 8 SFT2D3 61 32,179.26096
9 STIP1 65 27,238.03764 9 IPPK 70 28,805.24642
10 DESI2 62 17,175.83835 10 STIP1 65 27,238.03764
11 SFT2D3 61 32,179.26096 11 PHLDA2 52 26,712.22297
12 SORL1 59 21,899.50057 12 FLT1 57 23,913.42422
13 FLT1 57 23,913.42422 13 MRPL49 44 23,540.21993
14 PHLDA2 52 26,712.22297 14 GJB7 40 22,523.85633
15 MRPL49 44 23,540.21993 15 SORL1 59 21,899.50057
16 GJB7 40 22,523.85633 16 TMEM54 36 18,180.58635
17 TMEM54 36 18,180.58635 17 DESI2 62 17,175.83835
18 DHFR 34 10,104.03447 18 SSX5 22 13,882.13629
19 RASSF6 32 13,330.8966 19 RASSF6 32 13,330.8966
20 HLA-DQA1 28 12,741.03278 20 HLA-DQA1 28 12,741.03278

All genes that showed high degree centrality also had high betweenness centrality except the gene in bold letters.
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Table 2. Top 20 downregulated genes in the placenta with high degree and betweenness centrality in
preeclamptic compared to normotensive women.

High Degree Centrality High Betweenness Centrality

# ID Degree Betweenness # ID Degree Betweenness

1 KPNA6 223 161,133.371 1 KPNA6 223 161,133.371
2 ATP6V0E1 152 90,977.3419 2 ATP6V0E1 152 90,977.34186
3 KLF6 129 75,754.0689 3 KLF6 129 75,754.06887
4 SIKE1 118 60,992.2768 4 PLEKHG2 112 71,728.72334
5 PLEKHG2 112 71,728.7233 5 ZNF85 98 67,140.10746
6 ZNF85 98 67,140.1075 6 SIKE1 118 60,992.27675
7 EMC3 92 53,114.7673 7 EMC3 92 53,114.76726
8 GALNT2 83 38,016.4527 8 VDAC2 69 52,426.38509
9 TBC1D15 83 48,514.111 9 TBC1D15 83 48,514.11101

10 ATF2 81 35,905.8297 10 GALNT2 83 38,016.45269
11 VDAC2 69 52,426.3851 11 ATF2 81 35,905.8297
12 AMBRA1 55 27,918.5407 12 IFNG 41 32,732.16167
13 RAB40C 51 23,353.295 13 AMBRA1 55 27,918.54066
14 ZNF257 51 27,233.8438 14 ZNF486 49 27,772.96946
15 ZNF429 51 24,069.767 15 EXOC2 49 27,644.24328
16 EXOC2 49 27,644.2433 16 ZNF257 51 27,233.84385
17 ZNF486 49 27,772.9695 17 GUCY1A2 47 25,416.96916
18 ZNF253 47 23,149.4803 18 ZNF429 51 24,069.76705
19 GUCY1A2 47 25,416.9692 19 RAB40C 51 23,353.29504
20 POU3F2 44 22,680.8773 20 ZNF253 47 23,149.48028

All genes that showed high degree centrality also had high betweenness centrality except the genes in bold letters.

Table 3. Top 20 upregulated genes (in the placenta with a high degree and betweenness centrality)
and their tissue and single-cell expressions, associated genes, and functions.

Gene Tissue Expression Single-Cell Normalized Expression (nTPM) Associated Genes Functions

TGFBR1 Ovary, uterus placenta Cyto 22.1; Syncytio: 18.4; extravillous: 7.3;
Endometrium 21.2

FKBP1A, TGFB1, TGFB3,
TGFBR2, SMAD7

Regulates cellular process: proliferation,
maturation, differentiation, motility,

and apoptosis

DUSP4 Ovary, uterus placenta Cyto 3.0; Syncytio: 24.9; extravillous: 48.8;
Endometrium 13.7

MAPK1, MAPK3, MAPK7,
MAPK8, MAPK9

Regulates cell proliferation
and differentiation

TMCC1 Ovary, uterus placenta Cyto: 10.4; Syncytio: 27.3; extravillous: 0.6;
Endometrium 14.2

PLEC, RSP10,
RSP10-NUDT3, RSP12,

RSP18A, RSP19

Regulates endosome fission; endosome
membrane tubulation; and

membrane fission

EMP1 Ovary, uterus placenta Cyto: 0.7; Syncytio: 0.7; extravillous: 0.6;
Endometrium 161.6

CCL4, LPAR6, LAPTM4B,
PMP22, SMIM3 Regulates cell proliferation and migration

BHLHE40 Ovary, uterus placenta Cyto: 31,8; Syncytio: 165.5; extravillous: 94.7;
Endometrium 68.0

BTRC, HDAC1, RXRA,
TP53, SMAP2

Regulates circadian rhythm and
cell differentiation

PDS5A Ovary, uterus placenta Cyto: 32.6; Syncytio: 37.7; extravillous: 39.0;
Endometrium 47.3

RAD21, SMC1A, SMC3,
STAG2, WAPAL

Regulates chromatid cohesion
during mitosis

PPIG Ovary, uterus placenta Cyto: 186.3; Syncytio: 241.4; extravillous:
200.9; Endometrium 146.2

BUD31, PCBP1, PRPF8,
PRPF19, SNW1

Regulates folding, transport, and
assembly of proteins, and

pre-mRNA splicing

IPPK Ovary, uterus placenta Cyto: 10.9; Syncytio: 23.7; extravillous: 14.8;
Endometrium 4.6

EPB41L4A, FRMD5, LPAR1,
MPKAPK5, VRK1

Regulates DNA repair, endocytosis, and
mRNA export

STIP1 Ovary, uterus placenta Cyto: 127.7; Syncytio: 210.3; extravillous:
143.4; Endometrium 48.8

HSP8, HSPA1A, HSP90AA1,
HSP90AB1, PTGES3 Regulates heat shock proteins

DESI2 Ovary, uterus placenta Cyto: 30.7; Syncytio: 43.8; extravillous: 42.9;
Endometrium 39.9

DDX5, E2F8, NPM1,
NUP107, RPA1, UBE21 Regulates protein deubiquitination

SFT2D3 Ovary, uterus placenta Cyto: 4.3; Syncytio: 3.0; extravillous: 4.2;
Endometrium 8.9

ADHFE1, ADACC, COG1,
PSAT1, TMEM24, TSGA13

Regulates protein transport and
vesicle-mediated transport

SORL1 Ovary, uterus placenta Cyto: 0.2; Syncytio: 0.4; extravillous: 2444.5;
Endometrium 2.9

