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Abstract: RNA molecules within ejaculated sperm can be characterized through whole-transcriptome
sequencing, enabling the identification of pivotal transcripts that may influence reproductive success.
However, the profiling of sperm transcriptomes through next-generation sequencing has several
limitations impairing the identification of functional transcripts. In this study, we explored the nature
of the RNA sequences present in the sperm transcriptome of two livestock species, cattle and horses,
using RNA sequencing (RNA-seq) technology. Through processing of transcriptomic data derived
from bovine and equine sperm cell preparations, low mapping rates to the reference genomes were
observed, mainly attributed to the presence of ribosomal RNA and bacteria in sperm samples, which
led to a reduced sequencing depth of RNAs of interest. To explore the presence of bacteria, we aligned
the unmapped reads to a complete database of bacterial genomes and identified bacteria-associated
transcripts which were characterized. This analysis examines the limitations associated with sperm
transcriptome profiling by reporting the nature of the RNA sequences among which bacterial RNA
was found. These findings can aid researchers in understanding spermatozoal RNA-seq data and
pave the way for the identification of molecular markers of sperm performance.
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1. Introduction

Spermatozoa are highly specialized transcriptionally quiescent cells that house a
diverse array of RNA molecules, some of which have been attributed to crucial func-
tions related to fertilization, embryonic development, pregnancy outcome, and epigenetic
inheritance [1–3]. While mature mammalian sperm contain complex populations of regula-
tory and functional RNAs, housekeeping RNA types, including ribosomal RNAs (rRNAs),
undergo degradation, thereby halting translation at the culmination of spermiogenesis [4].
Certain sperm transcripts are remnants of the spermatogenesis, whereas others are pur-
posefully retained and delivered to the oocyte during fertilization, possibly participating
in post-testicular events. The detection of functional transcripts with pivotal roles poses a
challenging task that garners the increasing attention of researchers.

High-throughput molecular tools are essential for the characterization of sperm RNAs,
including the identification of transcripts involved in reproductive processes beyond sper-
matogenesis. Next-generation sequencing tools have been used to profile the sperm tran-
scriptome in several mammalian species, including humans [5–7], cows [8–10], pigs [11,12],
sheep [13], and horses [14], among others. However, sperm RNA has several characteristics
that hinder various stages of transcriptomics analysis using RNA sequencing (RNA-seq)
technology, including RNA extraction, library preparation, and bioinformatics data pro-
cessing. These features include a low abundance of transcripts, the presence of non-sperm
cells in the ejaculate, and the highly fragmented nature of the RNAs present. While several
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studies have tackled the problems associated with extraction and library preparation [5,15],
certain bioinformatics issues remain unresolved. Accordingly, some authors have sug-
gested that the presence of microbial-associated RNAs in the transcriptome may interfere
with the host RNAs detected [11,16]. Understanding the intricacies of sperm transcriptome
data and the problems that may arise during their analysis is key to advancing in this area
of research.

Despite advances in artificial insemination and genetic selection and the enhanced
management and feeding, reproductive failure remains one of the most significant prob-
lems in the dairy and beef cattle industries [17]. In addition, poor fertility of breeding
stallions is a concern in the equine industry as they are not typically selected for their
reproductive potential, and a considerable number of them do not pass the breeding sound-
ness tests. New findings from studies involving human and vertebrate animal models
indicate the significance of microbiomes in the urogenital tracts of both females and males
for reproductive health and fertility. Consequently, the active exploration of manipulating
these microbiomes to enhance reproductive efficiency has gained momentum in recent
research [18]. The presence of bacteria or other microorganisms in sperm samples subjected
to RNA-Seq analysis has not been widely investigated. Bacteria reach the ejaculate after
passing through the male reproductive tract. Bacteria can influence male reproductive
health, and some studies have effectively associated specific bacteria with semen quality
parameters; for example, Anaerococcus and Prevotella were reported as potential markers for
low fertility or infertility [19–21]. Using 16S rRNA gene sequencing, it has been suggested
that bovine semen harbors a rich and complex microbiota that changes over time and
during the breeding season [18]. Many of these bacteria are non-pathogenic, some can
even have a beneficial effect on sperm performance, and pathogenic species may also be
found [18,19,22]. The pathogenic bacteria in semen may contribute to male subfertility
due to reduced sperm motility, DNA stability, and membrane integrity [18,23,24]. Besides
discovering sperm-borne RNA molecules for use as molecular markers of optimal male
fertility, scrutinizing the bacterial transcriptome to identify the activity of bacterial species
associated with sperm quality holds promise.

