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Abstract: Background and Objectives: An effective post-injury training program is essential to regain
performance and fulfill criteria for return to sport for team sport athletes following anterior cruciate
ligament (ACL) reconstruction. The aim of this study was to compare the effects of 6 weeks of
eccentric-oriented strength training vs. traditional strength training during the late-stage ACL-rehab
phase on leg strength and vertical and horizontal jumping performance in professional team sport
athletes. Materials and Methods: Twenty-two subjects (14 males, 8 females, age 19.9 ± 4.4 years, mass
77.4 ± 15.6 kg, height 182.4 ± 11.7 cm) (mean ± SD) with a unilateral reconstructed ACL (BTB graft)
were included in the study. All participants enrolled in the same rehabilitation protocol prior to the
training study. Players were randomly assigned to an experimental (ECC: n = 11, age 21.8 ± 4.6 years,
mass 82.7 ± 16.6 kg, height 185.4 ± 12.2 cm), and a control group (CON: n = 11, age 19.1 ± 2.1 years,
mass 76.6 ± 16.5 kg, height 182.5 ± 10.2 cm). Both groups underwent an equivolumed rehabilitation
program, with the only difference being in strength training, which consisted of flywheel training
vs. traditional strength training for the experimental and control groups, respectively. Testing was
organized before and after the 6-week training programs and included isometric semi-squat tests
(ISOSI-injured and ISOSU-uninjured legs), vertical jump tests (CMJ), single-leg vertical jump tests
(SLJI-injured and SLJU-uninjured legs), single-leg hop tests (SLHI-injured and SLHU-uninjured legs),
and triple hop tests (TLHI-injured and TLHU-uninjured legs). In addition, limb symmetry indexes
were calculated for the isometric semi-squat (ISOSLSI) test, the single-leg vertical jump (SLJLSI), and
the hop (SLHLSI) tests, as well as the triple-leg hop (THLLSI) test. Results: Main effects of time across
training were observed for all dependent variables (posttest > pretest, p < 0.05). Significant group-by-
time interactions were found for ISOSU (p < 0.05, ES = 2.51, very large), ISOSI (p < 0.05, ES = 1.78,
large), CMJ (p < 0.05, ES = 2.23, very large), SLJI (p < 0.05, ES = 1.48, large), SLHI (p < 0.05, ES = 1.83,
large), and TLHI (p < 0.05, ES = 1.83, large). Conclusions: This study suggests that eccentric-oriented
strength training in late-stage ACL recovery, undertaken twice or three times weekly for 6 weeks,
results in better outcomes than traditional strength training in leg strength, vertical jump ability, and
single and triple hop tests with injured legs in professional team sport athletes. It seems that flywheel
strength training can be recommended in late-stage ACL recovery for professional team sport athletes
in order to regain recommended performance outcome levels faster.
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1. Introduction

The anterior cruciate ligament (ACL) is a ligament responsible for knee stability
primarily by restricting anterior translation of the tibia but also limiting knee joint medial
and lateral rotation. Ligament is heavily engaged in activities including deceleration,
change of direction, and/or jump landing actions—all movements that team sports like
basketball, soccer, and handball are well saturated with. Consequently, ACL injuries
are frequent in team sport athletes for both men and women [1], followed by surgical
reconstruction and a prolonged period of rehabilitation.

The rehabilitation process is long and multifactorial, with return to sport (RTS), defined
as a return to unrestricted training or competition, generally acknowledged as the primary
outcome for athletes [2]. Although the time frame from surgery was traditionally used as the
main criteria to establish whether an athlete is ready to RTS, a shift towards comprehensive
functional testing has dominated in recent years [3]. ACL injury has a detrimental impact
on fitness attributes, with deficits in strength, reactive strength, and power commonly
reported [4]. Consequently, RTS testing typically relies on strength and power assessment,
with a battery of tests to assess strength/power capacity but also symmetry between
limbs [5]. The most common functional performance outcomes are lower body strength
(isokinetic or isometric), single-leg hop, single-leg triple hop, single-leg triple crossover
hop [6], and recently, vertical jump [7].