APP, APOE, CGA1,
LRPAP1, VPS35 Regulates protein transport

FLT1 Ovary, uterus placenta Cyto: 182.7; Syncytio: 10,058.3; extravillous:
980.8; Endometrium 1.4

KDR, PGF, PTPN11,
VEGFA, VEGFB

Regulates angiogenesis
and vasculogenesis

PHLDA2 Ovary, uterus placenta Cyto: 4565.5; Syncytio: 365.0; extravillous:
336.1; Endometrium 27.9 RANBP9, SUCO, SRC Regulates fetal and placental growth

MRPL49 Ovary, uterus placenta Cyto: 63.8; Syncytio: 119.5; extravillous: 49.1;
Endometrium 11.3

COX15, TIMM10,
METTL18, NXF1, FBXW11

Regulates protein metabolism and
mitochondrial translation

GJB7 Ovary, uterus placenta Cyto: 10.7; Syncytio: 8.9; extravillous: 4.7;
Endometrium 0.7

ARVCF, FYN, PAG1,
PPP2R5E, ULBP2

Regulates gap junction trafficking and
vesicle-mediated transport

TMEM54 Ovary, uterus placenta Cyto: 48.2; Syncytio: 64.7; extravillous: 169.6;
Endometrium 16.9

CREB3, CDK2, HDAC1,
LMNA, PEX19, RARA Regulates membrane function

DHFR Ovary, uterus placenta Cyto: 34.5; Syncytio: 12.1; extravillous: 40.1;
Endometrium 6.9

FOX1, HSPD1, MDM2,
FKBP1A, TP53,

Regulates folate metabolism and glycine
and purine synthesis

RASSF6 Ovary, uterus placenta Cyto: 54.5; Syncytio: 48.9; extravillous: 24.8;
Endometrium 2.0

AMY1A, DLG1, KDM3A,
HECTD1, SAV1, STK4 Regulates cell cycle arrest and apoptosis

HLA-
DQA1 Ovary, uterus placenta Cyto: 6.9; Syncytio: 4.8; extravillous: 10.7;

Endometrium 33.4
CD74, HLA-DQB1, KCNJ8,
ST7, SLC38A9, TMEM214 Regulates immune function

SSX5 Ovary, uterus placenta Cyto: 0; Syncytio: 0; extravillous: 0;
Endometrium 0

AGTRAP, PCBD2, NFE2,
SSX2, ZSCAN1 Regulates immune function

Cyto—Cytotrophoblast; Syncytio—syncytiotrophoblast; extravillous—extravillous trophoblast; Endometrium—
endometrial stromal cells.
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Table 4. Top 20 downregulated genes (in the placenta with a high degree and betweenness centrality)
and their tissue and single-cell expressions, associated genes, and functions.

Gene Tissue Expression Single-Cell Normalized Expression (nTPM) Associated Genes Functions

KPNA6 Ovary, uterus placenta Cyto 41.2; Syncytio: 138.3; extravillous: 37.6;
Endometrium 39.7

HDAC1, KPNB1, LMNA,
NUP50, RELB Regulates protein transport

ATP6V0E1 Ovary, uterus placenta Cyto 511.0; Syncytio: 985.2; extravillous:
643.8; Endometrium 199.9

ACP2, SLC7A2, CCDC115,
PTPRF, TMEM199

Regulates protein transport and pH of
intercellular compartments

KLF6 Ovary, uterus placenta Cyto: 176.5; Syncytio: 217.0; extravillous:
539.4; Endometrium 616.8

HDAC3, KLF4, LCOR,
RELA, SP1 Regulates cell growth

SIKE1 Ovary, uterus placenta Cyto: 30.8; Syncytio: 38.0; extravillous: 36.2;
Endometrium 34.4

PPP2R1A, PPP2CA, STRN4,
STK24, STK25, TRAF3IP3

Plays inhibitory role in virus- and
TLR3-triggered IRF3

PLEKHG2 Ovary, uterus placenta Cyto: 0.7; Syncytio: 0.6; extravillous: 2.9;
Endometrium 18.6

CDC42, GNB1, GNG2,
RAC1, RHOA

Regulates lymphocyte chemotaxis via Rac
and Cdc42 activation and

actin polymerization

ZNF85 Ovary, uterus placenta Cyto: 10.5; Syncytio: 6.1; extravillous: 15.4;
Endometrium 4.0 CEP76, TRIM28 Regulates DNA templated transcription

EMC3 Ovary, uterus placenta Cyto: 50.9; Syncytio: 91.6; extravillous: 57.7;
Endometrium 50.2

EMC1, EMC2, EMC4,
EMC6, MMGT1 Regulates membrane insertase activity

GALNT2 Ovary, uterus placenta Cyto: 6.9; Syncytio: 14.1; extravillous: 141.2;
Endometrium 13.3

AP4M1, AP4S1, MMGT1,
MRPS5, ZMPSTE24 Regulates glycosylation of protein

TBC1D15 Ovary, uterus placenta Cyto: 20.5; Syncytio: 48.2; extravillous: 16.3;
Endometrium 39.6

CCDC121, CEP23, OPTN,
TBC1D17, UBXN8

Regulates GTPase activator activity and
mitochondrial morphology

ATF2 Ovary, uterus placenta Cyto: 13.9; Syncytio: 6.0; extravillous: 13.5;
Endometrium 28.1

FOS, JUN, MAPK8,
MAPK9, MAPK14

Regulates transcription of various genes
involved in apoptosis, cell growth,

proliferation, inflammation, and DNA
damage response

VDAC2 Ovary, uterus placenta Cyto: 334.2; Syncytio: 399.4; extravillous:
470.9; Endometrium 107.0

COX4I1, NDUFS4, PHB,
PHB2, VDAC2

Regulates oxidative metabolism, ion
transport, cell apoptosis

AMBRA1 Ovary, uterus placenta Cyto: 3.9; Syncytio: 7.3; extravillous: 2.0;
Endometrium 4.8

BECN1, CUL4A, DDA1,
DDB1, TCEB2

Regulates mitophagy, cell proliferation,
cell cycle progression

RAB40C Ovary, uterus placenta Cyto: 26.0; Syncytio: 51.3; extravillous: 15.8;
Endometrium 6.7

CUX2, CUX2,
ENSP00000447000, RAB40B,

SARNP

Regulates protein metabolism
and autophagy

ZNF257 Ovary, uterus placenta Cyto: 4.2; Syncytio: 3.0; extravillous: 5.5;
Endometrium 1.4