The present study describes the challenges encountered during the processing of
whole-transcriptome sequencing data derived from sperm samples of two livestock species,
cattle and horses. After obtaining 150 paired-end RNA-seq data from bull and stallion
sperm, we observed a substantial proportion of reads that did not map to the reference
genome of the host species. To gain insight into the nature of the data, we examined the
taxonomic profiles of these unmapped RNA transcripts and identified bacterial species
contents of sperm preparations from both species. Overall, the purpose of the study is
to characterize the nature of the RNA sequences derived from bovine and equine sperm
cell preparations focusing on the problems associated with sperm RNA profiling while
reporting the bacterial taxa found.

2. Materials and Methods
2.1. Semen Collection

Fresh semen samples were collected from four fertile purebred Andalusian stallions
aged 5 to 10 years which were generously provided by the Faculty of Veterinary Sciences,
Complutense University, Madrid, Spain, using an artificial vagina (Hannover model,
Minitüb, Landshut, Germany). A nylon in-line filter (Animal Reproduction Systems, Chino,
CA, USA) was used to eliminate the gel fraction. The sperm-rich fraction was diluted
1:2 (v:v) in INRA96 medium (IMV, L’Aigle, France) [25]. On the other hand, frozen/thawed
semen samples were obtained from four Asturian Valley bulls of proven fertility aged
2–6 years using an artificial vagina, courtesy of the Regional Service of Agrifood Research
and Development (SERIDA), Gijón, Spain. Details of the frozen protocol are described
in [26]. All 4 stallions and 4 bulls were evaluated for health and fertility in their respective
farms. Moreover, all animals were used in breeding programs following routine sperm
evaluations that confirmed their good quality. In addition, upon collection, semen was
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initially evaluated for the following variables by subjective assessment: volume, sperm
concentration, sperm morphology, and sperm motility [26]. All experimental procedures
were performed according to institutional and European regulations.

2.2. Sample Processing

Frozen bull semen samples were thawed in a water bath at 37 ◦C for one minute.
All aliquots were prepared under sterile conditions in a laminar flow hood to prevent
contamination. Moreover, the mediums used were composed of antibiotics for control-
ling the bacterial contamination and growth. The extender medium consisted of tris base
(hydroxymethyl-aminomethane; 2.4 g, w/v), citric acid (1 g, w/v), fructose (1 g, w/v),
glycerol (7 mL v/v), (25 mg) gentamicin, 50,000 IU penicillin, and streptomycin 300 µg/mL
in 100 mL of distilled water [27]. Subsequently, the fresh stallion and thawed bull se-
men samples were purified using an EquipureTM or BoviPureTM colloid density gradient,
respectively (Nidacon Laboratories AB, Gothenburg, Sweden), by centrifugation onto a
gradient composed of 1 mL of 40% colloid and 1 mL of 80% colloid for 10 min at 280 g. The
resulting sperm pellets were isolated, washed with 3 mL of Equiwash for stallion sperm and
Bobiwash for bull sperm, and subjected to centrifugation at 280 g for 5 min. Pellet volumes
were measured, and both sperm motility and concentration were determined. We then
analyzed sperm samples under the microscope to confirm their purity, detected possible
somatic cell contamination, and confirmed that sperm with cytoplasmic droplets were also
efficiently removed in the purification process. Sperm motility was assessed by introducing
6 µL of a sperm suspension of each sample in a Makler® chamber on the stage of a micro-
scope pre-heated to 37 ◦C (Nickon Eclipse E400, Microscope Central, Feasterville-Trevose,
Pennsylvania, PA, USA) and fitted with a digital camera (Basler acA1300-200uc, Basler the
power of sight, Exton, PA, USA). Five videos of 1.5 s each were recorded and analyzed
using the Integrated Semen Analysis System (ISAS® 2008). The parameters analyzed were
as described by Pérez-Cerezales et al. [28]: straight-line velocity (VSL); curvilinear velocity
(VCL); average path velocity (VAP); linearity (LIN); straightness (STR); wobble (WOB);
amplitude of lateral head displacement (ALH); and beatcross frequency (BCF). Sperm
concentrations (sperm cells/mL × 106) were determined in a Thoma® counting chamber,
and the resultant volume (mL) from each gradient was measured before snap-freezing in
liquid nitrogen for later RNA isolation. Finally, the sperm pellets were cryopreserved in
liquid nitrogen and stored at –80 ◦C for subsequent RNA extraction.

