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Abstract: Background and Objectives: Our study aimed to cluster dual kidney transplant recipients using
an unsupervised machine learning approach to characterize donors and recipients better and to compare
the survival outcomes across these various clusters. Materials and Methods: We performed consensus
cluster analysis based on recipient-, donor-, and transplant-related characteristics in 2821 dual kidney
transplant recipients from 2010 to 2019 in the OPTN/UNOS database. We determined the important
characteristics of each assigned cluster and compared the post-transplant outcomes between clusters.
Results: Two clinically distinct clusters were identified by consensus cluster analysis. Cluster 1 pa-
tients was characterized by younger patients (mean recipient age 49 ± 13 years) who received dual
kidney transplant from pediatric (mean donor age 3 ± 8 years) non-expanded criteria deceased donor
(100% non-ECD). In contrast, Cluster 2 patients were characterized by older patients (mean recipient
age 63 ± 9 years) who received dual kidney transplant from adult (mean donor age 59 ± 11 years)
donor with high kidney donor profile index (KDPI) score (59% had KDPI ≥ 85). Cluster 1 had higher
patient survival (98.0% vs. 94.6% at 1 year, and 92.1% vs. 76.3% at 5 years), and lower acute rejection
(4.2% vs. 6.1% within 1 year), when compared to cluster 2. Death-censored graft survival was compa-
rable between two groups (93.5% vs. 94.9% at 1 year, and 89.2% vs. 84.8% at 5 years). Conclusions: In
summary, DKT in the United States remains uncommon. Two clusters, based on specific recipient and
donor characteristics, were identified through an unsupervised machine learning approach. Despite
varying differences in donor and recipient age between the two clusters, death-censored graft survival
was excellent and comparable. Broader utilization of DKT from high KDPI kidneys and pediatric en
bloc kidneys should be encouraged to better address the ongoing organ shortage.

Keywords: dual kidney transplant; dual kidney transplant recipients; transplant; transplantation;
kidney transplantation; clustering; machine learning; artificial intelligence
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1. Introduction

Kidney transplantation is widely acknowledged as the most effective modality of renal
replacement therapy for patients with end-stage kidney disease (ESKD). It not only increases
expected patient survival as compared to chronic dialysis but also improves the quality of
life [1–3]. However, there is a large gap between the number of patients receiving a transplant
and the number of people waiting due to a limited number of donor organs [4,5]. Moreover,
after the Organ Procurement and Transplantation Network (OPTN) introduced the kidney
donor profile index (KDPI) as a new national deceased donor kidney allocation policy in
2013 [6], the kidney discard rate in the US greatly rose from 10% in 1998 to 21% in 2020 [7]. As
a result, there have been ongoing efforts by the transplant community to increase the size of
the deceased donor pool by using more kidneys from expanded criteria (ECD) and high KDPI
donors, donation after cardiocirculatory death donors, as well as standard criteria donors
with prolonged warm or cold ischemic times (CIT), acute kidney injury donors, and donors at
the extremes of age [7]. Application of DKT of these discard at-risk groups has been another
proposed strategy to further maximized transplant opportunities.

DKT is a strategy used in kidney transplantation to augment nephron mass in higher-
risk transplant kidneys [8,9]. DKT is most often performed when donors are very young or
very old and dual utilization allows compensation for healthy but limited renal mass or
baseline chronic changes [10,11]. To date, reported graft survival outcomes in adult DKT
compared to ECD single kidney transplantation (SKT) remain limited although several
studies have been suggestive of outcomes with DKT [11–22]. Similarly, there continues
to be heterogeneity for small pediatric donors with a dual versus single consideration
recommended for those donors weighting >15 kg [11,23]. Although numerous studies
have focused on defining optimal allocation criteria for pediatric and adult DKT, a machine
learning technique has yet to be applied [12,17–20,24–40].