HIST1H3A, SSRP1, CTCF,
GL13, ZNF 513, ZNF710,

ZNF768

Regulates DNA templated transcription,
apoptosis, protein folding and assembly,

and lipid binding

ZNF429 Ovary, uterus placenta Cyto: 14.7; Syncytio: 12.7; extravillous: 11.7;
Endometrium 10.3

CTCF, GL13, ZNF 513,
ZNF710, ZNF768

Regulates transcription by RNA
polymerase II, apoptosis, protein folding

and assembly, and lipid binding

EXOC2 Ovary, uterus placenta Cyto: 15.3.; Syncytio: 13.9; extravillous: 6.6;
Endometrium 6.2

EXOC3, EXOC4, EXOC5,
EXOC6, EXOC7

Regulates polarized targeting of exocytic
vesicles to specific docking sites on the

plasma membrane

ZNF486 Ovary, uterus placenta Cyto: 4.6; Syncytio: 1.8; extravillous: 15.7;
Endometrium 6.5

CTCF, GL13, ZNF 513,
ZNF710, ZNF768

Regulates DNA templated transcription,
apoptosis, protein folding and assembly,

and lipid binding

ZNF253 Ovary, uterus placenta Cyto: 5.5; Syncytio: 4.5; extravillous: 3.4;
Endometrium 5.2

AKR1B1, LDOC1, CTCF,
ZNF 513, ZNF710

Regulates DNA templated transcription,
apoptosis, protein folding and assembly,

and lipid binding

GUCY1A2 Ovary, uterus placenta Cyto: 0.1; Syncytio: 0.2; extravillous: 0.0;
Endometrium 2.0

GUCY1B3, DLG1, DLG2,
DLG3, DLG4

Regulates conversion of GTP to 3’,5’-cyclic
GMP and pyrophosphate

POU3F2 Ovary, uterus placenta Cyto: 0.0; Syncytio: 0.0; extravillous: 0.1;
Endometrium 0.1

POU4F1, POU4F2, POU4F3,
SOX10, TFCP2

Regulates neuronal differentiation and
activation of CRH regulated genes

IFNG Ovary, uterus placenta Cyto: 0.1; Syncytio: 0.1; extravillous: 0.1;
Endometrium 0.9

FOXP3, IFNGR1, IFNGR2,
RUNX1, TRIM2

Regulates cellular response to viral and
microbial infections

Cyto—Cytotrophoblast; Syncytio—syncytiotrophoblast; extravillous—extravillous trophoblast; Endometrium—
endometrial stromal cells.

After determining the degree and betweenness, the up- and downregulated genes that
were 5-fold different (p < 0.05) were submitted (http://stringdb.org/; accessed on 7 July 2023)
to elucidate enrichment networks. Figure 5 shows the PPIs for the upregulated genes (78 nodes;
193 edges; PPI enrichment with p < 1.0 × 10−16), revealing 225 significantly enriched biological
process GO terms (False Recovery Rate, p ≤ 0.05) and 54 significant (False Recovery Rate,
p ≤ 0.05) KEGG enrichment pathways (Supplementary File S2). Figure 6 shows the PPIs for
the downregulated genes (73 nodes and 293 edges, PPI enrichment p-value of <1.0 × 10−16),
revealing 268 significantly enriched biological process GO terms (False Recovery Rate, p ≤ 0.05)
and 87 significant (False Recovery Rate, p ≤ 0.05) KEGG enrichment pathways (Supplementary
File S3). The PPI networks for the up- and downregulated genes were separately constructed
using the STRING database and Cytoscape software (Version 3.9). The top-ranked 20 hub
genes using the Maximal Clique Centrality (MCC) method for up- and downregulated genes
were screened and are presented in Figures 7 and 8, respectively. To interpret functionally
nested gene ontology and pathway annotation networks for up- and downregulated genes
in the PE placenta, ClueGo nested network analysis was performed, and the results are pre-

http://stringdb.org/
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sented in Figure 9A–C and Figure 10A–C, respectively. The enrichment path from the ClueGo
nested network analysis is presented in Supplementary File S4 (False Recovery Rate, p < 0.05).
Tables 5 and 6 show the hub genes and their roles, tissue expressions, and protein–protein
interactions (up to six closely related genes) for up-and downregulated genes in the PE placenta.
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Figure 5. STRING protein–protein interaction (PPI) network. PPI network for the upregulated genes
(≥5-fold expression; 78 nodes; 193 edges; PPI enrichment with p < 1.0 × 10−16). The node color
represents proteins. The edges represent interactions. Note: Some interacting proteins/transcription
factors are common for upregulated and downregulated genes.

For the comparison of miRNAs of different types (early-onset severe preeclampsia, late-
onset severe preeclampsia, and late-onset mild) of preeclampsia, the top 20 molecular markers
(genes and miRNAs with high betweenness) were selected and compared. Six miRNAs (hsa-
mir-124-3p, hsa-mir-1-3p, hsa-mir-146a-5p, hsa-mir-16-5p, hsa-mir-27a-3p, and hsa-mir-34a-5p)
signifying all three PE types were recognized. Upon further comparison, it was realized that
five (hsa-mir-1-3p, hsa-mir-146a-5p, hsa-mir-16-5p, hsa-mir-27a-3p, and hsa-mir-34a-5p) of
these six miRNAs were the top miRNAs identified from the current analysis.
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Figure 7. Interactions among hub genes (ARNT, ARNTL, CLOCK, CREBBP, CREBP1, E2F1, EGR1, EPAS1, ESR1, ETS1, 
NFKB1, NR3C1, RB1, RELA, SMARCA4, SP1, TFD1, TP53, VDR and VHL) of upregulated genes in the protein–protein 
interaction network. The dark to light colors denotes high to low degrees of expression. Black lines indicate interactions 
between genes. 

 

Figure 7. Interactions among hub genes (ARNT, ARNTL, CLOCK, CREBBP, CREBP1, E2F1, EGR1,
EPAS1, ESR1, ETS1, NFKB1, NR3C1, RB1, RELA, SMARCA4, SP1, TFD1, TP53, VDR and VHL) of
upregulated genes in the protein–protein interaction network. The dark to light colors denotes high
to low degrees of expression. Black lines indicate interactions between genes.
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Figure 8. Interactions among hub genes (ATF3, CREB1, EGR1, EP300, GATA1, GATA3, IFNG, IRF1,
JUN, NFKB1, NR3C1, RELA, SP1, STAT1, STAT3, STAT4, STAT5A, STAT5B, TBX21, and YY1) of
downregulated genes in the protein–protein interaction network. The dark to light colors denotes
high to low degrees of expression. Black lines indicate interactions between genes.
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Figure 9. ClueGO analysis of upregulated genes. (A) Functionally grouped network with terms as 
nodes linked based on their kappa score level (≥0.4), where only the label of the most significant 
term per group is shown. The node size represents the term enrichment significance. Functionally 
related groups partially overlap. The grey color gradient shows the gene proportion of each cluster 
associated with the term. (B) Overview chart with functional groups including specific terms for 
upregulated genes. ** p < 0.001. (C) GO/pathway terms specific for upregulated genes. The bars 
represent the number of genes (in red) associated with the terms. The percentage of genes per term 
is shown as a bar label. 