2.3. RNA Extraction

In all samples, total RNA was isolated using a TRIzol® RNA reagent and
extraction method following the manufacturer’s recommended protocols (Invitrogen,
Carlsbad, CA, USA) [29]. Extracted RNA was then subjected to DNAse treatment (Promega,
Fitchburg, WI, USA) for 15 min and further purified by phenol:chloroform extraction [30].
The resultant purified total RNA was stored in nuclease-free water. RNA concentration
was determined using a spectrophotometer [31], and RNA quality was assessed in an
Agilent 2100 bioanalyzer system (Agilent, Santa Clara, CA, USA) using the Agilent Small
RNA Kit.

2.4. RNA Sequencing Analysis

Total RNA-seq analysis was conducted on sperm samples from the eight animals.
Briefly, ribosomal RNA was removed from total RNA using the NEBNext® rRNA depletion
kit (New England Biolabs, Beijing, China), and subsequently, ethanol precipitation and
fragmentation were performed to produce RNA fragments of a suitable size for sequencing.
Subsequently, directional libraries were constructed using the NEBNext® UltraTM RNA
Library Prep Kit (New England Biolabs, Beijing, China), which employs the dUTP method
to ensure strand specificity. The resultant cDNA libraries were employed for sequencing
on an Illumina NovaSeq 6000 sequencer (Illumina, San Diego, CA, USA), generating
150 bp paired-end reads per sample.
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Trimming and quality control procedures were conducted using the CLC Genomics
Workbench (CLC Bio Version 20.0.4, Aarhus, Denmark) [32,33]. First, trimming encom-
passed the removal of Illumina adapter sequences, low-quality sequences (limit error
probabilities = 0.05), and ambiguous nucleotides, with a maximum of 2 nucleotides al-
lowed. After the reads were trimmed, quality control was performed using the NGS quality
control tool of CLC Genomics Workbench, taking into account 50% GC content; 100%
coverage in all bases; 25% of A, T, G, and C nucleotide contributions; and less than 1%
over-represented sequences, as described by Cánovas et al. [34]. To assess the presence of
fragmented rRNA, reads were aligned with bovine and equine rRNA sequences (including
5S, 5.8S, 18S, 28S) accordingly using Bowtie 2 v 2.4.4 [35]. The reads that mapped to rRNA
were excluded from further analysis.

Next, the processed sequences from both the bovine and equine samples were aligned
with their respective reference genomes: Bos Taurus ARS-UCD1.2 reference genome for
bulls and Equus Caballus EquCab3.0 reference genome for stallions using the “RNA-seq
analysis” algorithm implemented in the CLC Genomics Workbench [36,37]. The following
default parameters were used: match score = 1; mismatch cost = 2; insertion and deletion
cost = 3; length fraction = 0.8; and similarity fraction = 0.8. The high proportions of
unmapped paired-end reads were then retrieved for subsequent analysis using the “Create
list of unmapped reads” option.

2.5. Bacterial RNA Characterization

Reads which were not aligned to the host genome were examined for the presence of
bacterial RNA by employing Kraken2 v 2.1.2 [38]. Initially, a custom database was generated
with the code kraken2-build --build after downloading the RefSeq complete bacterial
genome assemblies by using --download-taxonomy and --download-library bacteria. The
unmapped paired-end reads were then aligned with this database, leading to the taxonomic
assignment of the reads. Specifically, reads were assigned to the lowest common ancestor
according to a confidence score exceeding 0.2 to improve the accuracy.