The effects of various training modalities on RTS-related performance outcomes have
been extensively studied in the past decades [8,9]. However, there is no consensus re-
garding the content of the post-ACL rehabilitation modality or the effectiveness of these
rehabilitation interventions [10]. Conventional rehab protocols revolve around muscle
strength regain to reduce injury risk [11], with emerging evidence that strength alone is
not a sole determinant of injury risk [11]. Mounting evidence indicates that neural deficits
are likely an important contributing factor to increased injury risk [12]. Therefore, novel
training modalities that could influence both muscle morphology and neural activity are
constantly sought after [13]. In this context, eccentric training has emerged lately. It has
been reported that eccentric overload exercises could optimize muscle fiber length [14],
add sarcomeres in series [15], and increase pennation angle [16], consequently optimizing
muscle hypertrophy and strength [17]. Several [18,19] but not all [20,21] studies reported
eccentric training to be superior to traditional strength training for muscle mass, strength,
and functional performance gains. In addition, eccentric strength training gains could
also be specific to the training modality without functional improvements [22]. It has
been reported [23] that 8 weeks of eccentric exercise with an uninjured limb promotes
reduced neural activity in the frontal cortex with increased corticospinal and spinal reflex
excitability, likely resulting in larger acute and chronic strength gains and muscle activity
in the untrained (injured) limb [24]. Taken all together, eccentric-oriented training seems to
be a promising tool to beneficially remodel both peripheral and central neural activity [25],
enhance neuromuscular control, and likely reduce the incidence of injury.

Surprisingly, the effects of eccentric-oriented training protocols have been studied
sparsely in the ACL-reconstructed population, with contradictory study findings. Lepley
et al. [26,27] reported that 6 weeks of eccentric training produced large gains in quadriceps
strength but not sagittal plane knee kinematics in early-stage non-athletic ACL patients.
Friedmann-Bette et al.’s [28] study results showed that a 12-week eccentric training program
(24 sessions in total) leads to superior quadriceps hypertrophy than conventional strength
training in a sample of 37 recreational athletes. Significantly larger improvements in vertical
jump (p = 0.012) and single-leg hop (p = 0.027) after 12 weeks of eccentric/concentric
training vs. standard ACL rehabilitation were reported in early-stage (3 weeks post-op)
ACL patients [29]. Finally, an 8-week eccentric bicycle training program was found to
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be similar to concentric training in improving knee flexion angle, strength, and patient-
reported outcomes in early-stage ACL patients [30].

Even less data, considering eccentric-oriented training effectiveness, is available when
mid- and last-stage ACL-rehab periods are targeted. Kasmi et al. [31] examined the effects
of eccentric training, plyometric training, and eccentric/plyometric training on dynamic
balance, the Lysholm knee scale, and the single-leg hop test in 40 elite female athletes
following ACL reconstruction. Four months post-op (mid-stage of recovery), a short-
term (6 weeks, two times per week) training study was conducted. Statistical analysis
revealed that the eccentric/plyometric training combination yielded significantly greater
improvements in all testing variables than the concentric, plyometric, or control groups.
Furthermore, the eccentric training group was found to yield significantly bigger gains
in the Lysholm knee scale in comparison to the control group (traditional rehabilitation
training). Recently, one set of eccentric-oriented Bulgarian squats, performed two times
per week for eight weeks during late-stage rehabilitation, was found to be a robust tool to
improve quadriceps power in well-trained team sport athletes with ACL reconstruction [32].
Furthermore, study results revealed that strength gains are baseline-dependent, with
the stronger the athletes, the smaller the gains over time. More studies on the topic
seem prudent.

To the best of the author’s knowledge, there are no articles examining the effects of
eccentric-oriented strength training on functional performance outcomes in team sport
professional athletes during the late-stage rehab period. Thus, the motivation behind this
study was to compare the effects of eccentric-oriented strength training vs. traditional
strength training during the late-stage ACL-rehab phase on functional outcome measures
in professional team sport athletes. We hypothesized that 6 weeks of eccentric-oriented
training, implemented during late-stage ACL rehabilitation, would lead to greater im-
provements compared to traditional strength training on leg strength, vertical jump ability,
and horizontal jumping performance in professional team sport athletes. Obtained results
might suggest the clinical applicability of these training protocols during late-stage ACL
rehab in team sports professionals in order to achieve a faster and more efficient recovery.