 

 

 

 

 

Figure 9. ClueGO analysis of upregulated genes. (A) Functionally grouped network with terms as
nodes linked based on their kappa score level (≥0.4), where only the label of the most significant term
per group is shown. The node size represents the term enrichment significance. Functionally related
groups partially overlap. The grey color gradient shows the gene proportion of each cluster associated
with the term. (B) Overview chart with functional groups including specific terms for upregulated
genes. ** p < 0.001. (C) GO/pathway terms specific for upregulated genes. The bars represent the
number of genes (in red) associated with the terms. The percentage of genes per term is shown as a
bar label.
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Figure 10. ClueGO analysis of downregulated genes. (A) Functionally grouped network with terms as
nodes linked based on their kappa score level (≥0.4), where only the label of the most significant term
per group is shown. The node size represents the term enrichment significance. Functionally related
groups partially overlap. The grey color gradient shows the gene proportion of each cluster associated
with the term. (B) Overview chart with functional groups including specific terms for upregulated
genes. ** p < 0.001. (C) GO/pathway terms specific for upregulated genes. The bars represent the
number of genes associated with the terms. The percentage of genes per term is shown as a bar label.

Table 5. Top 20 upregulated hub genes and their tissue and single-cell expressions, associated genes,
and functions.

Hub Gene Tissue Expression Single-Cell Normalized Expression (nTPM) Associated Genes Functions

ARNTL Ovary, uterus placenta Cyto 17.0; Syncytio: 6.1; extravillous: 1.3;
Endometrium 13.9

CLOCK, CRY1 CRY2,
NPAS2, PER2

Regulates molecular circadian rhythm,
myogenesis, adipogenesis, hormone

production, cell proliferation

CLOCK Ovary, uterus placenta Cyto 11.3; Syncytio: 6.3; extravillous: 7.0;
Endometrium 35.2

ARNTL, CIPC, CRY1
CRY2, PER2 Regulates molecular circadian rhythm

NR3C1 Ovary, uterus placenta Cyto: 48.6; Syncytio: 36.6; extravillous: 44.2;
Endometrium 28.5

HSP90AA1, NCOA1,
NCOa2, NCOR, SMARCA4

Regulates hypothalamic–
pituitary–adrenal (HPA) axis by

modulating availability of the cortisol

ETS1 Ovary, uterus placenta Cyto: 0.1; Syncytio: 0.3; extravillous: 0.4;
Endometrium 49.7

CREBBP, FOXO1, NFKB2,
PAX5, RUNX1 Regulates immune cell function

EGR1 Ovary, uterus placenta Cyto: 154.9; Syncytio: 165.7; extravillous:
106.1; Endometrium 783.3

EP300, JUNDB, JUNDD,
NAB1, TP53

Regulates attachment and survival of
normal cells and induces apoptosis in

abnormal cells
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Table 5. Cont.

Hub Gene Tissue Expression Single-Cell Normalized Expression (nTPM) Associated Genes Functions

NFKB1 Ovary, uterus placenta Cyto: 15.2; Syncytio:13.5; extravillous: 17.3;
Endometrium 60.4

NFKB1A, RELA, CHUK,
IFBKB, RELB Regulate genes

CREBBP Ovary, uterus placenta Cyto: 17.2; Syncytio: 32.2; extravillous: 11.1;
Endometrium 52.1

CREB1, HIF1A, KMT2A,
MYB, TP53

Regulates cell growth and division and
prompting cells to mature and

differentiate

SMARCA4 Ovary, uterus placenta Cyto: 72.5; Syncytio: 70.3; extravillous: 62.4;
Endometrium 46.0

SMARCB1, SMARCC1,
SMARCC2, SMARCD1,

SMARCE1
Regulates chromatin remodeling

ESR1 Ovary, uterus placenta Cyto: 0.1; Syncytio: -; extravillous: -;
Endometrium 72.4

EP300, NCOA1, NCOA2,
NR2F1, NR2F2

Regulates many biological functions
including growth, differentiation and

function of female reproductive system,
hormone binding, immune function

RELA Ovary, uterus placenta Cyto: 23.0; Syncytio: 47.7; extravillous: 27.7;
Endometrium 24.8

BRD4, CREBBPEP300,
NFKB1, NFKB1A

Regulate genes involved in apoptosis,
inflammation, the immune response, and

proliferation

CREB1 Ovary, uterus placenta Cyto: 30.1; Syncytio: 18.7; extravillous: 25.9;
Endometrium 37.8

CREBBP, CRTC2, EP300,
RPS6KA5, TP53

Regulates proliferation, migration, and
invasion of cells

VDR Ovary, uterus placenta Cyto: 0.1; Syncytio: 0.2; extravillous: 0.1;
Endometrium 0.5

NCOA1, NCOA2, NCOA3,
MED1, RXRA

Induces a surge of cell signaling to
maintain healthy Ca2+ levels that serve to

regulate several biological functions

TP53 Ovary, uterus placenta Cyto: 39.7; Syncytio: 20.4; extravillous: 40.6;
Endometrium 28.3

CREBBP, EP300, MDM2,
MDM4, RPZ27A Regulates cell division and apoptosis

EPAS1 Ovary, uterus placenta Cyto: 118.5; Syncytio: 365.0; extravillous:
336.1; Endometrium 31.3

ARNT, EGLN1, VHL,
TCEB1, TCEB2

Regulates cell division, angiogenesis,
adaptation to changing oxygen level

ARNT Ovary, uterus placenta Cyto: 24.1; Syncytio: 32.4; extravillous: 40.3;
Endometrium 21.8

AHR, EPAS1, HIF1A,
NPAS3, SIM2 Regulates placentation

VHL Ovary, uterus placenta Cyto: 35.3; Syncytio: 34.0; extravillous: 35.0;
Endometrium 37.8

EPAS1, CUL2, HIF1A,
TCEB1, TCEB2 Regulates cell growth and division

SP1 Ovary, uterus placenta Cyto: 16.3; Syncytio: 22.4; extravillous: 17.0;
Endometrium 22.3

EP300, ESR1, HDAC1,
HDAC2, TP53

Regulates cell cycle, hormonal activation,
apoptosis, and angiogenesis

E2F1 Ovary, uterus placenta Cyto: 5.3; Syncytio: 2.1; extravillous: 8.8;
Endometrium 1.0

CCNA2, DP2, RB1, RBL1,
TFDP1

Regulates cell cycle progression, DNA
repair, apoptosis

TFDP1 Ovary, uterus placenta Cyto: 85.2; Syncytio: 60.0; extravillous: 123.9;
Endometrium 27.1 E2F1, E2F4, E2F5, E2F6, RB1 Regulates cell cycle progression

RB1 Ovary, uterus placenta Cyto: 6.9; Syncytio: 4.8; extravillous: 10.7;
Endometrium 33.4

CCND1, CDK4, DNMT1,
E2F1, TFDP1 Regulates cell growth and division

Cyto—Cytotrophoblast; Syncytio—syncytiotrophoblast; extravillous—extravillous trophoblast; Endometrium—
endometrial stromal cells.