To accurately estimate the abundance of genus- and species-specific RNA within the
sperm samples, Kraken2 classification report files were used as input for Bracken [39].
First, using Kraken2, we classified reads to multiple levels of the taxonomic tree, and
next, Bracken produced accurate abundance estimates at a single level (i.e., species or
genus). To execute Bracken, read counts higher than 100 were considered for a species to
be re-estimated in order to exclude false positives, prioritizing the retention of the most
reliable bacterial-associated reads.

3. Results
3.1. Quality Assessment of RNA-Seq Data and rRNA Filtering

Animals were selected based on good reproductive parameters and proven fertility.
Additionally, we confirmed the good quality of semen samples before RNA extraction and
sequencing. Mean sperm motilities were 78.28% and 86% (Figure 1A), respectively, and
motility parameters (Figure 1B) and concentrations (Figure 1C) were normal. Means of
64.17 and 157.5 million bull and stallion sperm, respectively, were obtained (Figure 1D),
with a minimum mean of 7 µg of total RNA for both species (Figure 1E).

To identify transcripts associated with sperm function in the two livestock species,
four libraries were constructed for each species and sequence on the Illumina platform.
Prior to sequencing, the good quality of the isolated total RNA was confirmed. Bioanalyzer
profiles revealed several significant points. First, the presence of partially degraded RNA
was indicated by an RIN (RNA Integrity Number) value below 3 in all samples, which is
characteristic of high-quality sperm. Moreover, the absence of discernible 28S and 18S peaks
signified the absence of contamination by somatic cells containing intact rRNA (Figure 2).
For comprehensive transcriptome coverage, we included a ribosomal RNA depletion step
so that all RNA species, mRNAs, lncRNAs, and circRNAs could be analyzed.
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Figure 1. Characteristics of sperm in frozen bull and fresh stallion semen. Semen samples obtained
from four bulls and four horses were processed as described in Materials and Methods. Sperm
quality was assessed (A) by quantifying motility and (B) in terms of motility parameters (VCL, VSL,
VAP, LIN, STR, WOB, ALH, and BCF), (C) sperm concentration (cells/mL × 106), (D) sperm count
(cells × 106), and (E) total RNA. Values are expressed as mean and SEM.

The total number of raw reads obtained after sequencing was variable, ranging from
15 million to 26 million reads in bull sperm (Table 1) and from 67 to 106 million reads
in stallion sperm (Table 2). To ensure the reliability of subsequent analyses, Illumina
adapters and low-quality bases were trimmed, and low-quality reads were removed.
Possible rRNA contamination was observed in the equine data, as their quality control
revealed the presence of overrepresented sequences that aligned with rRNA. Despite the
absence of the complete set of rRNA molecules displayed in the bioanalyzer profile and
the rRNA depletion step before sequencing, we found a high percentage of reads mapped
to the rRNA sequences in the equine sperm samples: 15% to 33% in the different samples
(Table 2). These sequence reads were filtered out prior to the mapping step. The entire
number of reads detected in horse sperm as belonging to rRNA corresponded to the
28S sequence, and specifically to two fragments of ~300–400 nucleotides. Finally, 40 to
82 million trimmed and filtered reads were used for subsequent analysis of horse data,
which is a considerable reduction compared to raw reads (Table 3). As with other RNA
species, rRNA is degraded in sperm, thus explaining the absence of peaks in the Bioanalyzer.
Moreover, the fact that rRNA in sperm is fragmented could be the reason why rRNA is not
adequately depleted.
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Table 1. Raw RNA reads from bull sperm preparations mapped to the bovine reference genome
using CLC genomics workbench.

Animal ID Total Reads
Reads Mapped in Pairs Unmapped

n % n %

Bull 1 26,230,674 18,241,821 69.55 7,988,853 30.46
Bull 2 24,426,338 14,381,729 58.88 10,044,609 41.12
Bull 3 15,661,246 7,320,271 46.74 8,340,975 53.26
Bull 4 25,206,684 15,771,844 62.57 9,434,840 37.43

Average 22,881,236 13,928,916 59.44 8,952,319.25 40.57

Table 2. Percentage of trimmed reads mapped to horse ribosomal RNA.