2. Materials and Methods

This study deployed a between-subject longitudinal design to examine the effects
of eccentric-oriented vs. traditional strength training protocols on crucial return-to-sport
performance outcomes in professional team sport players during the late-stage ACL reha-
bilitation phase.

2.1. Subjects

The sample for this study was selected out of 134 ACL patients who underwent
rehabilitation in a rehab-specialized fitness facility (the Center of Excellence in Sport Science,
Novi Sad, Serbia) between January 1, 2018, and December 31, 2022. In order to be selected
for this study, subjects had to be professional team sports athletes, members of at least
first-division teams in their respective sport. Subjects with previous ACL injuries or severe
chondral defects were not included in the study, but meniscus repair or meniscectomy
performed at the time of ACL reconstruction was tolerated. In addition, exclusion criteria
were as follows: (1) fail more than 20% of all training sessions; (2) fail two consecutive
sessions. The number of participants was estimated using G*Power 3.1. Power was set at
80% with an alpha level of 5%, and peak isometric force was considered a primary outcome,
resulting in a sample size of 10 subjects per group. Finally, twenty-two subjects (soccer n = 8;
basketball n = 9; handball n = 5; 14 males, 8 females, age range 16–30, age 19.9 ± 4.4 years,
mass 77.4 ± 15.6 kg, height 182.4 ± 11.7 cm) (mean ± SD) with a unilateral reconstructed
ACL (all performed with BTB grafts by the same surgeon) were included in the study.
At the time of first testing, they were in the late-stage rehabilitation phase, between 5–6
(5.7 ± 0.4) months post-surgery. Participants were randomly allocated (lottery method) to
the control group (CON: n = 11 (4 females), age 19.1 ± 2.1 years, mass 76.6 ± 16.5 kg, height
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182.5 ± 10.2 cm) or experimental group (ECC: n = 11 (4 females), age 21.8 ± 4.6 years, mass
82.7 ± 16.6 kg, height 185.4 ± 12.2 cm). Throughout the study, the subjects were advised
to maintain their nutritional habits and not take any nutritional supplements, especially
protein or creatine supplements. Participants or their parent/legal guardian gave their
written informed consent and were instructed to be free to ask questions on any occasion. In
addition, they could withdraw from the study at any time without explanation. The ethics
committee of the University of Novi Sad, Serbia, approved this study (protocol number:
122/2020).

2.2. Study Design

All participants were engaged in a standard rehabilitation program and supervised by
two highly skilled practitioners (MSc and PhD in Sport Science with more than 10 years of
experience and 200 ACL rehabilitations) until enrolled in the study (Figure 1).
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Figure 1. Experimental protocol for the present study.

During the early stage of rehab (around 12 weeks), care was taken to decrease swelling
and inflammation and restore range of motion and muscle activity in the affected mus-
cles. Running was allowed after the respective physician’s clearance, somewhere around
12 weeks post-op. Low-load strength training (open and closed chain), landing skills, and
low-load plyometrics were progressively included at around 16 weeks post-surgery (mid-
stage rehabilitation). All participants enrolled in five training sessions a week, 80–90 min
per session. Finally, between 5 and 6 months post-op, physician clearance for first RTS
testing (initial testing) with recommended test protocols (3) was received for all patients and
organized at the earliest occasion. After initial testing, each participant was randomized
to the experimental or control group and started with the corresponding rehabilitation
program. Final testing, identical to the initial one, was conducted five to seven days
after the intervention period. All tests were performed by an experienced strength and
conditioning coach who was blinded to the present study protocol design. In addition,
tests were performed at the same time of day (16:00 p.m.–18:00 p.m.) and under the same
environmental conditions for all subjects (22 ◦C and 60% humidity). All participants were
strongly instructed to abstain from any strenuous activity for at least 24 h before testing.