Table 6. Top 20 downregulated hub genes and their tissue and single-cell expressions, associated
genes, and functions.

Hub Gene Tissue Expression Single-Cell Normalized Expression (nTPM) Associated Genes Functions

IFNG Ovary, uterus placenta Endometrium 0.9 IFNGR1, IFNGR2, FOXP3,
RUNX1, TRIM28

Regulates cell differentiation, activation,
expansion, homeostasis, and survival

STAT3 Ovary, uterus placenta Cyto 27.3; Syncytio: 35.9; extravillous: 49.3;
Endometrium 194.6

BMX, EGFR, JK1, MAPK1,
PIAS3

Controls cell proliferation, migration,
apoptosis

NFKB1 Ovary, uterus placenta Cyto: 15.2; Syncytio:13.5; extravillous: 17.3;
Endometrium 60.4

NFKB1A, RELA, CHUK,
IFBKB, RELB Regulate genes

IRF1 Ovary, uterus placenta Cyto: 25.0; Syncytio: 9.4; extravillous: 46.9;
Endometrium 179.7

IRF8, STUB1, STAT1, EP300,
KAT2B

Regulate innate and adaptive immune
responses

TBX21 Ovary, uterus placenta - CREBBP, EP300, GATA3,
SP1, UBC, TBX21

Regulates development of naive T
lymphocytes

STAT5B Ovary, uterus placenta Cyto: 8.0; Syncytio: 13.8; extravillous: 5.9;
Endometrium 20.5

EGFR, INSR, JAK1, JAK2,
JAK3

Regulates formation of tissues and organs;
maintains immune homeostasis

GATA3 Ovary, uterus placenta Cyto: 329.4; Syncytio: 1237.7; extravillous:
843.6; Endometrium 0.4

HDAC1, HDAC2, HDAC3,
LMO1, TAL1

Regulates cell maturation with
proliferation arrest and cell survival

STAT4 Ovary, uterus placenta Cyto: 0.4; Syncytio: 0.4; extravillous: 3.4;
Endometrium 0.4

JUN, IL12RB2, PIAS2,
STAT1, ZNF467

Regulates innate and adaptive immune
responses

JUN Ovary, uterus placenta Cyto: 666.6; Syncytio: 405.9; extravillous:
61.9; Endometrium 2873.0

ATF2, FOS, MAPK8,
MAPK9, MAPK10

Cell proliferation, apoptosis and survival,
and tissue morphogenesis

SP1 Ovary, uterus placenta Cyto: 16.3; Syncytio: 22.4; extravillous: 17.0;
Endometrium 22.3

EP300, ESR1, HDAC1,
HDAC2, TP53

Regulates cell cycle, hormonal activation,
apoptosis, and angiogenesis

GATA1 Ovary, uterus placenta - BRD3, FLJI1, LMO2, TAL1,
ZFPM1

Regulates development of multipotential
progenitors and hematopoietic stem cells

EGR1 Ovary, uterus placenta Cyto: 154.9; Syncytio: 165.7; extravillous:
106.1; Endometrium 783.3

EP300, JUNDB, JUNDD,
NAB1, TP53

Regulates attachment and survival of
normal cells and induces apoptosis in

abnormal cells

ATF3 Ovary, uterus placenta Cyto: 179.2; Syncytio: 507.9; extravillous:
365.5; Endometrium 321.4

DDIT3, JUN, JUNB, MDM2,
TP53

Regulates metabolism, immunity,
inflammation, cell proliferation, and

apoptosis

RELA Ovary, uterus placenta Cyto: 23.0; Syncytio: 47.7; extravillous: 27.7;
Endometrium 24.8

BRD4, CREBBPEP300,
NFKB1, NFKB1A

Regulate genes involved in apoptosis,
inflammation, the immune response, and

proliferation

YY1 Ovary, uterus placenta Cyto: 121.3; Syncytio: 177.1; extravillous:
126.4; Endometrium 129.9

EP300, HDAC2, HDAC3,
MBTD1, RUVBL2,

Regulates several biological
functions—embryogenesis, differentiation,

replication, and cellular proliferation



Curr. Issues Mol. Biol. 2024, 46 3451

Table 6. Cont.

Hub Gene Tissue Expression Single-Cell Normalized Expression (nTPM) Associated Genes Functions

EP300 Ovary, uterus placenta Cyto: 17.7; Syncytio: 34.4; extravillous: 19.0;
Endometrium 49.1

CITED2, HIF1A, SMAD3,
TCF3, TP53

Regulates cell growth and division and
prompts cell maturation and cells to take

specialized functions

CREB1 Ovary, uterus placenta Cyto: 30.1; Syncytio: 18.7; extravillous: 25.9;
Endometrium 37.8

CREBBP, CRTC2, EP300,
RPS6KA5, TP53

Regulates proliferation, migration, and
invasion of cells

NR3C1 Ovary, uterus placenta Cyto: 48.6; Syncytio: 36.6; extravillous: 44.2;
Endometrium 28.5

HSP90AA1, NCOA1,
NCOa2, NCOR, SMARCA4

Regulates
hypothalamic–pituitary–adrenal (HPA)

axis by modulating availability of cortisol

STAT5A Ovary, uterus placenta Cyto: 1.2; Syncytio: 1.3; extravillous: 2.9;
Endometrium 5.0

EGFR, ERBB4, JAK1, JAK2,
JAK3

Relates IL2 signaling, modulates cytokine
and growth factor action, modifies

chromatin organization

STAT1 Ovary, uterus placenta Cyto: 13.7; Syncytio: 7.9; extravillous: 60.8;
Endometrium 45.2

CREBBP, JAK2, PIAS1,
STAT2, STAT3

Regulates proinflammation and immune
function

Cyto—Cytotrophoblast; Syncytio—syncytiotrophoblast; extravillous—extravillous trophoblast; Endometrium—
endometrial stromal cells.