Animal ID Raw Reads Trimmed Reads % rRNA
Reads %

Horse 1 90,408,070 3.94 18.50
Horse 2 106,877,616 4.52 27.38
Horse 3 103,473,082 4.58 15.96
Horse 4 67,010,278 8.15 33.84
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Table 3. Trimmed RNA reads from horse sperm preparations mapping or not mapping to the equine
reference genome using CLC genomics workbench.

Animal ID. Total Reads
Reads Mapped Unmapped

n % n %

Horse 1 70,778,436 50,683,487 71.61 20,094,949 28.39
Horse 2 74,106,304 43,324,323 58.46 30,781,981 41.54
Horse 3 82,977,350 34,760,932 41.89 48,216,418 58.11
Horse 4 40,722,860 28,094,406 68.99 12,628,454 31.01
Average 67,146,238 39,215,787 60.24 27,930,451 39.76

3.2. Detection of Bacterial Contents

Upon aligning the reads to the host reference genomes, approximately 60% of reads
in both species were successfully assigned to specific locations in the host reference
genomes, thereby giving rise to low mapping rates and to around 40% of unmapped reads
(Tables 1 and 3), while usually, in RNA-seq data from biological tissues, 10% at most is
expected. These high ratios of unmapped reads imply a lower sequencing depth covering
the RNA types under study. To explore the notion that these unmapped reads could be
associated with bacteria attached to the surface of spermatozoa, we characterized the reads
that did not map to the host reference genomes of each livestock species.

Unmapped reads were aligned with the complete genomes of bacterial taxa sourced
from RefSeq, and those corresponding to bacteria were accordingly identified and tax-
onomically classified. Unmapped paired reads were initially assigned to bacteria using
Kraken2 and a confidence score exceeding 0.2, which is the number of k-mers matching the
lowest common ancestor divided by the total number of k-mers. Thus, by analyzing bacte-
rial communities through RNA-Seq, we were able to detect functional bacteria, allowing
for an assessment of both their abundance and gene expression activity.

Rates of unmapped paired reads aligning to all bacterial species ranged from 13.4% to
27.2% across different individuals in bulls and from 14.1% to 20.2% in stallions. On average,
bulls showed a slightly higher percentage of reads aligning with bacterial transcripts
(Tables 4 and 5).

Table 4. Taxonomic classification using Kraken2 (confidence score > 0.2) and Bracken (read counts >
100) of reads unmapped to the bovine genome.

Animal ID Total Paired
Reads

Reads Belonging to Bacteria
N Species N Genera

n %

Bull 1 6,584,544 1,791,440 27.21 98 62
Bull 2 8,487,712 1,140,856 13.44 85 52
Bull 3 6,995,112 1,794,728 25.66 83 51
Bull 4 7,761,026 1,279,178 16.48 79 50

Average 7,457,098.50 1,501,550.50 20.70 86.25 53.75

Table 5. Taxonomic classification using Kraken2 (confidence score > 0.2) and Bracken (read counts >
100) of reads unmapped to the equine genome.

Animal ID Total Paired
Reads

Reads Belonging to Bacteria
N Species N Genera

n %

Horse 1 19,670,122 3,974,794 20.21 78 51
Horse 2 30,262,010 4,265,912 14.10 73 46
Horse 3 47,774,260 7,756,170 16.24 129 65
Horse 4 12,050,354 2,114,412 17.55 60 36

Average 27,439,187 4,527,822 17.03 85.00 49.50
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3.3. Identification of Bacterial Species

To estimate abundance, we employed Bracken, retaining only those species with counts
exceeding a threshold of 100 to ensure reliability. It should be noted that, by abundance,
here, we refer to the abundance of the transcriptome, which does not directly correlate with
the abundance of the bacteria themselves.