2.3. Rehabilitation Protocols

The training period was 6 weeks long, with training occurring 6 days per week for
participants in both groups. As a core of the rehabilitation protocol, two to three strength
training sessions were conducted per week (15 training sessions in total), with eccentric-
oriented vs. traditional strength training for the ECC and CON groups, respectively
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(Table 1). The experimental and control groups conducted the same number of sets and
repetitions per set during the study period for each strength training session. The only
difference was exercise selection, with the ECC group using isoinertial devices (kBox;
Exxentric AB, Bromma, Sweden) or drills that otherwise overload the eccentric phase of
movement, while the CON group used traditional isotonic strength training modalities with
free weights. For isoinertial exercises, two submaximal attempts were included in each set,
followed by a predetermined number of maximum voluntary repetitions. A moderate load
(0.075 kg m2) was selected according to the conclusion by Sabido et al. [33] that these loads
maximize eccentric overload. In addition, subjects were instructed and strongly verbally
encouraged to perform the concentric phase as fast as possible, consequently delaying the
braking action to the last third of the eccentric phase in order to maximize power outputs.
The CON group exercised at around 80% of one repetition maximum (1 RM).

Table 1. Strength training program for the EXP and CON groups.

Group Exercises First Week Second
Week

Third
Week

Fourth
Week

Fifth
Week

Sixth
Week

ECC
eccentric
oriented

Half squat on an isoinertial device 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10
Copenhagen eccentric 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

Romanian deadlifts on isoinertial
device 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

Eccentric Swiss ball curl 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10
Hip thrust on an isoinertial device 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10
Bulgarian squats on an isoinertial

device 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

CON
traditional

Spanish squat 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10
Copenhagen 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

Romanian deadlift with free
weights 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

Leg curl 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10
Hip thrust 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

Bulgarian squat 2 × 6 2 × 8 2 × 10 3 × 8 3 × 9 3 × 10

Beyond this, participants enrolled in two/three training sessions per week consisting
of medium to high aerobic load (treadmill running), upper body strength, low to moderate
load agility, and deceleration/landing skills. Finally, one/two training sessions per week
were dedicated to recovery procedures (Table 2).

Table 2. Rehabilitation program weekly structure.

Title 1 Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Weeks 1, 2, and 3

Upper body
strength;

Agility/decelerations/
landing skills;

Aerobic endurance

Lower body
strength

Recovery core;
flexibility
stretching

Upper body
strength;
Agility/

decelerations/
landing skills;

Aerobic endurance

Lower body
strength

Recovery core;
flexibility
stretching

Off

Weeks 4, 5, and 6

Upper body
strength;

Agility/decelerations/
landing skills;

Aerobic endurance

Lower body
strength

Recovery core;
flexibility
stretching

Lower body
strength

Upper body
strength;
Agility/

decelerations/
landing skills;

Aerobic endurance

Lower body
strength Off

These training sessions were identical for both groups considering drill selection, sets,
reps, and rest periods, but not intensity considering the greater torque produced during
eccentric contractions. All training sessions were performed in a one-on-one format by the
same highly experienced strength and conditioning coach, who guided participants on how
to perform each exercise. The subjects initiated each training session with a standardized
warm-up on a stationary bicycle (5–7 min), followed by dynamic stretching, calisthenics,
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and preparatory exercises (15 min in total). The exercise load was periodized and increased
progressively throughout the study period, with deloading in the third and sixth weeks.

2.4. Testing Procedures
2.4.1. Isometric Leg Strength

The isometric leg strength test was executed on a flywheel device (D11 full, Desmotec,
Biella, Italy), with peak force measured as an outcome. The participant wore a waist-
fastened harness anchored to the strap and attached to the device, tightened so as not to
allow vertical movement of the participant. The device has two load cells connected to a
software-equipped computer (D.Soft, Desmotec, Biella, Italy). From a semi-squat position
(100 degrees knee angle, hands on hips) and following a signal, the participant tries to stand
upright, progressively developing maximal pressure on the plates for a total of 10 s. The
measured force is read and saved on the computer. The better of the two obtained results
(rest period of 2 min between trials) for both injured (ISOSI) and uninjured (ISOSU) legs,
expressed in kilograms, was recorded and used in further analysis. Intra-class correlation
coefficients showed excellent reliability for both ISOSI (ICC: 0.96; CI: 0.90–0.98) and ISOSU
(ICC: 0.96; CI: 0.91–0.98).