4. Discussion

Recent advances in high-throughput techniques transform experimental data into bio-
logical connotations. In illustrated networks, the nodes representing proteins, transcripts,
or metabolites are linked by edges to show the interactions among nodes. Protein network
exploration depicts the role of an individual protein and its communication with other
proteins, representing the protein–protein interaction.

Centrality (network-based ranking of biological components) has been largely used to
find important nodes in larger networks [17,18]. These nodes with higher degrees are more
likely to be essential proteins influencing biological processes. These molecular markers
and their properties are helpful when prioritizing them for disease associations. Using these
methods, key biological mechanisms involved in the pathogenesis of PE were identified in
the current study.

In this study, the gene–miRNA interaction networks of differentially expressed genes
between PE and normal placentae revealed interactions with up to 28,000 genes and
miRNAs. This shows the importance and depth of their involvement in the regulatory and
interactive functions. Betweenness centrality measures the extent to which a miRNA/gene
lies on paths between other miRNAs/genes. MicroRNAs/genes with high betweenness
may have substantial influence within a regulatory network by virtue of their control over
passing information between others [19]. It should be noted that genes with a high degree
centrality are of important for the diagnosis of disease, and the proteins with a high degree
of betweenness are important for drug discovery [20].

In this study, significantly upregulated (TGFBR1, DUSP4, TMCC1, EMP1, and BHLHE40)
and downregulated (KPNA6, ATP6V0E1, KLF6, PLEKHG2, SIKE1, and ZNF85) genes with
high degree and betweenness centrality showed key roles associated to the development
of PE, including cell metabolic, developmental, proliferative, differentiative and apoptotic
processes; cell macromolecule biosynthesis; DNA templated transcription; and responses to
enzyme binding, stress, growth factor stimulation, lipid metabolism, and hypoxia.

4.1. Upregulated Genes with High Betweenness

Transforming growth factor beta 1 is a polypeptide member of the transforming growth
factor beta superfamily of cytokines. It is a secreted protein that performs many cellular
functions, including the control of cell growth, cell proliferation, cell differentiation, and
apoptosis [21]. TGF-β1 signaling occurs by its binding with its receptor type 2 (TGFBR2),
which in turn recruits and phosphorylates TGFBR1, forming a heterodimeric complex [22].
Once TGFBR1 is phosphorylated, it can downstream phosphorylate proteins SMAD2
and SMAD3, which then recruit SMAD4, translocate to the nucleus, and regulate the
transcription of TGFβ1 target genes [23,24]. TGFβ1 levels were elevated in women with
severe and mild preeclampsia late in gestation (mean gestational age, 40 weeks) compared
with normotensive pregnant women [25–27]. TGFβ1 plays a decisive role in altering dNK
(decidual natural killer) phenotype and function, which may have an obvious effect on the



Curr. Issues Mol. Biol. 2024, 46 3452

pathogenesis of preeclampsia [20]. In the decidual zone of normal pregnancy, the dNK cell-
mediated immune response and angiogenesis were subtly regulated by Treg cells via soluble
TGFb1. However, in PE decidua, excessive amounts of TGFb produced by Treg cells could
significantly impair the phenotype and function of dNK subpopulations. This distorted
immune response may further damage decidual angiogenesis and cause pathological
pregnancy [28]. In this investigation, TGFBR1 illustrated degree and betweenness scores of
129 and 62,386.6. The higher a gene’s/protein’s betweenness, the more important they are
for the efficient flow of gains in a network, and downregulation of TGFBR1 would have
had a significant impact on the biological functions and on the pathogenesis of PE.

The Dual-specificity phosphatase (DUSP) gene family is characterized by highly con-
served amino acid sequences, implicated in a variety of biological functions [29]. Taurine
upregulated 1 (TUG1) was downregulated in the placental tissues of PE patients compared
with a control group [30]. TUG1 affected trophoblasts’ biological function, including cell
growth, migration, and crosstalk in vitro, and promoted the progression of preeclamp-
sia. TET3 (tet methylcytosine dioxygenase 3, a DNA-binding protein) and DUSP were
negatively regulated by TUG1. Molecular and functional interaction between TET3 and
DUSPs impaired spiral artery remodeling in PE [30]. Downregulated TUG1 increased the
expression of DUSP4 at both mRNA and protein levels. Notably, silencing of suppressor of
variegation 39 homolog 1 (SUV39H1) by siRNAs significantly upregulated DUSP4, signify-
ing the biding of TUG1 and SUV39H1 in the nucleus [30]. TET3 activated gene transcription
by promoting DNA demethylation [31]. TET3 knockdown markedly decreased the cellular
expression of DUSP4. In uterine cells, TET3 deficiency increased methylation of DUSP4
promoters. Further, the methylation level of DUSP4 promoters in the preeclamptic pla-
centa was significantly increased compared with controls [30]. Overexpression of miR-218
(upregulated in this study; degree, 5 and betweenness, 609.1) significantly upregulated
FOXP1 and TUG1 and downregulated DUSP4, at both mRNA and protein levels [30].
The regulatory network mediated by TUG1 and DUSP4 seems to be an essential deter-
minant of the pathogenesis of PE, which regulates cell growth. In mice, the DUSP9 gene
located on the X chromosome performs an essential function during placental develop-
ment [31]. Mouse embryo lethality between 8 and 10.5 days postcoitum was due to a failure
of labyrinth development. This correlates with the normal expression pattern of DUSP9 in
the trophoblast giant cells and the labyrinth of the placenta.

Furthermore, TMCC1 was significantly downregulated in PE placentae compared
with normal placentae [32]. EMP1 is a protein-coding gene involved in apoptosis, which
negatively regulates cell growth [33]. Circulating EMP1 was positively associated with
severe placental insufficiency, placental dysfunction, and fetal growth restriction [34].
BHLHE40 is a transcriptional repressor that responds to hypoxia and negatively regulates
miR-196a-5p expression. BHLHE40/miR-196a-5p is involved in PE pathogenesis [35].
Knockdown of BHLHE40 or upregulation of miR-196a-5p restored cell viability, migration,
invasion, and matrix metalloprotein (MMP)-2 and MMP-9 expression under hypoxia.
BHLHE40 knockdown alleviated PE symptoms in pregnant C57/BL6N mice.