In bull spermatozoa, bacterial transcriptomes corresponded to 90 genera in total, and
these varied among individuals, as detailed in Table S1. Notably, Escherichia and Klebsiella
were the predominant genera, significantly surpassing all others (Figure 3A). Specifically,
two bulls (bull 1 and bull 3) showed higher proportions of reads assigned to Escherichia,
accounting for roughly 50% of bacterial contents. In contrast, in the remaining two bulls
(bull 2 and bull 4), Klebsiella was the predominant genus, accounting for over 30%.
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Following Escherichia and Klebsiella, the next most abundant bacterial genera in most
cows were Paraburkholderia, Cutibacterium, and Staphylococcus, although Sphingomonas held
the third most abundant position in bull 2. This can be observed in Figure 3A, which
depicts genus distributions in each animal. The total number of bacterial species identified
in bull sperm was 153, as detailed in Table S1.

Among the species identified, several were consistent across all four bulls: Escherichia
coli, Klebsiella pneumoniae, Paraburkholderia fungorum, Cutibacterium acnes, and Staphylococ-
cus aureus. However, some animals featured specific bacteria among their top species,
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which were notably reduced in the remaining bulls. For instance, Xanthomonas campestris
was distinctive to bull 1, Cytobacillus oceanisedeiminis to bull 2, and Salmonella enterica
to bull 4.

Table S2 presents the bacterial genera and species found in stallion semen. In total, we
identified 83 genera and 165 species. On average, the most prevalent bacterial genus across
all horses was Staphylococcus. However, there was marked individual variation, with the
most abundant bacteria in each horse being Treponema, Staphylococcus, Porphyromonas, and
Aquabacterium (Figure 3B).

The most frequent species across the different horse sperm samples was always
S. aureus, which appeared in proportions of 18% to 43%. Notably, species of the genus
Porphyromonas, especially P. cangingivalis and P. somerae, were found to play important
roles in horses, consistent with previous findings [40,41]. Two Treponema species, including
T. phagedenis, were among the most abundant in horse 1. T. phagedenis has been associ-
ated with infectious diseases such as digital dermatitis in dairy cattle and hoof canker
in horses [42]. Escherichia coli was consistently present in all horses, although it was less
abundant than in bulls. Specific species, like Cytobacyllus ocenaisediminis and Paenibacillus
ssp. B01, appeared in some of the horses. Further, several Sphingomonas species were found
in all horses.

Notably, the most abundant species identified in the semen of one horse (horse 4) was
Aquabacterium olei, which was absent in the other horses. Additionally, Massilia species
were detected as one of the most abundant species. As the habitat of these species is
water, soil, or plants, semen samples in horse 4 may have been exposed to environmen-
tal sources of contamination due to husbandry conditions or semen collection practices.
Compared to cattle, we observed a more heterogeneous bacterial population profile in
horses, perhaps because semen samples were fresh rather than frozen/thawed. In contrast,
bulls featured fewer species and less variability such that the profiles were fairly similar
among individuals.

4. Discussion

Characterizing sperm RNA is met with numerous challenges largely stemming from
the different sample preparation procedures, library construction methods, and sequencing
platforms used in research. Despite these varying approaches, many studies have obtained
less-than-ideal results. A significant focus of research groups has been the identification
of molecular markers associated with sperm performance and transgenerational inheri-
tance. Thus, RNA-seq technology has played a crucial role in investigating the relationship
between RNA species in ejaculated spermatozoa and male fertility. However, a common fea-
ture of studies examining sperm transcripts through RNA-seq has been low mapping rates
to the host genome, a limitation observed in previous studies across different mammalian
species [9,10,14,16]. A low mapping rate translates to reduced coverage or sequencing
depth for RNA types of interest, particularly regulatory and functional RNAs. In some
cases, researchers have tried to improve coverage by pooling different libraries together, as
seen in cattle studies [8]. The extraction and processing procedures have been benchmarked
in other studies [5,15], but the cause of the poor sequencing outcomes is yet unknown. The
experimental procedure differs widely between studies, and although some offer better
results than others, most of the publications report low mapping rates; thus, this issue
is observed indistinctly and the rationale behind this problem has not been thoroughly
explored. Our objective was to elucidate the complexity associated with the bioinformatics
processing of transcriptome data derived from fresh and frozen/thawed semen samples
from two different livestock species. In parallel, we examined the metatranscriptome of
bovine and equine semen, shedding light on the composition of bacterial populations
present in sperm.