Machine learning is a subfield of artificial intelligence that has been applied to assist
clinicians in making better clinical decisions in various areas of the medical field [41–43].
Generally, machine learning provides three types of algorithms: supervised, unsupervised,
and reinforcement learning [41–43]. By identifying certain similarities and differences in
various input variables, a computer system can complete a task without explicit programming.
This is known as unsupervised machine learning [41–44]. As a result, grouping data into
clinically relevant clusters can aid clinicians [42,43,45–47]. In this study, an unsupervised
machine learning clustering approach was used to identify distinct clusters of DKT recipients
and their clinical outcomes using the OPTN/UNOS database from 2010 through 2019.

2. Materials and Methods
2.1. Data Source and Study Population

We screened renal transplant patients the OPTN/UNOS database (2010 to 2019) to
identify adult DKT patients in the United States. We excluded patients who received
simultaneous kidney transplants with other organs. The study was approved by the Ethics
Board of the Mayo Clinic (IRB ID: 21-007698).

2.2. Data Collection

We abstracted the comprehensive list of recipient-, donor-, and transplant-related char-
acteristics, as shown in Table 1, to include in cluster analysis. KDPI was calculated based
on donor age, height, weight, race, history of hypertension, diabetes mellitus, hepatitis C,
cause of death, serum creatinine, and donor after cardiac death criteria. KDPI score ranges
from 0–100% with higher score indicating lower quality donor kidneys. All variables had
missing data of <5%, and multivariable imputation by chained equation (MICE) method
was subsequently utilized [48].
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Table 1. Clinical characteristics of DKT patients according to the assigned clusters.

All
(n = 2821)

Cluster 1
(n = 1875)

Cluster 2
(n = 946) p-Value

Recipient Age (year) 53.7 ± 13.8 48.9 ± 13.4 63.2 ± 8.8 <0.001

Recipient male sex 1511 (54) 882 (47) 629 (66) <0.001

Recipient race

<0.001

- White 1038 (37) 596 (32) 442 (47)

- Black 815 (29) 565 (30) 250 (26)

- Hispanic 494 (18) 346 (18) 148 (16)

- Other 474 (17) 368 (20) 106 (11)

ABO blood group

0.239

- A 955 (34) 621 (33) 334 (35)

- B 431 (15) 287 (15) 144 (15)

- AB 144 (5) 106 (6) 38 (4)

- O 1291 (46) 861 (46) 430 (45)

Body mass index (kg/m2) 26.2 ± 4.7 25.3 ± 4.4 28.2 ± 4.8 <0.001

Kidney retransplant 131 (4.6) 120 (6) 11 (1) <0.001

Dialysis duration

<0.001

- Preemptive 297 (11) 180 (10) 117 (12)

- <1 year 308 (11) 179 (10) 129 (14)

- 1–3 years 809 (29) 489 (26) 320 (34)

- >3 years 1407 (50) 1027 (55) 380 (40)

Cause of ESKD

<0.001

- Diabetes mellitus 746 (26) 362 (19) 384 (41)

- Hypertension 738 (26) 477 (25) 261 (28)

- Glomerular disease 626 (22) 499 (27) 127 (13)

- Polycystic kidney disease 232 (8) 159 (8) 73 (8)

- Other 479 (17) 378 (20) 101 (11)

Comorbidity

- Diabetes mellitus 920 (33) 455 (24) 465 (49) <0.001

- Malignancy 233 (8) 135 (7) 98 (10) 0.004

- Peripheral vascular disease 214 (8) 113 (6) 101 (11) <0.001
Panel reactive antibody, median (IQR) 0 (0, 11) 0 (0, 23) 0 (0, 0) <0.001

Positive Hepatitis C virus serostatus 97 (3) 55 (3) 42 (4) 0.038

Positive Hepatitis B surface antigen 64 (2) 48 (3) 16 (2) 0.144

Positive Human immunodeficiency virus serostatus 28 (1) 22 (1) 6 (1) 0.173

Functional status

0.267

- 10–30% 7 (0) 5 (0) 2 (0.21)

- 40–70% 1116 (40) 722 (39) 394 (42)

- 80–100% 1698 (60) 1148 (61) 550 (58)