4.2. Downregulated Genes with High Betweenness Centrality

Karyopherin α6 (KPNA6, importin α7), directly interacts with the Kelch-like ECH
Associated Protein 1 (KEAP1) [36]. Overexpression of KPNA6 facilitates KEAP1 nuclear
import and attenuates the Nuclear Factor Erythroid 2-related Factor 2 (NRF2/NFE2L2)
signaling, whereas knockdown of KPNA6 slows down KEAP1 nuclear import and enhances
the NRF2-mediated adaptive response induced by oxidative stress [37]. Thus, KPNA6-
mediated KEAP1 nuclear import plays an essential role in modulating the NRF2-dependent
antioxidant response and maintaining cellular redox homeostasis [38]. In preeclampsia,
there was increased decidual oxidative stress, NRF2-regulated gene expression was reduced,
and KEAP1 protein expression was increased in areas of high trophoblast density [39].
This signifies the role of KPNA6. The degree and betweenness centrality scores for KPNA6
were 223 and 161,133.4. Regulatory networks mediated by KPNA6, KEAP1, and NRF2 are
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essential determinants of the pathogenesis of PE, which regulates oxidative stress. ATPase
H+ Transporting V0 Subunit E1 (ATP6V0E1/ATP6H) gene-regulated macro-autophagy
was implicated in the pathogenesis of PE. ATP6H knockdown resulted in antiproliferative
and apoptosis effects on BxPC-3 cells (pancreatic ductal adenocarcinoma cell line).

In normal pregnancies, placental autophagy is critical for the maintenance of cellular
homeostasis that is needed for embryo and placental development [40]. Autophagy is
activated in response to environmental stress, and dysregulation of autophagy is associated
with various diseases [41]. Oxidative stress and hypoxia in preeclampsia are associated
with an increase in the autophagic process, particularly in nutrient-deprived conditions [42].
Mitochondria are involved not only in ATP production but also in calcium homeostasis, free
radical generation, cell survival, apoptosis, and necrosis [43–46]. Changes in mitochondrial
dynamics, and apoptosis, are observed in preeclampsia [47]. Modification in mitochondrial
gene expression influences mitochondrial homeostasis, ensuing mitochondrial dysfunction.
This dysfunction leads to excessive ROS and inadequate ATP production [47,48]. Mito-
chondrial DNA (mtDNA) is speculated to be the marker of this dysfunction because of its
inflammatory response. Oxidative stress causes membrane potential changes, inducing
mitochondrial membrane depolarization and increased permeability. These disruptions
will release damaged mitochondrial components, such as ROS and mtDNA, in the cytosol.
As a result, there will be alteration in inflammatory and apoptotic pathways [49].

In PE, the mitochondrial apoptosis process seems to be highly altered [50]. There was
a decrease in proapoptotic proteins such as p53 and BCL2-associated X and an increase
in antiapoptotic proteins such as B-cell lymphoma 2 (BCL2) in term preeclamptic syncy-
tiotrophoblast mitochondria compared with the increase in the BAX/BLC2 ratio in preterm
preeclampsia [39]. In addition, soluble fms-like tyrosine kinase 1 (sFlt-1), which has an-
tiangiogenic activity, exerted roles in oxidative stress and apoptotic pathways [51–53].
Differential apoptosis signaling in preterm and term placentae suggests that mitochondria
promote cell survival in the placenta by suppressing the apoptosis mechanism. The regula-
tion of programmed cell death and adequate antioxidant activity is important to improve
mitochondrial adaptation and function [54]. Mitochondrial dysfunction due to excessive
ROS production and reduced antioxidant capacity may result in an exaggerated apoptotic
rate, placentation defect, and, therefore, preeclampsia.

The transcription factor Krüppel-Like Factor 6 (KLF6) has important roles in cell
differentiation, angiogenesis, apoptosis, and proliferation. Furthermore, KLF6 is required
for proper placental development [55]. KLF6 is present in both the early and late onset
of severe-type PE [56]. KLF6 may mediate some of the effects of hypoxia in placental
development and so has relevance in the development of PE.

PLEKHG2 is involved in cellular development, cellular assembly, and organization activity
in early pregnancy and PE [57]. Decreased gene and protein expression of PLEKHG2 is involved
in the breakdown of extracellular matrix proteins and tissue re-modeling activity in the human
placenta [58]. Differentially expressed ZNF85 is involved in the top 10 GO terms, including
DNA and ion bindings, between preeclampsia cases and controls [59]. In placental tissue, there
was a correlation between ZNF85 expression and CpG methylation variation [60].

4.3. Comparison of miRNAs of Different Types of Preeclampsia

For comparison of different types (early- vs. late-onset; mild vs. severe) of preeclamp-
sia, we selected DE genes in early-onset severe preeclampsia, late-onset severe preeclampsia,
and late-onset mild preeclampsia from RNA-seq on 65 high-quality placenta samples that
included 33 from 30 PE patients and 32 from 30 control subjects reported by Ren et al.,
2021 [16]. These DE gene sets representing different types of PE were subjected to gene–
miRNA interaction analysis. The top 20 molecular markers (genes and miRNAs with high
betweenness) were compared, and the common six miRNAs (hsa-mir-124-3p, hsa-mir-1-3p,
hsa-mir-146a-5p, hsa-mir-16-5p, hsa-mir-27a-3p, and hsa-mir-34a-5p) signifying all three
types of PE types were identified. It is interesting to note that five (hsa-mir-1-3p, hsa-mir-
146a-5p, hsa-mir-16-5p, hsa-mir-27a-3p, and hsa-mir-34a-5p) of these six miRNAs were the



Curr. Issues Mol. Biol. 2024, 46 3454

top miRNAs (with high betweenness) exemplified from the current analysis. Their roles
governing placenta development and PE are discussed below.

The significant alterations in the expression level of miRNA and the gene pairs hsa-
miR-1-3p/ANXA2 and hsa-miR-1-3p/YWHAZ were associated with extracellular matrix
organization, blood vessel development, smooth muscle contraction, angiogenesis, en-
dothelial damage, and thrombi formation that caused a pulse increase in the right uterine
and the umbilical arteries, hypoxia and oxidative stress, decreased placenta mass, and poor
fetal development and weight (<10 percentile) [61].

Upregulated miR-146a-5p in the preeclamptic placentae provoked impaired trophoblast
cell proliferation, poor invasiveness, and migratory capacity by inhibiting Wnt2 signal-
ing [62]. miR-16-5p was upregulated in the placental tissue of a PE rat model [63]. miR-16-5p
targeted the IGF-2 gene and downregulated its expression; consequently, it increased cell
autophagy and cell death in the PE placenta [64].