2.4.2. Hop Tests

For the single-leg hop test (SLHU and SLHI for uninjured and injured legs, respec-
tively), the participant is positioned on one leg, jumps horizontally with an all-out effort,
and lands on the same limb with a controlled, balanced landing. With the triple jump test
(TLHU and TLHI for uninjured and injured legs, respectively), the patient is positioned
on one leg, performs three consecutive horizontal jumps with an all-out effort, and lands
on the same limb in a controlled manner. The hop distance for all hop tests was measured
to the nearest centimeter from the starting line to the patient’s heel with a standard tape
measure. Two successful trials for each limb were recorded for all tests, with the highest
distances used to compute a limb symmetry index ([injured side/uninjured side;] × 100%).
A limb symmetry index of <100 reveals a deficit in the injured limb. Intra-class correlation
coefficients showed excellent reliability for both SLHU (ICC: 0.92; CI: 0.82–0.97) and SLHI
(ICC: 0.83; CI: 0.60–0.93), with a poor limb symmetry index for the single-leg hop test (limb
symmetry index, SLHLSI) (ICC: 0.50; CI: 0.19–0.79). In addition, intra-class correlation
coefficients showed excellent reliability for both TLHU (ICC: 0.92; CI: 0.82–0.97) and TLHI
(ICC: 0.83; CI: 0.60–0.93), with an acceptable limb symmetry index for the triple-leg hop
test (limb symmetry index, TLH-LSI) (ICC: 0.78; CI: 0.48–0.90).

2.4.3. Vertical Jump Tests

To perform a countermovement jump (CMJ), subjects were instructed to start with
hands on the hips in an upright standing position, swiftly flex their knees to a semi-squat
position, and immediately jump upward as high as possible while landing with knees
extended. A contact mat (Just Jump, Probotics, Huntsville, AL, USA) measures the flight
time, from which the flight height in centimeters is calculated. Intra-class correlation
coefficients showed excellent reliability for CMJ (ICC: 0.98; CI: 0.96–0.99).

For single countermovement jumps (SLJU and SLJI for uninjured and injured legs,
respectively), athletes started from an upright single-leg standing position on the contact
mat with hands on the hips. After dynamically counter-moving to a self-selected depth,
they jumped vertically with maximum effort and landed on the same leg. The best out of
three trials for both vertical jump tests were recorded (Just Jump, Probotics, Huntsville,
AL, USA) and used for further analysis. Limb symmetry index (SLLSI) was calculated.
Intra-class correlation coefficients showed excellent reliability for both SLJU (ICC: 0.92; CI:
0.81–0.96) and SLJI (ICC: 0.94; CI: 0.87–0.97), with an acceptable limb symmetry index for
the single-leg jump test (limb symmetry index, SLJ-LSI) (ICC: 0.71; CI: 0.31–0.88).
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2.5. Statistical Analysis

Test results are presented as the mean ± standard deviation (SD). Before any statistical
analysis, the normal distribution and homogeneity of the data were confirmed with the
Shapiro-Wilk and Levenes tests, respectively. The test-retest reliability was assessed using
an intraclass correlation coefficient (ICC) two-way mixed model and interpreted as follows:
≥0.9 = excellent; ≥0.8 = good; ≥0.7 = acceptable; ≥0.6 = questionable; ≥0.5 = poor;
<0.5 = unacceptable [34].

A two-way ANOVA (2 × 2, group × time) was used to analyze the effects of eccentric
training on the study outcomes. The percentage of change ([post value/pre value] − 1) was
computed and reported for each variable. When the sphericity assumption was violated,
the Greenhouse-Geisser correction was used for interpretation. Moreover, effect sizes (ES)
were determined from ANOVA output by converting partial eta squared to Cohens d, with
ES values considered to be either “trivial” (<0.20), ”small” (>0.2–0.6), “moderate” (>0.6–1.2),
“large” (>1.2–2), or “very large” (>2). The level of significance was set at p ≤ 0.05. Data was
processed using the SPSS statistical software package, version 20 (Chicago, IL, USA).

3. Results

All participants attended all training sessions without reporting any rehabilitation or test-
related injuries. ECC and CON groups were similar for age (21.8 ± 4.6 vs. 19.1 ± 2.1 years),
body mass (82.7 ± 16.6 vs. 76.6 ± 16.5 kg), and height (185.4 ± 12.2 vs. 182.5 ± 10.2 cm).

A two-way analysis of variance revealed significant main effects of time across training
for all dependent variables (posttest > pretest, p < 0.05, Table 3).

Table 3. Within-group differences, main and interaction effects, and effect sizes for selected variables.