Working income 771 (27) 571 (30) 200 (21) <0.001

Public insurance 2125 (75) 1376 (73) 749 (79) 0.001

US resident 2776 (98) 1835 (97) 941 (99) 0.001

Undergraduate education or above 1434 (51) 946 (50) 488 (52) 0.570

Serum albumin (g/dL) 4 ± 0.6 4.0 ± 0.6 3.9 ± 0.6 0.005

Kidney donor status

<0.001

- Non-ECD deceased 2152 (76) 1872 (100) 280 (30)

- ECD deceased 669 (24) 3 (0) 666 (70)

Donor age 21.9 ± 28.1 3.0 ± 8.0 59.3 ± 10.9 <0.001

Donor male sex 1482 (53) 1079 (58) 403 (43) <0.001
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Table 1. Cont.

All
(n = 2821)

Cluster 1
(n = 1875)

Cluster 2
(n = 946) p-Value

Donor race

<0.001

- White 1724 (61) 1063 (57) 661 (70)

- Black 555 (20) 410 (22) 145 (15)

- Hispanic 386 (14) 308 (16) 78 (8)

- Other 156 (6) 94 (5) 62 (7)

History of hypertension in donor 651 (23) 27 (1) 624 (66) <0.001

Kidney donor profile index (KDPI)

<0.001
- KDPI < 85 1981 (70) 1593 (85) 388 (41)

- KDPI ≥ 85 840 (30) 282 (15) 558 (59)

HLA mismatch, median (IQR) 5 (4, 5) 5 (4, 5) 5 (4, 5) 0.06

Cold ischemia time (hours) 19.6 ± 10.1 18.0 ± 9.3 22.9 ± 10.9 <0.001

Kidney on pump 1028 (36) 385 (21) 643 (68) <0.001

Delay graft function 660 (23) 324 (17) 336 (36) <0.001

Allocation type

0.001

- Local 1509 (53) 965 (51) 544 (58)

- Regional 654 (23) 476 (25) 178 (19)

- National 658 (23) 434 (23) 224 (24)

Epstein–Barr virus status

<0.001

- Low risk 64 (2) 63 (3) 1 (0)

- Moderate risk 2588 (92) 1746 (93) 842 (89)

- High risk 169 (6) 66 (4) 103 (11)

Cytomegalovirus status

<0.001

- D−/R− 380 (13) 280 (15) 100 (11)

- D−/R+ 954 (34) 763 (41) 191 (20)

- D+/R+ 1084 (38) 608 (32) 476 (50)

- D+/R− 403 (14) 224 (12) 179 (19)

Induction immunosuppression

- Thymoglobulin 1732 (61) 1236 (66) 496 (52) <0.001

- Alemtuzumab 353 (13) 213 (11) 140 (15) 0.009

- Basiliximab 582 (21) 315 (17) 267 (28) <0.001

- Other 87 (3) 54 (3) 33 (3) 0.378

- No induction 173 (6) 111 (6) 62 (7) 0.508

Maintenance Immunosuppression

- Tacrolimus 2557 (91) 1713 (91) 844 (89) 0.065

- Cyclosporine 29 (1) 17 (1) 12 (1) 0.368

- Mycophenolate 2604 (92) 1739 (93) 865 (91) 0.218

- Azathioprine 7 (0) 7 (0) 0 (0) 0.060

- mTOR inhibitors 9 (0) 4 (0) 5 (1) 0.161

- Steroid 1954 (69) 1270 (68) 684 (72) 0.013

Abbreviations: D: Donor, ECD: Extended criteria donor, ESKD: end stage kidney disease, mTOR: Mammalian
target of rapamycin, R: Recipient.

2.3. Clustering Analysis

ML was utilized via an unsupervised consensus clustering analysis to categorize
clinical phenotypes of DKT recipients [44]. To prevent producing an excessive number of
clusters, we applied a subsampling parameter of 80% with 100 iterations and a number of
potential clusters (k) ranging from 2 to 10. The optimal number of clusters was established
by appraising the consensus matrix (CM) heat map, cumulative distribution function
(CDF), and cluster-consensus plots with the within-cluster consensus scores. The average
consensus value for all pairings of individual belonging to the same cluster was determined
as the within-cluster consensus score, which ranged from 0 to 1 [49]. A closer value to
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1 suggests more cluster stability. The full description of the consensus cluster algorithms
utilized in this study are provided in Supplementary Materials.