We report the persistence of rRNA despite depletion owing to its fragmentation, as
well as the presence of bacterial-associated RNAs. Sperm cells contain low amounts of
RNAs, some of which are highly fragmented as a consequence of transcriptional and transla-
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tional silencing [4]. This limited RNA content restricts the available library size for RNA-seq
analysis. In addition to low RNA quantities, removing rRNA presents difficulties due to its
degradation. Efficient rRNA depletion through hybridization is impaired by this degrada-
tion, leading to the persistence of specific RNA fragments. This issue was observed in our
horse dataset, where rRNA removal resulted in a one-third reduction in sequencing depth
in some samples. Consequently, it is essential that the presence of contaminating rRNA is
assessed. The rRNA contamination will contribute to the low mapping rates together with
the presence of bacterial RNAs. Altogether, they contribute to reducing the representation
of the spermatozoal RNAs of the host, which may be of interest in transcriptomic studies, in
favor of rRNA and bacterial RNA. Additionally, the remaining reads that do not correspond
to rRNA or bacteria can originate from several sources: (i) novel or unannotated transcripts,
which may be quite frequent in cows and horses; (ii) genomic variability: variations like
single-nucleotide polymorphisms (SNPs), insertion/deletions, or structural rearrangements
(e.g., translocations, inversions) can prevent proper alignment to the reference genome;
(iii) sample contamination stemming from other biological contaminants (e.g., viruses) or
environmental contaminants (e.g., reagents or handlers); (iv) technical errors and sequenc-
ing artifacts, such as sequencing errors; (v) degraded RNA fragments that do not match
the reference; (vi) RNA editing: post-transcriptional modifications (e.g., A-to-I editing) can
alter the RNA sequence.

While the most popular and cost-effective method of microbiota profiling is 16S rRNA
gene amplicon sequencing, which accurately estimates bacterial abundance and captures
the complete bacterial profile, we determined bacterial gene expression activity through
the transcriptome, as opposed to bacterial abundance. The studies using 16S rRNA gene
sequencing provide a more thorough characterization of all species present, which is not
our principal objective. Therefore, and because more samples would be required, this
study does not attempt to characterize the bacterial species found in semen from both
species. This is a mere description of those present in the sperm transcriptomic data of the
employed animals, while the main purpose is to report the limitations observed throughout
the bioinformatic processing of the spermatozoal RNA-seq data of two livestock species,
which will help future researchers understand and try to tackle the study of the sperm
transcriptome in other animals.

Only a few studies have explored bacterial communities in sperm RNA data, partic-
ularly in human [16] and boar sperm [11]. For example, Swanson et al. (2020) assessed
the human semen microbiota using transcriptome data from ejaculates and compared its
profile with the results of 16S rRNA sequencing studies, thus confirming the suitability of
RNA-seq for this purpose. In pigs, Godia et al. (2020) analyzed the relationship between
bacterial communities and sperm quality traits, suggesting the presence of pathogens and
antibiotic resistance genes that might affect boar fertility [11]. A distinctive feature of our
study was the sequencing of RNA derived from purified spermatozoa where the absence of
bacteria might be expected. Most studies on sperm microbiota have analyzed the complete
ejaculate or seminal fluid for bacterial identification. In contrast, we were able to detect the
presence of bacteria in purified sperm cells.