Variables Group Pre-Test Post-Test Main Effect
F (Sign)

Interaction F
(Sign) Effect Size

Strength (uninjured) ECC 82.54 ± 23.16 105.72 ± 26.98 *† 192.81 (0.000) 31.62 (0.000) 2.51, very large
CON 64.81 ± 11.46 74.63± 11.76 *

Strength (injured) ECC 77.09 ± 16.94 98.00 ± 20.58 *† 144.72 (0.000) 16.08 (0.001) 1.78, large
CON 57.54 ± 14.48 68.00 ± 13.74 *

Strength (LSI) ECC 86.45 ± 6.02 92.45 ± 7.31 * 22.86 (.000) 0.122 (0.730) 0.156, trivial
CON 82.81 ± 5.19 88.00 ± 4.25 *

CMJ ECC 45.92 ± 8.19 51.86 ± 8.11 *† 156.01 (0.000) 25.36 (0.000) 2.23, very large
CON 37.60 ± 7.29 40.12 ± 7.47 *

Single-leg jump
(uninjured)

ECC 27.40 ± 4.88 30.91 ± 4.74 * 14.79 (0.001) 3.33 (0.08) 0.82, moderate
CON 21.99 ± 4.77 23.18 ± 4.49 *

Single-leg jump
(injured)

ECC 22.73 ± 5.20 28.14 ± 5.01 *† 95.24 (0.000) 11.51 (0.003) 1.48, large
CON 19.06 ± 3.47 21.68 ± 4.53 *

Single-leg jump (LSI) ECC 80.36 ± 5.29 90.27 ± 5.53 * 27.39 (0.000) 0.872 (0.362) 0.48, small
CON 82.36 ± 11.35 89.97 ± 8.84 *

Single-leg hop
(uninjured)

ECC 159.54 ± 30.68 181.81 ± 21.52 * 48.33 (0.000) 2.33 (0.133) 0.69, moderate
CON 139.54 ± 14.90 153.64 ± 13.61 *

Single-leg hop
(injured)

ECC 138.63 ± 23.56 171.81 ± 19.40 *† 70.00 (0.000) 16.79 (0.001) 1.83, large
CON 139.54 ± 23.71 150.90 ± 17.00 *

Single-leg hop (LSI) ECC 87.54 ± 7.44 93.90 ± 5.14 * 8.21 (0.010) 2.09 (0.163) 0.64, moderate
CON 91.09 ± 6.23 93.18 ± 5.60 *

Triple-leg hop
(uninjured)

ECC 550.00 ± 93.91 593.63 ± 77.72 * 47.26 (0.000) 0.965 (0.338) 0.43, small
CON 455.90 ± 43.11 488.63 ± 35.82 *

Triple-leg hop
(injured)

ECC 494.54 ± 89.95 565.45 ± 80.82 *† 64.28 (0.000) 16.07 (0.001) 1.78, large
CON 450.45 ± 56.32 474.09 ± 45.78 *

Triple-leg hop (LSI) ECC 90.00 ± 6.66 95.09 ± 4.61 * 23.01 (0.000) 1.53 (0.229) 0.55, moderate
CON 92.81 ± 3.25 95.81 ± 3.54 *

Pretest—initial test result ± standard deviation; Posttest—final test result ± standard deviation; * Significant
difference (p < 0.05) between pretest and posttest. † Significantly different from the control group (CG) (p < 0.05).
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A significant interaction effect was found for ISOSU and ISOSI, with very large and
large effect sizes, respectively. Comparing the results of the pretest and posttest measure-
ments, the ECC group had an improvement of 28.1% vs. 15.1% for the CON group for
ISOSU, while for ISOSI, improvements were 27.1% and 18.1% for the ECC and CON groups,
respectively. A significant interaction effect was found for CMJ, with a very large effect
size. The experimental group and control group achieved progress of 12.9% and 6.7%,
respectively. A significant interaction effect was observed for the single-leg jump-injured
leg variable (SLJI) with a large effect size. Considering the percentage of improvements,
23.8% and 13.7% were reported for the ECC and CON groups, respectively. For the single-
leg hop test-injured leg, the interaction effect showed statistically significant differences
between groups, with a large effect size. When expressed as a percentage, the reported
improvements were 23.9% and 8.1% for the ECC and CON groups, respectively. Finally,
significant group-by-time interactions were found for the triple hop test-injured leg (TLHI),
with a large effect size. The experimental group and control group achieved progress of
14.3% and 5.3%, respectively.