2.4. Outcomes

Post-transplant outcomes included (1) patient death, and (2) 1- and 5-year death-
censored allograft loss, and (3) acute allograft rejection within 1 year post-transplant.
Patients were censored for death at the last follow-up date reported to the OPTN/UNOS
database, thus death-censored graft failure was defined as the need for dialysis or kid-
ney retransplantation.

2.5. Statistical Analysis

After we categorized adult DKT patients by the consensus clustering algorithm, the
characteristics and outcomes among the assigned clusters were compared. The difference
in clinical characteristics was tested by utilizing Student’s t-test for continuous data and
Chi-squared test for categorical data. The key characteristics of clusters were identified by
applying the standardized mean difference between each cluster and the overall cohort
with the pre-specified cut-off of >0.3. We demonstrated the risk of death-censored graft
failure and patient death after kidney retransplant using Kaplan–Meier plot. We calculated
the hazard ratio (HR) for death-censored graft loss, and mortality using Cox proportional
hazard analysis. Because the date of rejection was not reported in the OPTN/UNOS
database, we calculated the odds ratio (OR) for 1-year rejection using logistic regression
analysis. We did not adjust the association of the assigned clusters with post-transplant
outcomes for clinical characteristics because clinically distinct clusters were purposefully
generated from the consensus clustering approach. R, version 4.0.3 (RStudio, Inc., Boston,
MA, USA; http://www.rstudio.com/, accessed on 21 July 2021); ConsensusClusterPlus
package (version 1.46.0) and the MICE command in R were used for consensus clustering
analysis and for multivariable imputation by chained equation, respectively [48].

3. Results

From 2010 to 2019, there were total 158,367 kidney transplant recipients in the U.S. Of
these, 2821 (1.8%) underwent DKT. Consensus clustering analysis was applied into these
2821 DKT recipients. The CDF plot demonstrated the consensus distributions for each
cluster (Figure 1A). The delta area plot revealed the relative change in the area under the
CDF curve (Figure 1B). The greatest changes in the area were identified between k = 2 and
k = 4, after which point the relative rise in area decreased substantially. As shown in the CM
heatmap (Figure 1C and Supplementary Figures S1–S9), the ML algorithm identified cluster
2 with distinct borders, demonstrating high cluster stability across repeated iterations.
The mean cluster consensus score was highest in two clusters (Figure 2). Thus, consensus
clustering analysis identified two clinically distinct clusters of DKT recipients.

http://www.rstudio.com/
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3.1. Characteristics of Each DKT Cluster

There were 1875 (66%) patients in Cluster 1, and 946 (34%) patients in Cluster 2. Table 1
and Figure 3 demonstrated characteristics of DKT patients according to the assigned clusters.
Cluster 1 patients was characterized by younger patients (mean recipient age 49 ± 13 years)
who received DKT from pediatric (mean donor age 3 ± 8 years) non-expanded criteria deceased
donor (100% non-ECD). In contrast, Cluster 2 patients was characterized by older patients
(mean recipient age 63 ± 9 years) who received DKT from adult (mean donor age 59 ± 11 years)
donor with a high KDPI score (59% had KDPI ≥ 85). In total, 70% and 30% of transplanted
kidneys were from ECD and non-ECD deceased donor, respectively.
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3.2. Post-Transplant Outcomes of Each DKT Clusters

Table 2 shows post-transplant outcomes according to the assigned clusters. Cluster
1 patients had higher patient survival (98.0% vs. 94.6% at 1 year, and 92.1% vs. 76.3% at
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5 years) compared to cluster 2 patients (Figure 4A), and it was consistent across subgroup
analysis (Table 3). Cluster 1 and cluster 2 had comparable death-censored graft survival
(93.5% vs. 94.9% at 1 year, and 89.2% vs. 84.8% at 5 years) (Figure 4B). However, Cluster
2 might be associated with higher risk of death-censored graft failure in male kidney
transplant recipients or donors (Table 3). Cluster 1 had less acute rejection (4.2% vs. 6.1%
within 1 year) compared to cluster 2 patients.