Other authors have relied upon 16S rRNA sequencing to characterize the microbiota
present in bovine and equine semen [18,40,41,43]. In the present study, we identified a
wide range of bacterial genera and species in the sperm of bulls and stallions, consistent
with previous findings in both these species. There is clear evidence of high variability in
bacterial profiles not only between species, but also among individuals within the same
species. The semen microbiota is a dynamic environment, and the variability is attributed
to geographic location, husbandry practices, breeding facility hygiene conditions, and
potential contamination from feed or water sources. Not only are bacterial communities
derived from the urogenital tract or preputial fluids, but also the handling protocols
employed during semen collection. Because sterile conditions were used to process samples
in the laboratory, the sources of the bacteria found are mainly the environment or facilities
where the animals are kept, as well as the artificial vagina used during the collection step.
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Despite the high variability observed in previous studies, less diversity was observed in
the bovine and equine transcriptomes analyzed here, with few species accounting for more
than 50% of the totality of sequences. This was particularly evident in bulls, in which we
consistently found E. coli and K. pneumoniae in all samples. In equine sperm, this variability
was more pronounced, with each animal having two or three species predominating over
the others. The reduced diversity detected could be explained by our analysis based on
transcriptomes, which allowed for the detection of the most active bacteria, while most
species could be less expressed. More importantly, a more diverse bacterial population
is likely to be found in the seminal fluid, such that species appearing in purified sperm
cells may be those strongly attached to the sperm membrane. For example, E. coli has been
described to show an affinity for mannose receptors present in the sperm [44]. Similarly, a
strong interaction between K. pneumoniae and sperm has been reported in humans [45].

The presence of pathogenic bacteria in semen may result in male subfertility due to
reduced sperm motility, DNA stability, and membrane integrity. The two species found to
show the highest relative abundance in bulls, E. coli and K. pneumoniae, are both potential
pathogens that have shown negative correlations with sperm quality in some studies [21,46].
Nevertheless, in healthy bulls, sperm with better-quality traits contain a higher relative
abundance of E. coli [18]. Therefore, the presence of E. coli in bovine semen appears to be
beneficial, although perhaps, very high levels could be detrimental due to the agglutinating
properties of this bacterial species. In the horse transcriptome, the most abundant bacterial
genus represented here was Staphylococcus, which has been reported in human seminal
fluid [19]. While culture methods have detected Staphylococcus as one of the most abundant
bacteria in horse semen [47], sequencing methods have not identified this genus as being
so relevant [41]. While S. aureus is not abundant in seminal fluid, it may adhere more to
sperm cells. Notably, the most prevalent bacterial genus in horses is Porphyromonas [40,41].
Here, Porphyromonas was found to be the second most prevalent genus after Staphylococcus.
In effect, as Porphyromonas is normally present in fertile semen, it could be a good indicator
of optimal semen quality. At the same time, some pathogenic bacteria are found, such
as Salmonella in one of the bulls, or Treponema in one of the horses which could indicate a
urogenital infection in these two animals.

The usage of different experimental conditions, fresh and frozen/thawed samples,
for each species helped to demonstrate the presence of bacteria regardless of the sample
preprocessing and whether fresh or frozen/thawed samples were used. Overall, the use
of two species with two different sample conditions make our work valuable, as distinct
sources and conditions likewise yield poor outcomes of mapping rates that can be partly
explained by the coexistence of bacteria.

5. Conclusions

Our research documents the presence of rRNA and bacterial-associated RNAs in
purified sperm RNA-seq data despite efforts during sample processing. This hinders the
study of sperm RNA associated with reproductive parameters. Concretely, this implies that
the sperm transcriptome data does not only consist of spermatozoal RNA from the host,
but also bacterial RNAs which, together with possible contaminating rRNA, limit the study
of the RNAs of interest. These findings may provide direction for researchers seeking to
examine the sperm transcriptome, offering insight into the challenges they may face.

The study highlights the occurrence of bacterial transcriptomes in purified sperm
RNA-seq data while describing the active bacteria present in sperm cells in the employed
animals. Regarding future directions, by profiling the bacterial transcriptome in spermato-
zoa, researchers may be able to assess its impact on male fertility, identifying active bacteria
associated with sperm performance. Moreover, the use of purified sperm could serve to
identify bacteria that may be strongly attached to the sperm surface and that may directly
alter sperm’s ability to fertilize. Ultimately, the identification of bacterial species that may
closely interact with sperm and potentially influence male fertility could be paramount to
assessing the breeding capacity of livestock.
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Supplementary Materials: The following supporting information can be downloaded at: https://
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present in the purified bovine sperm preparations estimated by Bracken. The genera presented are
those showing an abundance greater than 0.01%. Table S2: Percentages of bacterial genera RNA
present in the purified equine sperm preparations estimated by Bracken. The genera presented are
those showing an abundance greater than 0.01%.
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