4. Discussion

The present investigation aimed to compare the effects of 6 weeks of eccentric-oriented
vs. traditional strength training on return-to-sport outcomes in late-stage ACL rehabili-
tation in professional team sport athletes. The study results showed that, although both
training programs significantly improved all tested parameters, the eccentric-oriented
training program resulted in significantly greater improvements concerning lower body
strength, vertical jump performance, single-leg jump with injured leg (SLJI), single-leg hop
with injured leg (SLHI), and triple-leg hop with injured leg (TLHI) performance. No signif-
icant training-effect differences were determined for isometric strength (limb symmetry
index), single-leg jump test (uninjured leg), single-leg jump test (limb symmetry index),
single-leg hop test (uninjured leg), single-leg hop test (limb symmetry index), triple-leg hop
test (uninjured leg), and triple-leg hop test (limb symmetry index). Thus, eccentric-oriented
training can be considered a worthy functional performance-improvement training method
in professional team sports for late-stage ACL surgery patients. It is generally recognized
that strength training is a cornerstone of every sound ACL rehabilitation program [35]. It
has previously been observed that eccentric-oriented training produces unique neural pat-
terns and greater muscle mechanical tension, consequently optimizing the neuromuscular
response to strength training [17]. In addition, the efficacy of eccentric training has been
reported in several studies involving early-stage ACL reconstruction patients [24,30,36].
Few studies to date, however, have discussed the return to sport outcomes following
eccentric-oriented training in a late-stage athletic population, clearly justifying the rationale
of this study.

In a 6-week study by Kasmi et al. [31], twelve eccentric-oriented training sessions
(with total volume ranging from 64 to 120 repetitions spread across 4 exercises) produced a
meaningfully better improvement (p < 0.05–0.001) than traditional rehabilitation protocols
for one-leg vertical jump and RTS hop tests in 40 elite female athletes with reconstructed
ACLs. All subjects were in a mid-stage rehabilitation phase. In addition, reported data
suggests that, compared to equivolumed eccentric, traditional, or plyometric training, the
combination of eccentric and plyometric load was most effective in improving dynamic
stability, the Lysholm knee scale, the return to sport index, and hop tests (limb symmetry
indexes). The effects of eccentric training (flywheel) on maximal strength, quadriceps rate of
force development (RFD), and voluntary activation were examined in 11 collegiate athletes
with unilateral ACL reconstruction [32]. During eight weeks of intervention (2 sessions per
week), participants performed one all-out set of Bulgarian squats on the injured leg using
a flywheel in addition to regular training practice. Reported study results revealed that
eccentric-oriented strength training significantly improved RFD parameters but not muscle
activation. Taken together, the aforementioned studies are in line with our study findings
that eccentric-oriented training is likely to induce superior strength and power-related
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return to sport performance outcomes in comparison to traditional rehabilitation modalities
in the athletic population. This seems to be particularly valid for subjects with pronounced
deficits in strength.

Several other articles addressed the effects of eccentric training on distinct return-to-
sport performance outcomes in the non-professional athlete population. Lepley et al. [26]
evaluated the efficacy of combined neuromuscular electrical stimulation and eccentric
training to improve strength in early-stage non-athletic ACL patients. Eccentric training
was conducted two times per week, with intensity set at 60% of the eccentric one-repetition
maximum. Reported results suggest that eccentric exercise improved quadriceps strength
significantly better than electrostimulation therapy alone and was almost identically effec-
tive as neuromuscular electrical stimulation and eccentric exercise in combination. Interest-
ingly, the eccentric group obtained a 22% percent change after 6 weeks of training, which is
similar to our study findings (28.1% and 27.1% change for the uninvolved and involved
legs, respectively). The aim of Kinikli et al.’s [29] study was to determine the functional
outcomes of early inclusion of eccentric vs. concentric training in ACL surgery patients.
This 12-week-long study with three training sessions per week showed no significant dif-
ferences between groups in terms of flexor and extensor strength, which is contrary to our
study findings. In addition, vertical jump and single-leg hop performance demonstrated
significantly greater improvements in the eccentric group, which corroborates our study
results. Similarly, Gerber et al. [37] revealed that early inclusion of eccentric exercises
increased the hopping distance of the involved limb by a significantly greater amount in
the eccentric group compared to the traditional group (p < 0.01), which is in line with our
study findings. Recently, the effects of eccentric vs. concentric cycle training were evalu-
ated in the early post-ACL reconstruction phase [30]. While no significant differences in
quadriceps strength of the affected limb were observed (by 20 to 33%), hamstring strength
increased in the eccentric group only (15.2%). The authors concluded that overall eccentric
progressive eccentric cycle training was not superior to equivolumed concentric training in
male nonathletic patients, which is in contrast to our study findings.