Table 2. Clinical outcomes.

Cluster 1 Cluster 2 p-Value

1-year survival 98.0% 94.6% <0.001

HR for 1-year mortality 1 (ref) 2.62 (1.70–4.08) <0.001

5-year survival 92.1% 76.3% <0.001

HR for 5-year mortality 1 (ref) 3.12 (2.41–4.05) <0.001

1-year death-censored graft survival 93.5% 94.9% 0.08

HR for 1-year death-censored graft loss 1 (ref) 0.73 (0.51–1.03) 0.08

5-year death-censored graft survival 89.2% 84.8% 0.28

HR for 5-year death-censored graft loss 1 (ref) 1.15 (0.89–1.48) 0.28

1-year acute rejection 4.2% 6.1% 0.03

OR for 1-year acute rejection 1 (ref) 1.48 (1.05–2.10) 0.03
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Table 3. Subgroup analysis.

Patient Death Death-Censored Graft Failure

HR (95% CI) p-Value HR (95% CI) p-Value

Recipient age

- <60 1.94 (1.13–3.21) 0.02 1.26 (0.85–1.83) 0.25

- ≥60 2.00 (1.42–2.87) <0.001 1.41 (0.91–2.21) 0.12

Recipient sex

- Male 2.92 (2.11–4.10) <0.001 1.47 (1.03–2.10) 0.03

- Female 3.03 (1.95–4.68) <0.001 1.00 (0.66–1.46) 0.99

Recipient race

- White 3.12 (2.11–4.69) <0.001 1.03 (0.68–1.55) 0.89

- Non-white 2.89 (2.04–4.12) <0.001 1.25 (0.90–1.72) 0.18

Recipient body mass index

- <30 3.20 (2.36–4.34) <0.001 1.11 (0.81–1.50) 0.52

- ≥30 2.22 (1.34–3.82) 0.002 1.05 (0.64–1.74) 0.84

Kidney retransplant

- No 3.25 (2.49–4.27) <0.001 1.14 (0.88–1.48) 0.33

- Yes 3.59 (0.81–11.55) 0.09 2.95 (0.68–9.18) 0.13

Preemptive transplant

- No 3.08 (2.35–4.03) <0.001 1.21 (0.92–1.57) 0.16

- Yes 4.43 (1.64–13.94) 0.003 0.71 (0.25–1.78) 0.48

Recipient diabetes

- No 3.61 (2.50–5.22) <0.001 1.15 (0.82–1.60) 0.41

- Yes 1.84 (1.27–2.69) 0.001 1.11 (0.73–1.70) 0.63

PRA

- 0 3.15 (2.31–4.33) <0.001 1.14 (0.84–1.54) 0.39

- >0 3.13 (1.94–5.05) <0.001 1.22 (0.74–1.94) 0.42

Donor sex

- Male 3.46 (2.46–4.89) <0.001 1.49 (1.05–2.08) 0.02

- Female 2.99 (2.01–4.50) <0.001 0.90 (0.61–1.33) 0.60

Donor race

- White 3.12 (2.23–4.38) <0.001 1.02 (0.74–1.40) 0.91

- Non-White 3.23 (2.12–4.91) <0.001 1.44 (0.95–2.19) 0.10

Donor hypertension

- No 2.92 (2.03–4.13) <0.001 1.11 (0.75–1.61) 0.58

- Yes 2.52 (0.80–15.30) 0.13 0.77 (0.32–2.52) 0.61

KDPI

- <85 2.30 (1.56–3.33) <0.001 1.21 (0.82–1.73) 0.33

- ≥85 3.12 (1.94–5.34) <0.001 0.69 (0.46–1.03) 0.07

4. Discussion

DKT, the transplantation of two kidneys from the same donor into a single recipient,
has been utilized as an alternative approach to expand the available donor pool [7,11]. Many
reports show that the graft survival rate was higher in the DKT recipients than in those
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single kidney transplant (SKT) with ECD or high KDPI kidney [11,12,15,19]. According
to our study, DKT remains uncommon in the United States, accounting for only 1.8% of
the overall kidney transplants. Recent OPTN allocation changes took effect in 2019 and
were further affected by implementation of the 250 nautical mile fixed circle allocation [50].
Despite policy intent, there was a decrease in the number of dual kidney transplants
performed albeit initial monitoring occurred during the COVID pandemic.

In this study, we use an unsupervised machine learning consensus clustering approach
to categorize DKT into two different clusters based on recipient and donor characteristics
in the OPTN/UNOS database. Cluster 1 patients, which accounted for nearly 70% of
all DKT, were younger patients who received DKT from pediatric non-ECD donors. In
contrast, cluster 2 patients were characterized by older patients who received DKT from
adult donors with higher KDPI scores.

Cluster 2 patients received higher KDPI kidneys and had higher incidence of delayed
graft function, and thus higher acute rejection was observed in cluster 2 recipients when