In contrast, the downregulation of miR-27a-3p induced the migration and invasion of
trophoblast cells into the uterine endometrium. Interestingly, the expression of miR-27a-3p
was negatively related to ubiquitin-specific protease 25 (USP25) in recurrent miscarriage
patients [65]. USP25 can regulate the processes of invasion and migration of different types
of cells. It is reasonable that miR-27a-3p-mediated downregulation of USP25 contributes to
the epithelial-to-mesenchymal transition, thereby inhibiting the migration and invasion of
trophoblast cells via facilitating the Wnt pathway and regulating the miR-27a-3p/ATF3
axis [65,66].

miR-34a, a downstream gene of p53, regulates the cell cycle, apoptosis, and differentia-
tion by targeting various target genes [67]. Elevated miR-34a has been reported to aggravate
DNA damage and promote cell apoptosis [68]. Placental Growth Factor (PLGF) was a target
gene of miR-34a [69]. PLGF regulates vascular endothelial growth and vascular remodeling
via autocrine or paracrine mechanisms. miR-34a stimulates the proliferation of vascular
endothelial cells and regulates DNA repair and apoptosis of these cells via PLGF [69].
It should be noted that hsa-miR-34a-5p was upregulated in the plasma during the first
trimester in pregnant women with a high risk of preterm birth compared with normal
controls. miR-34 was associated with pregnancy complications, including preeclampsia
and intrauterine growth restriction [70,71].

4.4. Involvement of Hub Genes in Preeclampsia Development

ARNTL, CLOCK, NR3C1, ETS1, EGR1, NFKB1, CREBBP, SMARCA4, ESR1, RELA,
CREB1, VDR, TP53, EPAS1, ARNT, VHL, SP1, E2F1, TFDP1, and RB1 proteins corre-
sponding to the upregulated hub genes are involved in cellular proliferation, growth,
and differentiation, cell metabolism, inflammation, and immune modulation in ovarian,
uterine, and placental tissues (Table 5). In addition, biological rhythms and preeclampsia
are linked [72], and ARNTL and CLOCK hub proteins are involved in circadian pathways.
Similarly, IFNG, STAT3, NFKB1, IRF1, TBX21, STAT5B, GATA3, STAT4, JUN, SP1, GATA1,
EGR1, ATF3, RELA, YY1, EP300, CREB1, NR3C1, STAT5A, and STAT1 proteins corre-
sponding to downregulated hub genes are involved in cell survival, cellular growth and
development, cell homeostasis, cell metabolism, immune modulation, and inflammation in
ovarian, uterine, and placental tissues (Table 6). This demonstrates that the aberration of
these hub genes results in PE instead of normal pregnancy.

4.5. Hub Genes with Diagnostic and Therapeutic Perspectives

Betweenness centrality measures the extent to which a miRNA/gene lies on paths
between other miRNAs/genes. MicorRNAs/genes with high betweenness may influence
information passing between others within the network [73]. The top three upregulated
hub genes with high degree and betweenness scores were TGFBR1, DUSP4, and TMCC1.
The top three downregulated hub genes with high degree and betweenness scores were
KPNA6, ATP6V0E1, and KLF6. The higher a protein’s betweenness, the more important it
is for the efficient flow of goods in a network. It should be noted that proteins with a high
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degree centrality are of important for the diagnosis of disease, and proteins with a high
degree of betweenness are important for drug discovery [74].

Differentially methylated circadian clock genes ARNTL1, CLOCK, and BHLHE40
were observed in umbilical cord leukocytes and placental tissue in PE [75]. ARNTL and
CLOCK are positive activators and drive the transcription of clock genes by binding to
E-box elements on their promoters. The DNA methylation status of the circadian clock and
clock-controlled genes in placental tissue and umbilical cord leukocytes is different between
patients with EOPE and normal controls. This may be explained by a longer exposure
to placental oxidative stress as compared with pregnancies complicated by late-onset
preeclampsia. In term PE patients, the most enriched pathways that were correlated were
hypoxia-related pathways and the membrane trafficking and autophagy-related pathways,
which increased or decreased, respectively. Furthermore, CLOCK mRNA and protein
expressions were reduced in the term PE placenta [76]. This suggests that circadian clock
genes could be plausible candidates for the pathogenesis and etiology of PE.

The present work contains extensive bioinformatic analysis of genes, microRNAs,
proteins, and biological processes between preeclampsia and normal pregnancy. How-
ever, this study may have limitations. The retrospective data extensively analyzed in this
current study were originally obtained from relatively small biological samples. How-
ever, five-fold mean differences in relative expressions were used in this study. To detect
these differences with adequate statistical power (1 − β = 0.8) and statistical significance
(α = 0.05), at least three samples per group were needed. The exact age (absolute age) of
the pregnancy was not provided rather than stating that the normal and preeclampsia pla-
cental samples were obtained from less than 32 weeks of pregnancy. Early- and late-onset
preeclampsia both result from the same problem, utero-placental malperfusion, which has
different causes [77]. It has been suggested that early-onset preeclampsia is more strongly
associated with internal placental factors, whereas the late-onset preeclampsia form may
be primarily due to predisposing maternal factors. Some studies [78,79] found that the
effect of risk factors varies according to the subtype of preeclampsia, whereas others did
not [80]. Further, specific PE-related pregnancy complications are not distributed evenly
across ages [81].

The association between the expression of placental tissue miRNAs and circulating miRNAs
would help identify diagnostic and prognostic biomarkers. Cirkovic et al. (2021) observed
increased miRNA-155 expression in both the placental tissue (SMD = 2.99, 95%CI = 0.83–5.14) and
peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35–3.76) compared with women
without PE [82]. However, an increased expression of miR-16a in placental tissue and significantly
lower expression in peripheral blood of women with PE (SMD = –0.47, 95%CI = –0.91 to –0.03) was
also observed. Several studies generated potential biomarkers utilizing samples from established
PE, with less focus on prediction [83–87]. It is conceivable that coalescing biomarkers derived from
different sources (multiple organ and cellular sources) may yield the best prediction. Utilizing large
prospective cohort collections in unselected populations provides the best avenue for discovering
novel biomarkers. However, miRNA expression differs according to the severity of PE [88] and
during normal pregnancy [89]. So, these markers or combinations must be rigorously validated in
external cohorts to ensure they achieve their potential to improve outcomes for pregnant people
and their babies.

5. Conclusions

The evidence summarized in this article reveals the role of miRNAs in the pathogenesis
of PE. The pathogenesis of PE is apparently determined by a range of miRNA molecules
and their target genes and the degree of changes in their expression levels, which are
associated with impairment of vascular and cellular development, circadian dysregulation,
inflammation, and immunosuppression at the fetal–maternal interface, ultimately leading
to impaired placental growth and hypoxic injury, which generally manifest as placental
insufficiency. These miRNAs, genes, or proteins differentially expressed in placental tissue
and in circulation can serve as novel diagnostic and therapeutic targets.
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