No significant training effect between eccentric and traditional training for limb
symmetry indexes was found, with several possible explanations for the obtained results.
As presented in Table 3, all LSI variables had relatively low reliability, impacting study
results and interpretation by likely underestimating the true effect size [38]. Second,
although hop tests are a recommended type of RTS testing, there are some concerns
regarding the use of the uninjured limb as a control for between-limb comparisons. Bilateral
neuromuscular deficits are evidenced after ACL reconstruction, which likely lead to falsely
high LSI [39]. Third, limb dominance has been shown to affect LSI indexes [40] and should
be considered when interpreting LSI data, which was not the case in our study. Finally,
recently reported results suggest indicators of absolute performance were superior to limb
symmetry when judging the return to sport after ACLR [41].

Our study results showed greater efficacy of eccentric-oriented than traditional re-
habilitation programs in injured leg performance, while no differences between training
programs for uninjured leg performance were shown. Mechanisms that are likely respon-
sible for the obtained results should be concisely hypothesized. First, continuing use of
eccentric exercise is able to improve muscle morphology, with increases in fascicle length
and cross-sectional area while targeting type II fibers being regularly established [42]. Sec-
ond, it seems that specific neural adaptations to eccentric-oriented strength training are
largely responsible for the reported efficiency of this training modality. Indeed, chronic
neural deficits [43,44] have been shown to prevail for years after ACL surgery [42] and likely
prevent effective strengthening and retard rehabilitation considerably [45]. Recently, unique
neural mechanisms during eccentric contractions were demonstrated [46], with superior
excitability at the motor cortex but also neural adjustment at the spinal level contributing
to enhanced muscle recruitment. In addition, emerging data suggest that eccentric training
likely attenuates injury-induced neural deficits by both improving cortical excitability and
targeting specific motor control pathways in the brain [47]. Collectively, this physiological
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distinctiveness of eccentric exercise capacity to beneficially modify peripheral and central
neural activity could be the answer to why, in our study, eccentric-oriented training was
found to be superior to concentric training in improving distinct return-to-sport criteria in
injured legs.

A few study limitations are noteworthy. First, assessment of the hamstring strength/power
parameters should be included in the return to sport test battery to allow more intergroup
comparison. Second, due to the nature of the intervention, it was not possible to blind
the strength and conditioning coach to group allocation. Third, the small sample size
in each group limits the statistical power and precludes the generalizability of study
findings. Notwithstanding these limitations, the effectiveness of eccentric-oriented training
on leg strength and power-related performance outcomes in late-stage ACL-rehabilitation
professional team sport players is supported by the present study findings.

5. Conclusions

Six weeks of eccentric-oriented training with 2–3 sessions per week (15 total sessions)
produces superior enhancement in lower body strength, vertical jump, single-leg vertical
jump with injured leg, single-leg hop with injured leg, and triple-leg hop with injured leg to
equivolumed traditional strength training in late-stage ACL patients in professional team
sport athletes. Both eccentric-oriented and traditional strength training proved effective in
improving isometric strength (limb symmetry index), single-leg jump test (uninjured leg),
single-leg jump test (limb symmetry index), single-leg hop test (uninjured leg), single-leg
hop test (limb symmetry index), triple-leg hop test (uninjured leg), and triple-leg hop
test (limb symmetry index). Therefore, eccentric-oriented strength training appears to
be a potent tool to produce improvements in return-to-sport performance outcomes for
professional team sport athletes in late-stage ACL rehabilitation.
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