compared to cluster 1 patients. While it is perhaps not unexpected that patient survival was
better in cluster 1 given that patients in cluster 1 were significantly younger and less likely
to be diabetic as compared to those in cluster 2, death-censored graft survival was; however,
comparable between the two clusters. Early graft losses due to technical complications
likely account for decreased graft survival in pediatric DKT recipients along with increased
probability of seeing recurrent primary disease within the allograft [51]. By comparison,
recipient characteristics in combination with lower expected longevity in higher KDPI
kidneys likely accounts for similarities in patient survival and death-censored graft loss
for cluster 2. The findings of this study illustrate excellent death-censored graft survival in
both clusters. This reflects appropriate donor-recipient pairing and kidney utilization in
the transplant community. These data align with what has been observed within the OPTN
post-policy implementation where a higher proportion of dual kidney recipients were aged
65+ year whereas the proportion of pediatric en bloc kidney transplants for recipients aged
18–34 and 35–49 years notably increased [50].

There are some limitations in this study. Due to the registry nature of this cohort, there is
lack of detail specific to exact causes for graft loss and death as well as specific detail related
to donor-recipient pairing and center-specific criteria for DKT utilization. Additionally, lack of
difference in death-censored graft loss between the 2 clusters can be explained by differences
in recipient and donor characteristics, which are not necessarily novel. Although these clusters
clinically different, and the application of machine learning is novel, there are limitations
in how these data will enhance current clinical decision-making. Future studies applying
supervised machine learning with prediction models based upon this initial data will be of
greater utility in assessing predictors of survival for DKT.

To the best of our knowledge, this is the first machine learning approach specifically
targeted at DKT. Two DKT clusters were identified using machine learning clustering
methods without human intervention. The outcomes of our clustering approach, based
on machine learning, support existing studies demonstrating the importance of donor-
recipient pairing in DKT outcomes which also highlights opportunities to improve the
kidney allocation system in the United States. There are likely existing opportunities to
further expand DKT utilization within the transplant community, particularly for high KDPI
kidneys. The application of ML consensus clustering approach in this study provides a
novel understanding of unique phenotypes of DKT recipients in order to advance allocation
systems to expand the donor pool. Given excellent outcomes among both clusters, DKT
from high KDPI kidneys and pediatric en bloc kidneys should be encouraged to better
address the ongoing organ shortage.

5. Conclusions

In summary, DKT in the United States remains uncommon. Two clusters, based
on specific recipient and donor characteristics, were identified through an unsupervised
machine learning approach. Despite varying differences in donor and recipient age between
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the two clusters, death-censored graft survival was excellent and comparable. Broader
utilization of DKT from high KDPI kidneys and pediatric en bloc kidneys should be
encouraged to better address the ongoing organ shortage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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